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Abstract

A class C of graphs is said to be dually compact closed if, for every
infinite G ∈ C, each finite subgraph of G is contained in a finite induced
subgraph of G which belongs to C. The class of trees and more gener-
ally the one of chordal graphs are dually compact closed. One of the
main part of this paper is to settle a question of Hahn, Sands, Sauer and
Woodrow by showing that the class of bridged graphs is dually compact
closed. To prove this result we use the concept of constructible graph.
A (finite or infinite) graph G is constructible if there exists a well-
ordering ≤ (called constructing ordering) of its vertices such that, for
every vertex x which is not the smallest element, there is a vertex y < x
which is adjacent to x and to every neighbor z of x with z < x. Finite
graphs are constructible if and only if they are dismantlable. The case
is different, however, with infinite graphs. A graph G for which every
breadth-first search of G produces a particular constructing ordering of
its vertices is called a BFS-constructible graph. We show that the class
of BFS-constructible graphs is a variety (i.e., it is closed under weak
retracts and strong products), that it is a subclass of the class of weakly
modular graphs, and that it contains the class of bridged graphs and
that of Helly graphs (bridged graphs being very special instances of
BFS-constructible graphs). Finally we show that the class of interval-
finite pseudo-median graphs (and thus the one of median graphs) and
the class of Helly graphs are dually compact closed, and that more-
over every finite subgraph of an interval-finite pseudo-median graph
(resp. a Helly graph) G is contained in a finite isometric pseudo-median
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(resp. Helly) subgraph of G. We also give two sufficient conditions so
that a bridged graph has a similar property.
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1. Introduction

A class C of graphs is said to be compact closed if, whenever a graph G is such
that each of its finite subgraphs is contained in a finite induced subgraph
of G which belongs to the class C, then the graph G itself belongs to C. In
this paper we shall deal with the dual concept. We will say that a class C
of graphs is dually compact closed if, for every infinite G ∈ C, each finite
subgraph of G is contained in a finite induced subgraph of G which belongs
to C.

The class of trees is clearly dually compact closed and more generally
the class of all chordal graphs (a graph is chordal if it contains no induced
cycles of length greater than three) is dually compact closed because every
induced subgraph of a chordal graph is chordal.

In 1981, Hahn, Sands, Sauer and Woodrow [4] proposed the following
problem: Is every cycle of a bridged graph G contained in a finite induced
bridged subgraph of G? We recall that a graph is bridged if it contains no
isometric cycles of length greater that three. This problem is obviously true
if the class of bridged graphs is dually compact closed. In fact, later Hahn,
Sauer and Woodrow suggested to determine whether the class of bridged
graphs is dually compact closed. With Laviolette they gave a partial answer
to this problem by proving the following result.

Theorem 1.1 ([3]). The class of bridged graphs of diameter two is dually
compact closed. More precisely every finite subgraph of a bridged graph G of
diameter two is contained in a finite induced subgraph of G which is bridged
and has diameter two.

Recently Chastand, Laviolette and Polat [2] gave an affirmative answer to
the problem of Hahn, Sauer and Woodrow. In Section 4 of this paper we
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will recall the proof of this result which uses the concept of constructible
graphs. Roughly, a graph G is said to be dismantlable if its vertices can be
removed one after the other in such a way that a vertex x can be taken off
the currently remaining subgraph Gx of G if there exits a vertex y in Gx

which is adjacent to x and to all neighbors of x in Gx. On the other hand
a graph G is said to be constructible if it can be built vertex after vertex so
that a vertex x can be added to the currently constructed induced subgraph
Gx of G if there exists a vertex y of Gx which is adjacent in G to x and to all
neighbors of x belonging to Gx. These opposite concepts, which coincide for
finite graphs, are quite different for infinite graphs. Moreover the concept
of constructibility seems to be more interesting in the infinite case. For
some graphs, breadth-first search always gives an ordering of their vertices
that can be induced by constructibility. Some of these graphs are called
BFS-constructible. They all are weakly modular graphs and their class is a
variety which in particular contains bridged graphs and Helly graphs, and
that we conjecture to be generated by bridged graphs on account of the very
special properties of these graphs.

Several other subclasses of the class of weakly modular graphs are dually
compact closed but, as we will see, the class of Helly graphs (as well as that
of interval-finite pseudo-median graphs) has the following very interesting
refinement of the dually compact closed property: every finite subgraph of
a Helly graph G is contained in a finite isometric Helly subgraph of G. We
still do not know if the class of bridged graphs (and even of chordal graphs)
has an analogous property, that is more precisely, if every finite subgraph
of a bridged graph G is contained in a finite isometric (and thus bridged)
subgraph of G. Until now we only have partial results. The most interesting
one is that this property holds for bridged graphs which contains no infinite
complete subgraphs.

Some of the results of this paper have already been published. For the
main ones we recall their proofs when they are short and give outlines of
proofs otherwise.

2. Preliminaries

The graphs we consider are undirected, without loops and multiple edges.
A complete graph will be simply called a simplex. If x ∈ V (G), the set
NG(x) := {y ∈ V (G) : {x, y} ∈ E(G)} is the neighborhood of x in G. For
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A ⊆ V (G) we denote by G[A] the subgraph of G induced by A, and we set
G−A := G[V (G)−A].
A path P = 〈x0, . . . , xn〉 is a graph with V (P ) = {x0, . . . , xn}, xi 6= xj if
i 6= j, and E(P ) = {{xi, xi+1} : 0 ≤ i < n}. A ray or one-way infinite path
〈x0, x1, . . . 〉 and a double ray or two-way infinite path 〈. . . , x−1, x0, x1, . . . 〉
are defined similarly. A path P = 〈x0, . . . , xn〉 is called an (x0, xn)-path, x0

and xn are its endvertices, while the other vertices are called its internal
vertices, n = |E(P )| is the length of P .

The usual distance in a connected graph G between two vertices x and
y, that is the length of an (x, y)-geodesic (i.e., shortest (x, y)-path) in G, is
denoted by dG(x, y). A subgraph H of G is isometric in G if dH(x, y) =
dG(x, y) for all vertices x and y of H. If x is a vertex of G and r a non-
negative integer, the set BG(x, r) := {y ∈ V (G) : dG(x, y) ≤ r} is the ball of
center x and radius r in G, and the set SG(x, r) := {y ∈ V (G) : dG(x, y) =
r} is the sphere of center x and radius r in G. The smallest integer r such
that V (G) ⊆ BG(x, r) for some vertex x is the radius of G.

3. Constructible Graphs

If x and y are two vertices of a graph G, then we say that x is dominated by
y in G if BG(x, 1) ⊆ BG(y, 1), i.e., if y is adjacent to x and to all neighbors
of x in G. We will first recall the definition of a dismantlable graph.

Definition 3.1. A graph G is said to be dismantlable if there is a well-order
¹ on V (G) such that every vertex x which is not the greatest element of
(V (G),¹), if such a greatest element exists, is dominated by some vertex
y 6= x in the subgraph of G induced by the set {z ∈ V (G) : x ¹ z}. The
well-order ¹ on V (G), and the enumeration of the vertices of G induced
by ¹, will be called a dismantling order and a dismantling enumeration,
respectively.

Definition 3.2. A graph G is said to be constructible if there is a well-
order ≤ on V (G) such that every vertex x which is not the smallest element
of (V (G),≤) is dominated by some vertex y 6= x in the subgraph of G
induced by the set {z ∈ V (G) : z ≤ x}. The well-order ≤ on V (G), and the
enumeration of the vertices of G induced by ≤, will be called a constructing
order and a constructing enumeration, respectively.
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Remark 3.3. (1) Clearly a finite graph G is dismantlable if and only if it
is constructible. In fact, in this case, a constructing order on V (G) is the
dual of a dismantling order on this set. This may not be true if G is infinite.
There are constructible graphs which are not dismantlable. For example a
double ray D = 〈. . . ,−1, 0, 1, . . . 〉 is not dismantlable since no vertex of D
is dominated, but it is constructible : 0, 1,−1, 2,−2, . . . is a constructing
enumeration of V (D). On the other hand there are dismantlable graphs
which are not constructible. For example let 〈a0, a1, . . . 〉 and 〈b, c, d〉 be two
disjoint paths, and let G be the graph obtained by joining the vertices b
and d to an for every non-negative integer n. This graph G is dismantlable
since a0, a1, . . . , b, c, d is a dismantling order on V (G). It is not constructible
because if ≤ was a constructing order on V (G), if n was such that an < ap

for every p 6= n, and if x was the greatest vertex of the cycle 〈an, b, c, d, xn〉
with respect to ≤, then x would not be dominated in G[{y ∈ V (G) : y ≤ x}],
contrary to the definition of a constructing order.

(2) Let ≤ be a constructing order on the vertex set of a graph G with
u as the smallest element. Any self-map ∆ of V (G) such that ∆(u) = u
and, for each vertex x ∈ V (G − u), ∆(x) is a vertex of G which dominates
x in G[{y ∈ V (G) : y ≤ x}], will be called a domination function associated
with ≤. Because a well-order contains no infinite descending chain, for every
domination function ∆ and every x ∈ V (G), there exits a non-negative
integer n such that ∆n(x) = u.

The following result will be the corner stone of the solution to the problem
of Hahn, Sauer and Woodrow [5].

Theorem 3.4 ([2, Theorem 5.1]). The class of all constructible graphs is
dually compact closed.

Proof. Let G be a constructible graph, and let A be a finite set of vertices
of G. Let ≤ be a constructing order on V (G) with some vertex u as the
smallest element, and let ∆ be a domination function associated with ≤.
By Remark 3.3(2), for every a ∈ A, there exists a non-negative integer n(a)
such that ∆n(a)(a) = u. Let H := G[

⋃
a∈A{∆i(a) : 0 ≤ i ≤ n(a)}]. This

graph H is finite and contains G[A]. Furthermore the restriction of ≤ to
V (H) is obviously a constructing order on V (H), which proves the result.

For different classes of graphs, a useful tool for obtaining constructing orders
is the concept of breadth-first search (BFS). We recall that a BFS of a given
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graph G with n vertices produces an enumeration x1, . . . , xn of the vertices
of G in the following way. We number with 1 some vertex of G and put it
at the head of an empty queue. At the i-th step we number and add at the
end of the current queue all still unnumbered neighbors of the head xi of
the queue, then we remove xi.

Definition 3.5. Let G be a connected graph. A well-order ≤ on V (G) is
called a BFS-order if there exists a family (Ax)x∈V (G) of subsets of V (G)
such that, for every x ∈ V (G):
(i) x ∈ Ax;
(ii) if x ≤ y, then Ax is an initial segment of Ay with respect to the induced

order;
(iii) Ax = A(x) ∪ NG(x) where A(x) := {x} if x is the least element of

(V (G),≤), and otherwise A(x) :=
⋃

y<x Ay.

The vertex x will be called the father of each element of Ax − A(x). We
will denote by φ, and call father function, the self-map of V (G) such that
φ(u) = u if u is the smallest element of (V (G),≤), and φ(x) is the father of
x for every x ∈ V (G− u).

Lemma 3.6 ([13, Lemma 3.6]). There exists a BFS-order on the vertex set
of any connected graph.

As is shown in [2], a BFS-order is not necessarily a constructing order, and
a constructing order is not necessarily a BSF-order. Furthermore, there
exist constructible graphs such that none of their constructing orders is a
BFS-order. On the contrary, for some classes of constructible graphs, any
BFS-order is a constructing order.

4. BFS-Constructible Graphs and Bridged
Graphs

Let ≤ be constructing order on the vertex set of a graph G with u as the
smallest element. A domination function ∆ associated with ≤ is said to be
descending if dG(u,∆(x)) < dG(u, x) for every x 6= u.

Definition 4.1. A connected graph G is said to be BSF-constructible if
every BFS-order ≤ on V (G) is a constructing order for which there exists
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an associated descending domination function. More generally a graph G is
BFS-constructible if each component of G is BFS-constructible.

We recall that a graph G is weakly modular if it satisfies the following two
conditions:

Triangle condition: for any three vertices x0, x1, x2 with 1 = dG(x1, x2)
< dG(x0, x1) = dG(x0, x2), there exists a common neighbor u of x1 and x2

such that dG(x0, u) = dG(x0, x1)− 1.
Quadrangle condition: for any four vertices x0, x1, x2, x3 with dG(x1, x3)

= dG(x2, x3) = 1 and dG(x0, x1) = dG(x0, x2) = dG(x0, x3)− 1, there exists
a common neighbor u of x1 and x2 such that dG(x0, u) = dG(x0, x1)− 1.

The class of weakly modular graphs contains important subclasses.
Among them are the class of bridged graphs and thus that of chordal graphs
(note that a bridged graph is hereditary, that is every isometric subgraph
of a bridged graph is bridged), and the class of pseudo-modular graphs con-
taining itself the important classes of median graphs, pseudo-median graphs
and Helly graphs.

Note that there exists no relation between constructible graphs and
weakly modular graphs, as is shown by the following two examples. Let
C be a cycle of length four. Then C is clearly weakly modular but not
constructible. Now let x and y be two new vertices, and let G be the graph
obtained by joining x to all vertices of C, and y to two adjacent vertices
of C. Then G is constructible but not weakly modular. As we will now see,
the case is different for BFS-constructible graphs.

Theorem 4.2. Every BFS-constructible graph is weakly modular.

Proof. Let G be a BFS-constructible graph.

(a) Triangle property.
Let a, b, c be three vertices of G such that b and c are adjacent and a is
equidistant from b and c and at distance n > 1 from these vertices. Let
〈x0, . . . , xn〉 be an (a, b)-geodesic with x0 = a and xn = b. Let ≤ be a
BFS-order on V (G) such that xi is the smallest element of the set SG(a, i)
for all i with 0 ≤ i ≤ n. Then b < c. Since G is BFS-constructible,
the vertex c is dominated in G[{y ∈ V (G) : y ≤ c}] by a vertex u such that
dG(a, u) < dG(a, c). Hence u is adjacent to both b and c and dG(a, u) = n−1.

(b) Quadrangle property.
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Let a, b, c, d be four vertices of G such that b and c are both adjacent to
d and dG(a, b) = dG(a, c) =: n = dG(a, d) − 1. Assume that no common
neighbor of b and c is at distance n−1 from a. Then, by (a), b and c cannot
be adjacent.
Let 〈x0, . . . , xn〉 be an (a, b)-geodesic with x0 = a and xn = b, and let ≤ be
a BFS-order on V (G) defined as in (a). Since dG(a, d) = n + 1, it follows
that b < d and c < d. Then, since G is BFS-constructible, there exists a
vertex u which dominates d in G[{y ∈ V (G) : y ≤ d}] with dG(a, u) = n.
Since b and c are not adjacent, u must be distinct from these two vertices.

By (a) there exist b′ and c′ such that b′ is adjacent to u and b, c′ is
adjacent to u and c, and dG(a, b′) = dG(a, c′) = n − 1. By the assumption
we must have b′ 6= c′.

(b.1) We claim that b′ and c′ are not adjacent. Suppose that they
are adjacent. By (a) there is a common neighbor v of b′ and c′ such that
dG(a, v) = n− 2. Then there exists a BFS-order ≤b on V (G) with b as the
smallest element such that b ≤b d ≤b b′ ≤b u ≤b c ≤b v ≤b c′. Since G
is BFS-constructible there must exists a vertex w which is adjacent to all
vertices b, u, c, v, c′. Therefore dG(a,w) = n − 1, and this contradicts the
assumption and thus proves the claim.

(b.2) Therefore b′ and c′ are not adjacent. By the same argument as
before, there is a common neighbor v of b′ and c′ such that dG(a, v) = n−1.
Also there exist b′′ and c′′ such that b′′ is adjacent to v and b′, c′′ is adjacent
to v and c′, and dG(a, b′′) = dG(a, c′′) = n−2. If b′′ 6= c′′, then, with the same
argument as in (b.1), we would prove the existence of common neighbor w
of the vertices b′, c′, v, b′′, c′′ such that dG(a,w) = n − 2. Therefore we can
suppose that b′′ = c′′ =: w.

Then there exists a BFS-order ≤b′ on V (G) with b′ as the smallest
element such that b′ ≤b′ u ≤b′ b ≤b′ v ≤b′ w ≤b′ c ≤b′ c′. Since G is BFS-
constructible there must exists a vertex y which is adjacent to all vertices
b′, u, v, w, c, c′. Therefore dG(a, y) = n − 1, contrary to the preceding claim
with y instead of c′, because b′ is adjacent to b and u, y is adjacent to c and
u, and b′ and y′ are adjacent. Consequently the assumption is false.

If G and H are two graphs, a map f : V (G) → V (H) is a contraction
(weak homomorphism in [7]) if f preserves or contracts the edges, i.e., if
f(x) = f(y) or {f(x), f(y)} ∈ E(H) whenever {x, y} ∈ E(G). Note that the
contractions between two graphs G and F correspond to the non-expansive
maps between the associated metric spaces (V (G), dG) and (V (H), dH).
Graphs and contractions form a category in which the product, denoted



On Dually Compact Closed Classes of ... 373

by £, is what is usually called the strong product of graphs. A graph H is
a retract (weak retract in [7]) of a graph G if there are contractions f of G
onto H and g of H into G such that f ◦ g = idH ; f is called a retraction and
g a co-retraction of f .

Theorem 4.3. The class of all BFS-constructible graphs is a variety, i.e.,
it is closed under retracts and products.

Proof. (a) Closure under retracts.
Let G be a BFS-constructible graph, and H a retract of G. Without loss of
generality we will suppose that H is a subgraph of G and that the retraction
f of G onto H is such that its restriction to V (H) is the identity. Let ≤H

be a BFS-order on V (H) with u as the smallest element, and let φH be
the father function. We can easily construct a BFS-order ≤G on V (G)
with u as the smallest element such that, for each v ∈ V (G), if B(v) :=
NG(v) − ⋃

w<Gv NG(w) if v 6= u and B(v) := NG(v) if v = u, then for all
x, y ∈ B(v) with x 6= y:

1. x ∈ V (H) and y ∈ V (G−H) implies x <G y;
2. f(x) <H f(y) implies x <G y.

In particular 1 implies that x ≤G y if and only if x ≤H y. For x ∈ V (H)
put Hx := H[{y ∈ V (H) : y ≤H x}] and Gx := G[{y ∈ V (G) : y ≤G x}].
Clearly Hx = H ∩Gx for every x ∈ V (G). Since ≤G is a BFS-order, and G
is BFS-constructible, there is a descending domination function ∆G which
is associated with ≤G. Put ∆H := f ◦ ∆G and let x ∈ V (H). Because
f is a retraction and ≤G is descending, dH(u,∆H(x)) ≤ dG(u,∆G(x)) <
dG(u, x) = dH(u, x). Then ∆H(x) <H x by the properties of a BFS-order.
Hence ∆H(x) dominates x in Hx because ∆G(x) dominates x in Gx and f
is a retraction. This proves that ∆H is a descending domination function
which is associated with ≤H , and thus that H is BFS-constructible.

(b) Closure under products.
Let (Gi)i∈I be a family of graphs. We will show that £i∈IGi is BFS-
constructible. Without loss of generality we can suppose that each Gi is
connected. For each i ∈ I denote by πi be the i-th projection of £i∈IGi onto
Gi. Let u ∈ V (G), and let G be the component of £i∈IGi which contains
u. Let ≤ be a BFS-order on V (G) such that u is the smallest element. We
have to show that it admits a descending domination function. Let φ be the



374 N. Polat

father function associated with ≤, and for each x ∈ V (G) let n(x) be the
smallest non-negative integer such that φn(x)(x) = u.

For each i ∈ I put ui := πi(u). Note that dG(x, y) = maxi∈I dGi(πi(x),
πi(y)) for any two vertices x, y of G. For each vertex x of G let I(x) :=
{i ∈ I : dGi(ui, πi(x)) = dG(u, x)}. If x and y are adjacent vertices of G
with dG(u, x) = dG(u, y) + 1, then I(y) ⊆ I(x) and y < x.

(b.1) Let a ∈ V (G − u) and i ∈ I(a). We will construct a BFS-order
≤a

i on V (Gi) with ui as the smallest element. We first construct a family
(Axi)xi∈V (Gi) of subsets of V (Gi) such that:

1. for every xi ∈ V (Gi), xi ∈ Axi and the set Axi is well-ordered by a
relation ≤xi ;

2. for every S ⊆ V (Gi) the set AS :=
⋃

xi∈S Axi is well-ordered by a rela-
tion ≤S such that the poset (Axi ,≤xi) is an initial segment of (AS ,≤S)
for each xi ∈ S;

3. if S 6= V (Gi), then AS − S is non-empty.

Let ≤ui be the relation on Aui := {ui} ∪NGi(ui) such that, for all distinct
elements xi, yi of Aui , xi <ui yi if xi = ui or if min{x ∈ V (G) : πi(x) = xi}
< min{y ∈ V (G) : πi(y) = yi}.

Let S be the set of the vertices xi of Gi such that Axi and ≤xi have
already been constructed. Suppose S 6= V (G). By 3, AS − S is non-empty.
Let xi be the smallest element of (AS − S,≤S). Put Axi := AS ∪ NGi(xi)
and let 4xi be the relation on NGi(xi)−AS such that:

– if xi = πi(φk(a)) for some k with 0 < k ≤ n(a)), then yi ≺xi zi if
min{y ∈ NG(φk(a)) : πi(y) = yi} < min{z ∈ NG(φk(a)) : πi(z) = zi};

– if xi 6= πi(φk(a)) for every k ≤ n(a), then yi ≺xi zi if min{y ∈ V (G) :
πi(y) = yi} < min{z ∈ V (G) : πi(z) = zi}.

Let (Axi ,≤xi) be the ordered sum of (AS ,≤S) with (NGi(xi)−AS ,≺xi).
If S = V (G), then we are done because the well-order ≤S and the family

(Axi)xi∈V (Gi) clearly satisfy the condition of Definition 3.5.
Put ≤a

i :=≤V (Gi). By the construction, if φi denotes the father func-
tion associated with ≤a

i , then πi(φk(a)) = φk
i (πi(a)) for every k with 0 ≤

k ≤ n(a). It follows that, for every x < a, πi(x) ≤a
i πi(a) and if x and

a are adjacent then πi(x) and πi(a) are adjacent too. Since Gi is BFS-
constructible, there exists a descending domination function ∆a

i which is
associated with ≤a

i .
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(b.2) Now we construct a self-map ∆ on V (G) as follows: ∆(u) := u
and, for every x > u, ∆(x) is such that

πi(∆(x)) :=

{
πi(x) if i /∈ I(x),

∆x
i (πi(x)) if i ∈ I(x).

Clearly dG(u,∆(x)) < dG(u, x) since dG(u,∆(x)) = dGi(ui, ∆x
i (πi(x))) <

dGi(ui, πi(x)) = dG(u, x) for every i ∈ I(x).
Let y be a neighbor of x with y < x. For every i ⊆ I, πi(y) and

πi(x) either coincide or are adjacent. Moreover, if i ∈ I(x), then πi(y)
and ∆x

i (πi(x)) either coincide or are adjacent since ∆x
i (πi(x)) dominates

πi(x) in Gi[{xi ∈ V (Gi) : xi ≤x
i πi(x)}] = Gi[{πi(z) : z ≤ x}]. Hence,

for every i ∈ I, πi(y) and πi(∆(x)) either coincide or are adjacent. This
proves that y and ∆(x) either coincide or are adjacent, and thus, that ∆(x)
dominates x in G[{y ∈ V (G) : y ≤ x}]. Therefore ∆ is a domination
function which is associated with ≤, and which is descending because, as
we saw, dG(u,∆(x)) < dG(u, x) for every x 6= u. Consequently G, and thus
£i∈IGi, are BFS-constructible.

Due to the definition of the father function, the following result is substan-
tially the equivalence (i) ⇔ (ii) of [2, Theorem 4.3].

Theorem 4.4 ([2, Theorem 4.3]). A graph G is bridged if and only if it is
BFS-constructible and the father function of any BFS-order on V (G) is an
associated descending domination function.

Note that if ≤ is a BFS-order on V (G), φ its associated father function,
and ∆ an associated domination function, then clearly φ(x) ≤ ∆(x) for
every x ∈ V (G). Theorem 4.4 and this remark give to bridged graphs a so
special place among BFS-constructible graphs that we are induced to make
the following conjecture.

Conjecture 4.5. The variety of BFS-constructible graphs is generated by
bridged graphs, i.e., every BFS-constructible graph is a retract of a product
of bridged graphs.

As we will now see, the variety of BFS-constructible graphs contains another
important subclass of the class of weakly modular graphs.

Definition 4.6. A Helly graph is a graph G for which any (finite or infinite)
family of pairwise non-disjoint balls has a nonempty intersection.
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Lemma 4.7 ([9]). The class of Helly graphs is the variety which is gener-
ated by paths.

Proposition 4.8. Every Helly graph G is BFS-constructible.

Proof. By Lemma 4.7 Helly graphs are the retracts of products of paths.
Since paths are bridged graphs, and thus BFS-constructible graphs, and
because the class of BFS-constructible graphs is a variety, it follows that
Helly graphs are BFS-constructible.

We will now recall a consequence of Theorems 4.4 and 3.4 and of [1, Corollary
2.6] that we will need to give the solution to Hahn, Sauer and Woodrow’s
problem about bridged graphs.

Proposition 4.9 ([2, Theorem 4.3]). A connected graph is bridged if and
only if it is constructible and has no induced cycles of length 4 or 5.

Note that, since a finite graph is dismantlable if and only if it is constructible,
this equivalence extends to infinite graphs the result of Anstee and Farber
[1, Corollary 2.6].

Theorem 4.10 ([2, Theorem 5.1]). The class of bridged graphs is dually
compact closed.

Proof. Let H be a finite subgraph of a bridged graph G. W.l.o.g. we can
suppose that G is connected. Hence, by Proposition 4.9, G is constructible.
Therefore, by Theorem 3.4, H is contained in a finite induced subgraph K of
G which is constructible. Since G is bridged and K is an induced subgraph
of G, K contains no induced cycles of length 4 or 5. Therefore K is bridged
by Proposition 4.9.

5. Finite Isometric Subgraphs of a Graph

As we will now see, there are other important subclasses of the class of
weakly modular graphs which are dually compact closed and which even
have a much more interesting property.

The (geodesic) interval IG(x, y) of two vertices x and y of a graph G is
the set of vertices of all (x, y)-geodesics in G. We will say that a graph is
interval-finite if all its intervals are finite. A set A of vertices of a graph G
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is (geodesically) convex if it contains the interval IG(x, y) for all x, y ∈ A.
The (geodesic) convex hull coG(A) of a set A of vertices of a graph G is the
smallest convex set of G containing A.

A median of a triple {x, y, z} of vertices of a graph G is any element of
the intersection IG(x, y) ∩ IG(y, z) ∩ IG(z, x). A graph G is modular (resp.
median if every triple {x, y, z} of vertices of G admits at least (resp. exactly)
one median.

A pseudo-median of a triple {x, y, z} of vertices of G is a triple {x′, y′, z′}
of pairwise adjacent vertices such that {x′, y′} ⊆ IG(x, y), {y′, z′} ⊆ IG(y, z)
and {z′, x′} ⊆ IG(z, x). A graph G is pseudo-modular if every triple {x, y, z}
of vertices of G admits a median or a pseudo-median. If, for every triple of
vertices, the median or the pseudo-median is unique, then G is said to be
pseudo-median. A graph is then modular (resp. median) if and only it is
pseudo-modular (resp. pseudo-median) and contains no triangle (i.e., K3).

Proposition 5.1 ([11, Corollary 5.3]). The convex hull of any finite set of
vertices of an interval-finite pseudo-median graph is finite.

Since every interval of a median graph is finite, this result generalizes a result
of Tardif [18, Lemma 2.1.3(2)]. By [11, Proposition 5.4], particular instances
of interval-finite pseudo-median graphs are the pseudo-median graphs which
contain no infinite simplices. Because the subgraph of a (pseudo-) median
graph induced by a convex set is clearly (pseudo-) median, we obtain imme-
diately:

Theorem 5.2. The class of median graphs and the one of interval-finite
pseudo-median graphs are dually compact closed. More precisely every finite
subgraph of an interval-finite pseudo-median graph G is contained in a finite
subgraph of G whose vertex set is convex in V (G) (and thus which is an
isometric subgraph of G).

We still do not know if the class of all pseudo-median graphs is dually
compact closed. We will now consider Helly graphs. We will need several
properties of Helly graphs to prove that the class of these graphs is dually
compact closed. The first one is the Extension Property.

Lemma 5.3 ([16] and [8]). A graph G is a Helly graph if and only if, for
every graph H and every A ⊆ V (H) and for each map f of A into V (G) such
that dG(f(x), f(y)) ≤ dH(x, y) for all x, y ∈ A, there exists a contraction of
H into G which coincides with f on A (Extension Property).
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The second property that we need is the existence of an injective hull for
any finite metric space over N and in particular for every finite graph. This
result was obtained by Isbell [6], by Pouzet [14, 15] (see also [8, Theorem
IV-1.2.3]) and also by Pesch [10].

Lemma 5.4 ([6], [14, 15] and [10]). For every finite metric space (E, d)
over N there exists, up to isomorphism, a unique finite minimal Helly graph
G (injective hull) such that (E, d) is an isometric subspace of (V (G), dG).

Lemma 5.5. Every dominated vertex of the injective hull of a metric space
(E, d) belongs to E.

Proof. If x is a dominated vertex of a graph H, then H −x is a retract of
H. Hence H − x is a Helly graph if H is a Helly graph. The result is then
due to the minimality of the injective hull.

Lemma 5.6. The endvertices of any path of maximal length in a Helly graph
are dominated.

Proof. Let x0 and x1 be the endvertices of a path of maximal length
in a Helly graph G, and let k := dG(x0, x1). Let i ∈ {0, 1}. The balls
BG(xi, k − 1), BG(x1−i, k − 1) and BG(u, 1) for all u ∈ NG(x1−i), are pair-
wise non-disjoint. Hence BG(xi, k−1)∩⋂

u∈BG(x1−i,1) BG(u, 1) is non-empty
since G is a Helly graph. Therefore each element of this intersection
dominates x1−i.

Theorem 5.7. The class of Helly graphs is dually compact closed. More
precisely, every finite subgraph H of a Helly graph G is contained in a finite
isometric Helly subgraph of G.

Proof. By Lemma 5.4, the metric space (V (H), dG) has an injective hull,
say K. Then H is an isometric subgraph of K. By Lemmas 5.5 and 5.6,
any two vertices of K belong to a path joining two vertices of H. There-
fore, by the extension property (Lemma 5.3) and the uniqueness of K, this
graph K can be considered as a subgraph of G, and thus as an isometric
subgraph of G.

We recall that Hahn, Laviolette, Sauer and Woodrow 1.1 proved that every
finite subgraph H of a bridged graph G of diameter two is contained in a
finite induced subgraph K of G which is bridged and has diameter two. Note
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that, in this result, the fact that the finite bridged subgraph K has diameter
two implies that K is an isometric subgraph of G. This brings us to the
question of whether K can always be chosen to be isometric. Clearly an
isometric subgraph of a bridged graph is bridged, hence this problem is a
natural enhancement of the one of Hahn, Sauer and Woodrow. However
this seems to be very difficult. From this point of view, we will now show
some refinements of Theorem 4.10, first by generalizing the result of Hahn
et al. [3] by considering bridged graphs of radius 2.

Theorem 5.8 ([2, Theorem 5.6]). Let G be a bridged graph of radius 2
such that G[NG(u)] contains no infinite simplices for some vertex u of G
with V (G) = BG(u, 2). Then every finite subgraph H of G is contained in a
finite isometric (and hence bridged) subgraph of G.

The proof of this theorem, which is rather long and technical and will not
be recalled here, does not seem to be easily extendable to bridged graphs
of radius greater that 2. In order to give an outline of the proof of a much
more interesting theorem we will need the following result.

Lemma 5.9 ([13, Theorem 3.8]). Every bounded bridged graph without infi-
nite simplices and containing only finitely many dominated vertices is finite.

Theorem 5.10 ([13, Theorem 3.11]). Let G be a bridged graph containing
no infinite simplices. Then every finite subgraph of G is contained in a finite
isometric subgraph of G.

Outline of the proof. Without loss of generality we can assume that
G is connected. Let X be a finite subset of V (G), x ∈ X and r :=
maxy∈X dG(x, y). Since every ball of a bridged graph is convex, coG(X) ⊆
BG(x, r) because X ⊆ BG(x, r). Therefore the subgraph K := G[coG(X)]
is an isometric bounded subgraph of G which contains X. This implies in
particular that K is bridged, since it is an isometric subgraph of a bridged
graph. By [13, Lemma 6.5] and because K contains no infinite simplices,
every interval of K is finite. Therefore we can prove that the set of isomet-
ric subgraphs of K containing X and ordered by the subgraph relation is
inductive. Hence Zorn Lemma implies that there exists a minimal isometric
subgraph H of K which contains X.

Suppose that H contains a dominated vertex x which does not belong
to X. Then H − x would be an isometric (hence bridged) subgraph of H



380 N. Polat

containing X, contrary to the minimality of H. Therefore every dominated
vertex of H belongs to X. Hence H is a bounded bridged graph without
infinite simplices which contains only finitely many dominated vertices. It
follows that H is finite by Lemma 5.9.

6. Open Problems

In addition to Conjecture 4.5 and on account of the results of last section,
the following questions arise naturally.

Question 6.1. Is the class of weakly modular graphs dually compact closed,
and if not so, which subclasses of the class of weakly modular graphs is dually
compact closed?

Question 6.2. Is every finite subgraph of a bridged (resp. chordal) graph
G contained in a finite isometric subgraph of G?

By Theorem 5.10, this problem is equivalent to:

Question 6.3. Is every finite subgraph of a bridged (resp. chordal) graph
G contained in an isometric subgraph of G without infinite simplices?
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Pub. Dépt. Math. (Lyon, 1985).

[15] M. Pouzet, Retracts: recent and old results on graphs, ordered sets and metric
spaces, Circulating manuscript, 29 pages, Nov. 1983.

[16] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursuite
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