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1. Introduction

Hadwiger’s Conjecture is the major unsolved problem in graph coloring the-
ory. Even for graphs of independence number α = 2 a proof has proved
elusive so far. This has led to speculation that the conjecture might be
false, even in this special case.

The special case was first considered by Duchet and Meyniel [7], but it
was W. Mader, who in a private communication a few years ago made clear
to us how interesting the special case is.

Graphs G with independence number α(G) ≤ 2 may at first seem rather
restricted, but noticing that this is equivalent to G being K3-free and re-
membering the wide variety of K3-free graphs, one may consider α ≤ 2 as a
mild restriction only.

The purpose of this paper is to investigate how far one can go by stan-
dard methods in an attempt to solve the special case α = 2.

By the determination of the order of magnitude of the Ramsey number
r(3, n) by Kim [11] there is a constant c > 0 such that there exist graphs G
on n vertices, with α(G) = 2 and clique number ω(G) ≤ c

√
n log n. Again

this indicates the non-triviality of Hadwiger’s Conjecture for α = 2: The
chromatic number χ(G) is at least n/2 (since every color can be used at
most twice), so although we want G to have at least a Kdn/2e as a minor, it
may have only a complete graph of order

√
n log n as a subgraph.

For such a graph G to have Kdn/2e as a minor one needs to make at least
n/2 − c

√
n log n contractions into single vertices of connected subgraphs

on ≥ 2 vertices. Most of these connected subgraphs will be complete 2-
graphs (because there are only n vertices altogether). That is, G will have
a large matching with every two matching edges joined by at least one
edge. We shall call such a matching connected. Thus the problem to find
large connected matchings in graphs G with α(G) = 2 is closely related to
Hadwiger’s Conjecture for α = 2. The problem of finding a large connected
matching in a general graph is NP-hard, as we shall see in Section 7.

Duchet and Meyniel [7] proved that a graph G always has
Kdn/(2α(G)−1)e as a minor, i.e., a graph G with α(G) ≤ 2 has Kdn/3e as
a minor. (This is easily proved by induction, contracting an induced path of
length 2 when possible.) P. Seymour has asked if one can at least prove that
there is a positive ε such that any graph G with α(G) ≤ 2 has Kd(1/3+ε)ne

as a minor.
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In the present paper we shall present a large number of properties possessed
by a smallest counterexample to Hadwiger’s Conjecture for α = 2. Moreover,
we shall prove that the conjecture is true for several infinite families of α = 2
graphs and their inflations. An inflation of a graph is obtained by replacing
its vertices by complete graphs. Note that inflations of α = 2 graphs likewise
have α = 2.

Our results support the following extended conjecture:

EH. (Extended Hadwiger’s Conjecture for α = 2). Every graph G having
α(G) = 2 has a connected matching M such that the contractions of the
edges in M to |M | single vertices result in a graph containing a Kd|V (G)|/2e.

2. Notation

Let G denote a finite simple undirected graph with vertex set V (G) and
edge set E(G). We shall often denote |V (G)| by n. A vertex set is indepen-

dent if no two of its members are adjacent. The cardinality of any largest
independent set in G is called the independence number of G and is denoted
by α(G) or just α when graph G is understood. A graph G is said to be
α-critical if for every edge e ∈ E(G), α(G−e) > α(G). An edge e = xy in G
is said to be a dominating edge if every vertex of G different from x and from
y is adjacent to at least one of x and y. A matching in G is a set of edges
no two of which share a vertex. A matching M in G is said to be connected

if every pair of edges of M are joined by at least one edge. A matching M
in G is said to be dominating if every vertex in G − V (M) is adjacent to at
least one endvertex of every edge of M . We shall write x ∼ y (x 6∼ y) when
vertices x and y are (are not) adjacent. A graph H obtained from a graph
G by deletions (of vertices and/or edges) and/or contractions (of edges) is
a minor of G. We express this relation between the graphs G and H by
G � H (or by H � G). As usual, the chromatic number of G is denoted
by χ(G), the vertex connectivity by κ(G) and the minimum degree of G by
δ(G). For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X,
further, G − X = G[V (G) − X].

3. Hadwiger’s Conjecture

H. Hadwiger presented his conjecture in a colloquium of the Eidgenössische
Technische Hochschule in Zürich on December 15, 1942. The conjecture
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resulted from Hadwiger’s suggestion that graph coloring should be studied
in terms of a combinatorial classification of graphs, rather than in terms of
classification based upon embeddings as was the more common approach of
the time. The new classification used the maximum k for which G has Kk as
a minor and the conjecture simply stated that the chromatic number χ(G)
is at most this number k.

H1. Hadwiger’s Conjecture [10]. ∀G:G � Kχ(G).

Toft [18] gave a comprehensive survey of H1. We shall consider the con-
jecture in the special case where the independence number α(G) of G is
≤ 2:

H2. Hadwiger’s Conjecture for α = 2. ∀G : α(G) ≤ 2 ⇒ G � Kχ(G).

Since α(G) ≤ 2 implies that χ(G) ≥ |V (G)|/2, it follows immediately that
H2 ⇒ H3, where H3 is the following conjecture:

H3. Hadwiger’s Conjecture for α = 2. ∀G : α(G) ≤ 2 ⇒ G � Kd|V (G)|/2e.

As we shall see below, H3 ⇒ H2 also; hence we have given H2 and H3 the
same name.

Let us suppose in the following that the graph G is a smallest possible
counterexample for H2 in terms of the number of vertices (i.e., we assume
that H2 is false and that G is a counterexample with a smallest possible
|V (G)|). In the following we shall obtain properties (1), (2), . . . , (19) about
such a graph G. Of course α(G) = 2. Since each color class in a coloring
has size at most 2, it follows that |V (G)| ≤ 2χ(G).

If |V (G)| = 2χ(G) then for an arbitrary x ∈ V (G) we have that 2χ(G)−
1 = |V (G − x)| ≤ 2χ(G − x) hence χ(G) − 1

2 ≤ χ(G − x) ≤ χ(G), i.e.,
χ(G − x) = χ(G). But G � G − x and G − x � Kχ(G−x) = Kχ(G) (by
the minimality of G). Hence G � Kχ(G), contradicting the fact that G is a
counterexample to H2. Therefore |V (G)| ≤ 2χ(G) − 1.

If χ(G − x) = χ(G) for a vertex x ∈ V (G) then by the minimality of G
we get a contradiction as above. So

(1) ∀x ∈ V (G):χ(G − x) < χ(G), i.e., G is vertex-critical.

Moreover

(2) The complement G of G is connected.
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Assume, to the contrary, that the complement of G is disconnected. This
means that G consists of two disjoint graphs G1 and G2 completely joined
by edges. Moreover, by the minimality of G, G1 � Kχ(G1) and G2 � Kχ(G2),
hence G � Kχ(G1)+χ(G2) = Kχ(G), contradicting that G is a counterexample
to H2. This proves (2).

Assume now that |V (G)| ≤ 2χ(G)− 2. By a deep theorem of Gallai [8],
G is disconnected, contradicting (2) above. Hence

(3) |V (G)| = 2χ(G) − 1.

From G 6� Kχ(G) and (3) above, it follows that G 6� K(|V (G)|+1)/2 =
Kd|V (G)|/2e. Hence G is a counterexample also to H3. This proves that
H3 ⇒ H2. Hence

Theorem 3.1. The conjectures H2 and H3 are equivalent. More precisely:

any counterexample to H3 is a counterexample to H2, and any smallest (in
terms of |V (G)|) counterexample to H2 is a counterexample to H3.

Let us now assume that G1 is a counterexample to H2 which has a smallest
chromatic number. Then χ(G1) ≤ χ(G) (by the minimality of G1) and
|V (G1)| ≥ |V (G)| (by the minimality of G). Then from α(G1) = 2, we get
2χ(G) − 1 = |V (G)| ≤ |V (G1)| ≤ 2χ(G1) ≤ 2χ(G). The only option is that
χ(G1) = χ(G). This proves:

Theorem 3.2. If G is a smallest counterexample to H2 in terms of |V (G)|,
then G is a smallest counterexample to H2 in terms of χ(G).

Theorem 3.2 is interesting since it is not known if the statement holds with
H2 replaced by H1. This is a problem due to A.A. Zykov (see Toft [18]).

A further property of G can be derived from α(G − x) ≤ α(G) = 2 and
2χ(G−x) = 2χ(G)− 2 = |V (G)|− 1 = |V (G−x)|, namely that G−x has a
(χ(G)−1)-coloring in which each color class has size exactly 2. That means

(4) ∀x ∈ V (G):G − x has a perfect matching, i.e., the complement G of G
is factor-critical.

Choose xy ∈ E(G) and let H denote the graph obtained from G by con-
tracting xy to a new vertex z. Then H has one vertex less than G. Hence
G � H � Kχ(H) by the minimality of G. Therefore χ(H) < χ(G). A
(χ(G) − 1)-coloring of H gives immediately a (χ(G) − 1)-coloring of G− xy
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by giving x and y the color of z and retaining all other colors. But in a
(χ(G) − 1)-coloring of the 2χ(G) − 1 vertices of G − xy at least one color
class must have size ≥ 3, and hence:

(5) ∀xy ∈ E(G):α(G − xy) = 3 > 2 = α(G), i.e., G is α-critical.

Finally, let H be a proper minor of G; i.e., G � H and G 6= H. If H has fewer
vertices than G, then H � Kχ(H), so χ(H) < χ(G). If |V (H)| = |V (G)|
then H ⊆ G − xy for some edge xy of G since H is a proper minor, so
χ(H) ≤ χ(G − xy) < χ(G). In any case χ(H) < χ(G). So

(6) ∀H, G � H and G 6= H:χ(H) < χ(G), i.e., G is contraction-critical.

We still assume that G is a smallest counterexample to H2 (and hence to
H3 by Theorem 1). By (3) and (6), G is non-complete contraction-critical.
A large number of properties follow from this, as listed in the paper by
Toft [18]:

(7) χ(G) ≥ 7 (Robertson, Seymour and Thomas [16]).

(8) G is 7-vertex-connected (Dirac [6] and Mader [14]).

(9) δ(G) ≥ χ(G) (Dirac [6]) and G is χ(G)-edge-connected (Toft [17]).

The proof of result (7) above depends on the truth of the Four Color Theo-
rem. However, for the special case α = 2, this can of course be established
in a much more elementary way. By (3) above, the cases when χ ≤ 6 deal
with graphs having at most 11 vertices and as we shall see, these are easy
to handle.

From (3) and (9) and a well known theorem of Dirac [5], we get (10),
which in turn, together with (3), implies (11).

(10) G is Hamiltonian.

(11) G is factor-critical.

Concerning matchings, the following property is easily proved.

(12) G does not contain a non-empty connected dominating matching.

Proof. Suppose M 6= ∅ is a connected dominating matching in G. Then
G′ = G − V (M) is smaller than G and hence G′ � Kdn′/2e = Kdn/2e−|M |.
Contracting the edges of M into |M | single vertices, we thus obtain a Kdn/2e
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as a minor of G, since M is connected and dominating. But G is a coun-
terexample to H2, so this is a contradiction.

Let H be an arbitrary graph. By a 2-path of H we mean an induced subpath
of length 2 in H. Clearly, H does not contain any 2-path if and only if every
component of H is a complete graph. If H has a 2-path P and α(H) = 2,
then contracting P to one vertex results in that vertex being joined to all
other vertices. This simple observation leads to the following result.

Theorem 3.3. Let G be any graph with α(G) ≤ 2. Let n = |V (G)| and

ω = ω(G). Then the following statements hold.

(a) G � Kd(ω+n)/3e.

(b) If n ≥ 2k − 1 and ω ≥ k − 2, then G � Kk.

Proof. If α(G) = 1, part (a) is trivial. So we assume α(G) = 2. We
proceed to prove statement (a) by induction on n. Let K = Kω be a
maximum complete subgraph of G and let H = G − V (K). If H contains
a 2-path P , then the induction hypothesis implies that G′ = G − V (P )
has Kd(ω+(n−3))/3e = Kd(ω+n)/3e−1 as a minor. (Note that K ⊆ G′ and
hence ω(G′) = ω(G) = ω.) Since α(G) = 2, this gives G � Kd(ω(G′)+n)/3e =
Kd(ω(G)+n)/3e . If H does not contain any 2-path, then H is either a complete
graph or the disjoint union of two complete graphs. In both cases we claim
that ω ≥ dn/2e. In the first case, this is evident. In the second case, H is
the disjoint union of two complete graphs, say H1 and H2 and, because of
α(G) = 2, every vertex of the complete subgraph K is either joined to all
vertices of H1 or to all vertices of H2. This implies the claim. Consequently,
G � Kω � Kd(ω+n)/3e. Thus statement (a) is proved.

For the proof of (b) suppose, on the contrary, that G 6� Kk. Then
α(G) = 2, and from (a) it follows that n = 2k − 1 and ω = k − 2. Since the
non-neighbors of any vertex in G induce a complete graph, this implies that
δ(G) ≥ k. Then, because the Ramsey number r(3, 3) = 6, we conclude that
k ≥ 6. Note that in case k = 5 we have n = 9 and δ(G) ≥ 5 implying that
one vertex of G has degree at least 6 and thus ω ≥ 4.

Now, consider an arbitrary maximum complete subgraph K = Kk−2 of
G and let H = G − V (K). If H does not contain any 2-path, then H is
either a complete graph or the disjoint union of two complete graphs and,
as in the proof of (a), we conclude that ω ≥ dn/2e = k, a contradiction. If
H has two vertex disjoint 2-paths, then contraction of both these 2-paths
results in a Kk, a contradiction, too. Consequently, H has one, but not two



340 M.D. Plummer, M. Stiebitz and B. Toft

vertex disjoint, 2-paths. Moreover, if P is any 2-path of H, then H−V (P ) =
G − V (K) − V (P ) is either a complete graph or the disjoint union of two
complete graphs.

Next, consider an arbitrary 2-path P = xzy of G − V (K). We claim
that G − V (P ) contains two vertex disjoint maximum complete subgraphs,
say K ′ and K ′′. This is evident if G − V (K) − V (P ) is a complete graph.
Otherwise, G − V (K) − V (P ) is the disjoint union of two complete graphs,
say H1 and H2, and, because of α(G) = 2, every vertex of K is joined to all
vertices of either H1 or H2. Since |V (K)|+ |V (H1)|+ |V (H2)| = 2k − 4 and
ω = k − 2, this also implies the claim. Thus the claim is proved.

Since ω = k − 2, vertex x has a non-neighbor x′ in K ′ and y has a
non-neighbor y′ in K ′. Moreover, α(G) = 2 implies that x′ 6= y′ and that
x′y and xy′ are edges of G (see Figure 3.1).

Figure 3.1

Since x′y′x and y′x′y are 2-paths and there are not two disjoint 2-paths in
G − V (K ′′), the vertices x, z and y are each either joined to all vertices of
H = K ′ − x′ − y′ or to none. Since α(G) = 2, we may assume that x is
joined to all vertices of H. If y is also joined to all vertices of H, then any
two vertices x′′ and y′′ of H produce two disjoint 2-paths x′x′′x and y′y′′y of
G − V (K ′′), a contradiction. Note that |V (H)| = |V (K ′)| − 2 = k − 4 ≥ 2.
If, on the other hand, vertex y is not joined to any vertex of H, then the
degree of y in G is at most k − 3 + 2 = k − 1, contrary to δ(G) ≥ k. Note
that y is not joined to all vertices of K ′′ = Kk−2, since ω = k − 2.

Therefore, we have obtained a contradiction in all cases, and hence
statement (b) is proved.
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For the minimum counterexample G for H2, we then conclude from Theorem
3.3 and property (3) that

(13) ω(G) ≤ χ(G) − 3.

Since the non-neighbors of any vertex in G induce a complete graph, we
conclude from properties (13) and (3) that

(14) δ(G) ≥ χ(G) + 1.

Theorem 3.4. Let G be any connected graph with α(G) = 2 and κ(G) ≤
|V (G)|/2. Then G contains a non-empty connected dominating matching.

Proof. Let S be a minimum vertex cut in G and suppose that the (nec-
essarily exactly) two components of G − S are A and B respectively. Then
both induced subgraphs G[A] and G[B] are complete. Moreover, each vertex
in S is either joined to all vertices in A or to all vertices in B.

Let SA = {v ∈ S|v ∼ every vertex in A} and SB = {v ∈ S|v ∼
every vertex in B}. Let sA = |SA|, sB = |SB|, s = |S| = κ(G), a = |A| and

b = |B|.

Case 1. Suppose sA ≤ b and sB ≤ a. Let MA be a complete matching
of SB into A and let MB be a complete matching of SA into B. (Both
must exist by Hall’s Theorem or Menger’s Theorem.) Then M = MA ∪MB

contains a connected dominating matching in G.

Case 2. Now suppose sA > b and assume that a ≥ s − b. Then let
MB be a complete matching of B into SA. (Again such must exist by
Hall’s Theorem or Menger’s Theorem.) Now let MB(B) denote the set of
all vertices in SA matched by MB . Then S − MB(B) has size s − b ≤ a.
So there exists a complete matching M ′ of S − MB(B) into A. Finally, let
M = MB ∪ M ′. Then M is a connected dominating matching in G.

So there remains to consider only the case when sA > b and a < s − b.
But then s > a + b and s + (a + b) = |V (G)|. Thus s = κ(G) > |V (G)|/2, a
contradiction.

The next property then follows from Theorem 3.4 and properties (3) and (12).

(15) κ(G) ≥ χ(G).
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Now let x and y be two arbitrary non-adjacent vertices of G. Let B be
the set of common neighbors of x and y, let A be the remaining (private)
neighbors of x and let C be the remaining (private) neighbors of y. Then,
since α(G) = 2, G[A] and G[C] are both complete. Moreover, B 6= ∅ since
G does not contain a Kd|V (G)|/2e.

(16) Let b be any member of B. Then b has at least one non-neighbor in A
and at least one non-neighbor in C. (Hence, in particular, both A and
C are non-empty.)

Proof. By (5), the edge xb is critical, i.e., α(G − xb) = 3. The common
non-neighbor c of x and b must lie in C. Similarly, edge yb is critical and
the common non-neighbor a of y and b must lie in A.

(17) Let a ∈ A and c ∈ C. Then a is adjacent to c if and only if there is a
common non-neighbor b ∈ B of a and c.

Proof. If a and c have a common non-neighbor b, they are joined by an
edge, since α(G) = 2. Conversely, if a and c are joined by an edge ac, then
α(G − ac) = 3, implying a common non-neighbor b of a and c. The vertex
b must belong to B, since α(G) = 2.

(18) If sets A,B and C are as above, then 2 ≤ |A| ≤ k − 4, 2 ≤ |C| ≤ k − 4
and 5 ≤ |B| ≤ 2k − 7, where k = χ(G).

Proof. Since x is joined to all vertices of A, (13) implies that |A| ≤ k − 4.
Similarly, |C| ≤ k − 4. But then |B| = 2k − 3 − |A| − |C| ≥ 5.

We know A and C are each non-empty, so suppose |A| = 1. Then by
(16) there are no edges between A and B. Hence G[B] is complete. Then
either B or C induces a complete graph of size at least k − 2, contradicting
(13).

(19) Any two non-adjacent vertices x and y in G are joined by at least five
2-paths. Moreover, every 2-path in G is part of an induced C5.

Proof. The first part follows immediately from the fact that |B| ≥ 5 and
the second part follows from (16) and (17) above.
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4. Inflations

Given a graph G, we say that graph H = inf(G) is an inflation of G if each
vertex v of G is replaced by a complete graph K v (or the empty set) and if
vertices u and v of G are adjacent, then in H every vertex of Ku is joined to
every vertex of Kv. We call the complete graph Ku which replaces vertex u
an atom of the inflation. Clearly, inflation preserves the property of having
α ≤ 2. Hence, H3 implies that any inflation H obtained from a graph G
with α(G) ≤ 2 would satisfy H � Kd|V (H)|/2e.

We have been unable to prove that every inflation H obtained from a
graph G with α(G) = 2 satisfies H � K|V (H)|/2, even when G itself satisfies
H3. However, in Section 6 we shall prove

Theorem 4.1. In any inflation on n vertices of a graph G with α(G) ≤ 2
and |V (G)| ≤ 11, there exists a dominating connected matching M such that

by contracting the edges of M , one obtains a graph containing a Kdn/2e.

We shall also prove Hadwiger’s Conjecture for inflations of the following
infinite family. For k ≥ 1, we define a family of graphs Ck−1

3k−1 as follows. Let

C0
2 = K2. Now suppose k ≥ 2. Arrange 3k − 1 vertices in a cycle. Now for

each k successive vertices on this cycle, join every pair.

Theorem 4.2. In each inflation G of Ck−1
3k−1 having k ≥ 1 and n vertices,

there exists a connected dominating matching M such that by contracting

the edges of M , one obtains a graph containing a Kdn/2e.

Proof. The proof is by induction on k. For k = 1, graph G consists of two
disjoint complete graphs and hence G ⊇ Kdn/2e and M = ∅ suffices. Next
suppose k = 2. Choose a smallest atom in C1

5 and label it B1. Now let
the remaining four atoms be labelled B2, B3, B4 and B5 either clockwise or
counterclockwise in such a way that |B4| ≤ |B3|. Now let M1 be a matching
of B1 into B2 which covers all of B1 and let M2 be a matching of B4 into
B3 which covers all of B4. Then M0 = M1 ∪ M2 is a connected dominating
matching. The unmatched vertices form two complete graphs, namely B5

and an induced complete subgraph of B2 ∪B3. Take the larger of these two
subgraphs and call it B0. Then contracting all the edges of matching M0

we obtain a minor (containing B0) which has at least n/2 vertices and is
complete. So we are done when k = 2.



344 M.D. Plummer, M. Stiebitz and B. Toft

So suppose the theorem is true for all k ′ < k and consider an inflation
of Ck−1

3k−1. Choose the smallest atom and denote it by B1. Number the
rest of the atoms (clockwise or counterclockwise) by B2, . . . , B3k−1 so that
|V (B2k)| ≤ |V (Bk+1)|.

Now let M1 be a matching of all of B1 into Bk and let M2 be a matching
of all of B2k into Bk+1. Observe that M0 = M1 ∪ M2 is then a connected
dominating matching. Next let Dk denote the complete graph spanned by
all unmatched vertices of Bk ∪ Bk+1. (See Figure 4.1.)

Figure 4.1

Then replacing Bk ∪ Bk+1 with Dk and deleting B1 and B2k, we obtain an
inflation of Ck−2

3(k−1)−1. But by induction hypothesis, this graph contains a

connected dominating matching M ′ which contracts to a complete graph
on half its number of vertices. So then M ∪ M ′ is a connected dominating
matching in the inflation of Ck−1

3k−1 and hence upon contraction this matching
yields a complete graph on half the number of vertices of the inflation and
the theorem is proved.
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5. Induced Subgraphs

Theorem 5.1. Let G be a graph with n vertices and with α(G) ≤ 2. If

G does not contain an induced C5, then either G contains Kdn/2e or else G
contains a dominating edge.

Proof. Assume that G does not contain a dominating edge. Then G is not
complete, and there are two vertices x, y ∈ V (G) such that x 6∼ y. Denote
by A the set of neighbors of x which are not neighbors of y, by C the set
of neighbors of y which are not neighbors of x and by B the set of vertices
adjacent to both x and y.

Since α(G) ≤ 2, both induced subgraphs G[A∪{x}] and G[C ∪{y}] are
complete. Therefore, if B = ∅, then G contains a Kdn/2e and we are done.
Otherwise, consider an arbitrary vertex b ∈ B. Since G does not contain
a dominating edge, there is a common non-neighbor c of b and x as well
as a common non-neighbor a of b and y. Clearly, a ∈ A and c ∈ C and,
because α(G) ≤ 2, ac is an edge of G. But then axbyc is an induced C5 in
G, contrary to hypothesis.

Corollary 5.2. Let G be a graph with n vertices and with α(G) ≤ 2. If G
does not contain an induced C5, then G � Kdn/2e.

Figure 5.1 displays the six graphs G1
4, G

2
4, G

3
4, G

4
4, G

5
4, G

6
4 as well as graph

H7, which are used in the next theorem and the next corollary.

Theorem 5.3. Let G be a graph with n vertices and with α(G) ≤ 2. If G
does not contain an induced H7, then G � Kdn/2e.

Proof. We use induction on n. For n ≤ 4, the result is clear since α(G) ≤ 2.

So suppose n ≥ 5 and suppose the result is true for graphs with fewer
than n vertices and let G be a graph with n vertices. If G does not contain
an induced C5, we are done by Corollary 5.2. So suppose G contains an
induced C5 = abcdea. If M = {ab, cd} is a connected dominating matching
in G, then since G−a−b−c−d � Kd(n−4)/2e by the induction hypothesis, we
are done. Otherwise, since M is a connected matching, one of the edges, say
ab, is not dominating and, therefore, there is a common non-neighbor z of a
and b in G. But then z is adjacent to each of c, d, and e. If M ′ = {ae, bc} is
a connected dominating matching, then again we are done. Otherwise, since
M ′ is a connected matching, one of the two edges, say ae, is not dominating
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and therefore there is a common non-neighbor z ′ of a and e. But then z′ is
adjacent to all of b, c, d and z, and G[{a, b, c, d, e, z, z ′}] = H7 is an induced
subgraph of G, contrary to the hypothesis.
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s s
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Figure 5.1
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Corollary 5.4. Let G be a graph with n vertices and with α(G) ≤ 2. More-

over, suppose graph H ∈ {G1
4, G

2
4, G

3
4, G

4
4, G

5
4, G

6
4}. If G does not contain an

induced H, then G � Kdn/2e.

The list of forbidden induced subgraphs in Corollary 5.4 contains all 4-vertex
graphs with α ≤ 2, except C4. However C4 may be added to this list as we
shall now show.

Theorem 5.5. Let G be a graph with n vertices and with α(G) ≤ 2. If G
does not contain an induced C4, then G � Kdn/2e.

Proof. We use induction on n. For n ≤ 4, the statement is evident since
α(G) ≤ 2.

So suppose n ≥ 5, suppose the result is true for graphs with fewer than
n vertices and let G be a graph with n vertices. If G does not contain an
induced C5, we are done by Corollary 5.2. So suppose G contains an induced
C5. Let H denote a largest induced inflated C5 in G with non-empty atoms.
Let the five atoms of the inflated C5 be denoted by B1, . . . , B5 in clockwise
order.

First, we claim that every vertex outside H is adjacent to all vertices
of H. For the proof, suppose on the contrary that there is a vertex z ∈
V (G) − V (H) such that z 6∼ b for some vertex b of H, say b ∈ B1. Then
α(G) ≤ 2 implies that z is adjacent to all vertices of B3 ∪ B4. If z has
a neighbor b2 ∈ B2 as well as a neighbor b5 ∈ B5, then (b, b2, z, b5) is an
induced C4 in G, contrary to hypothesis. Therefore, by symmetry, we may
assume that z has no neighbor in B2. Then α(G) ≤ 2 implies that z is
adjacent to all vertices of B5 and, hence, to all vertices of B3∪B4∪B5. But
then z must be adjacent to some vertex b1 ∈ B1, since otherwise H would
not be a largest induced inflated C5 in G. Thus, for every vertex b2 ∈ B2

and every vertex b3 ∈ B3, we obtain an induced C4 = (b2, b3, z, b1), contrary
to hypothesis. This proves the claim.

Now we construct a matching M in H as follows. Let B1 be a smallest
atom of H and let B3 and B4 be the two opposite atoms. By symmetry we
may assume that |V (B3)| ≤ |V (B4)|. Let M1 be a matching of all of B3 into
B4 and let M2 be a matching of all of B1 into B5. Then M = M1 ∪ M2 is
a non-empty connected dominating matching in H. But then, since every
z not in H is adjacent to all vertices in H, matching M dominates all such
z’s. Now let H ′ = G − V (M). Now α(H ′) ≤ 2, so by induction hypothesis,
H ′ � Kdn′/2e, where n′ = |V (H ′)|. Now contract all edges of matching M
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and we have a complete graph with ≥ |V (H)|/2+|M |/2 = |V (G)|/2 vertices
as desired.

6. α-Criticality

To prove Hadwiger’s Conjecture for α ≤ 2, clearly it is sufficient to do so
for those graphs with α ≤ 2 which are α-critical.

Theorem 6.1. Suppose G is a connected graph with α(G) ≤ 2 and suppose

that G is α-critical. Then if x and y are any two vertices in G, d(x, y) ≤ 2.
Moreover, every pair of adjacent edges in G lie either in a K3 or a chord-

less C5.

Proof. Suppose x and y are any two non-adjacent vertices in G. Clearly,
since α(G) ≤ 2, we have d(x, y) ≤ 3 and moreover, N(x)∪N(y) = V (G). So
suppose d(x, y) = 3 and let P be a path of length 3 joining x and y. Then
N(x) ∩N(y) = ∅ and each of N(x) and N(y) is a complete graph. Let e be
the edge of P joining N(x) and N(y). Then α(G − e) = 2, a contradiction.

Let e and f be adjacent edges in G. In any α-critical graph, every pair
of adjacent edges share a chordless odd cycle. (See [1, 13].) If this cycle
were a C7 or larger, we would have α(G) ≥ 3, a contradiction.

For an α-critical graph G and two non-adjacent vertices x and y of G, we
cannot produce any restriction on the structure of the subgraph induced
by the common neighborhood of x and y. The next theorem explains why.
More particularly, we show that any graph with α ≤ 2 can be embedded in
a graph having α = 2 which is α-critical.

Theorem 6.2. Let H be any graph with α(H) ≤ 2. Then there exists an

α-critical graph G with α(G) = 2 which contains H as an induced subgraph.

Furthermore, H can be embedded in G so that there exist two non-adjacent

vertices x and y in G such that NG(x) ∩ NG(y) = H.

Proof. Let V (H) = {h1, . . . , hr} and define two new sets of vertices A′ =
{a1, . . . , ar} and C ′ = {c1, . . . , cr}. Join vertices ai and hj if and only if
i 6= j and join vertices ci and hj if and only if i 6= j.

Now for each edge eij = hihj in H, insert a new vertex vij into either
A′ or C ′ thus obtaining vertex sets A ⊇ A′ and C ⊇ C ′. Then join vij to all
hk, k 6= i and k 6= j. (Note that since each vij may be put into either A or
C, the graph G under construction is by no means unique.)
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Let x and y be two new non-adjacent vertices. Join both x and y to all
vertices of H, join x to all vertices of A and join y to all vertices of C.

Now join all vertices of A to each other and all vertices of C to each
other. Finally, suppose a ∈ A and c ∈ C. Join a to c if and only if there
exists an hi such that a 6∼ hi 6∼ c.

It is then routine to check that α(G) = 2 and that all edges of G are
critical.

The following theorem is stated in [2, 3] in complementary form. The equiv-
alence of (i) and (ii) is due to Brandt and the equivalence of (ii) and (iii) is
due to Pach [15].

Theorem 6.3.The following three statements are equivalent for any graph G:

(i) Graph G is an inflation of the graph Ck−1
3k−1 (where empty atoms are not

allowed), for k ≥ 1.

(ii) α(G) = 2, G is α-critical and G does not contain the triangular prism

as an induced subgraph.

(iii) α(G) = 2, G is α-critical and any complete subgraph of G is in the

non-neighborhood of some vertex of G.

We have shown in Theorem 4.2 that Hadwiger’s Conjecture is true for all
graphs which satisfy Theorem 6.3. So now let us assume that α(G) = 2,
that G does contain the triangular prism as an induced subgraph and that
G is α-critical. Let P6 denote the triangular prism subgraph of G and let
e1, e2 and e3 be the three edges of P6 which do not lie in the two triangles
of P6. Since edge e1 is critical, there must be a seventh vertex v1 such that
v1 is not adjacent to either endvertex of e1. Similarly there must be vertices
v2 and v3 relative to e2 and e3 respectively. But then since α(G) = 2, for
each i = 1, 2, 3, vi must be adjacent to the other four vertices of P6 different
from the two endvertices of edge ei. In particular, all three vi must be
distinct and hence |V (G)| ≥ 9. In particular, this implies that Hadwiger’s
Conjecture is true for all graphs G having α(G) ≤ 2 and |V (G)| ≤ 8, as
well as their inflations, since any such graph contains a spanning α-critical
subgraph with α ≤ 2 satisfying the conditions of Theorem 6.3. Moreover,
we have shown that the Kdn/2e minor can be obtained by contracting the
edges of a connected dominating matching.

But now the set {v1, v2, v3} cannot be independent, so there exists at
least one edge among the three vi’s. Thus we may suppose we have as an
induced subgraph of G one of the three graphs designated as Γ1,Γ2 and Γ3
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shown in Figure 6.1 where the vertices v1, v2 and v3 have been relabeled
v5, v7 and v9 respectively.

We label by Cases 1, 2 and 3 the situations when G contains graphs
Γ1,Γ2 and Γ3, respectively, as induced subgraphs. Note that these three

Γ1

Figure 6.1(a)

Γ2

Figure 6.1(b)
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Γ3

Figure 6.1(c)

cases are not mutually exclusive! We shall use these three cases to prove
Theorem 4.1; in particular, we demonstrate that Hadwiger’s Conjecture is
true for all graphs G with α(G) ≤ 2 and |V (G)| ≤ 11 and all inflations of
such graphs.

Theorem 6.4. For each i = 1, 2, 3, a smallest α-critical graph with α = 2
and containing Γi as an induced subgraph is unique. If Gi denotes this graph,

then |V (G1)| = 9, |V (G2)| = 11 and |V (G3)| = 10. The graphs G1, G2 and

G3 are shown in Figure 6.2. Moreover, Gi and any inflation of Gi satisfies

Hadwiger’s Conjecture for i = 1, 2, 3.

Proof. In Case 1, the graph Γ1 is already α-critical; hence G1 = Γ1.

In Case 3, edges v5v7, v5v9 and v7v9 are not critical in Γ3. Hence G3

contains at least one new vertex joined neither to v5 nor v7, one new vertex
adjacent to neither v5 nor v9 and one new vertex joined neither to v7 nor
v9. Suppose that these three new vertices are equal; call it v10. Then v10

is joined to none of v5, v7 and v9. Since α(Γ3) = 2, v10 is joined to all
other vertices of Γ3. It’s easy now to check that the resulting graph is α-
critical. Hence the smallest possible G3 is unique and is, in fact, equal to
the complement of the Petersen graph, P10. This completes Case 3.
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In Case 2, the edges v5v9 and v7v9 are not critical in Γ2. Hence G2 contains
a new vertex v10 joined neither to v7 nor to v9 and a new vertex v11 joined to
neither v5 nor to v9. The vertices v10 and v11 are not equal, for if they were,
the vertices v5, v7 and v10 would be independent and this is impossible.

Figure 6.2(a)

Figure 6.2(b)
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Figure 6.2(c)

Suppose now that G2 has only these eleven vertices. Then, since α = 2,
vertex v10 is adjacent to v1, v2, v5, v6, v8 and v11 and v11 is adjacent to
v3, v4, v6, v7, v8 and v10. Moreover, v10 6∼ v4, for if v10 ∼ v4, edge v4v10

is not critical. Similarly, v11 6∼ v1. So G2 is an α-critical graph on eleven
vertices and is hence unique.

Now we turn to inflations of the graphs G1, G2 and G3. Let us begin
by considering an inflation H of G1. Let the atoms of H be labeled Ai, i =
1, . . . , 9 so as to correspond to vertices v1, . . . , v9 as shown in Figure 6.2(a).
We henceforth adopt the notation Ai ≤ Aj to mean |Ai| ≤ |Aj |.

Case 1(a). First suppose that A1 ≤ A2 and A7 ≤ A3. Let M1 be a
complete matching of A1 into A2 and M2, a complete matching of A7 into
A3. Then M1 ∪ M2 is a connected dominating matching. Let Ac

1 and Ac
7

denote the atoms resulting from the contraction of each edge of the matching
M1∪M2. Then the atoms not involved in this contraction may be designated
by A′

2, A
′
3, A4, A5, A6, A8, and A9, where (A′

2 and A′
3 denote the “left-over”

vertices of the original atoms A2 and A3 which were not involved in the
contraction.) But these seven atoms are the vertex set of an inflation of a
seven-vertex graph having α ≤ 2 and we have already shown that such a
graph can be contracted to a complete graph Kdn′/2e, where n′ denotes the
number of vertices in the graph. Thus H satisfies Hadwiger’s Conjecture.
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Case 1(b). Suppose now that A1 ≤ A5 and A3 ≤ A7. In this case, let
M1 be a complete matching of A1 into A5 and M2, a complete matching of
A3 into A7. Then M1 ∪ M2 is a connected dominating matching and again
the “left-overs” form an inflation of a graph on seven vertices and having
α ≤ 2. So again we are done.

We now claim that Cases 1(a) and 1(b) cover all possibilities. Suppose
not. Thus suppose we are not in one of these cases, nor are we in any case
symmetric to one of these cases. By symmetry, we may assume, without loss
of generality, that A1 ≤ A2. Then since we are not in Case 1(a), it follows
that A7 > A3. Moreover, since we are not in Case 1(b), A1 > A5. Now
if A3 ≤ A4, we get a case which is symmetric to Case 1(a). So we assume
A4 < A3. If, then, A2 ≥ A5, we get a case symmetric to Case 1(a) again.
Thus we may assume A2 < A5. But then the inequalities involving the sizes
of atoms A1, A2 and A5 violate transitivity.

Let us next consider Case 3. Let H be an inflation of G3 = P10. Due
to the symmetry of the Petersen graph, we may assume that atom A10 is
a smallest atom. Again by symmetry, without loss of generality, we may
suppose that atom A9 is smallest among A5, A7 and A9. Let M1 be a
complete matching of A10 into A6 and M2, a matching of A9 into A5. Then
again M1∪M2 is a connected dominating matching and the remaining “left-
overs” induce an inflation of an eight-vertex graph and hence we are done.

Finally, consider an inflation H of G2.
Case 2.1. Suppose A2 ≤ A3 and A8 ≤ A4. As usual, let M1 and M2 be

complete matchings of A2 into A3 and A8 into A4 respectively. The graph
made up of the “left-overs” has nine atoms and we know it contracts to a
graph on half its total number of vertices by Case 1.

Case 2.2. Suppose A4 ≤ A1 and A6 ≤ A2. This is symmetric with
Case 2.1.

Case 2.3. Suppose A1 ≤ A4 and A6 ≤ A3. This is also symmetric with
Case 2.1.

Case 2.4. Suppose A2 ≤ A6 and A4 ≤ A8. Then we let M1 and M2 be
complete matchings of A2 into A6 and A4 into A8 respectively and proceed
as before.

Now suppose none of the above four subcases occurs. Then without loss of
generality we may assume that A2 ≤ A3. So since we are not in Case 2.1,
we may assume A4 < A8. Since we are not in Case 2.4, we may assume
A6 < A2. Then by transitivity, A6 < A3. Then since we are not in Case 2.3,
we may assume that A4 < A1. Then since we are not in Case 2.2, we may
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assume that A2 < A6. But this is a contradiction. So Case 2 is complete
and with it the proof of Theorem 6.4.

The preceding Theorem shows that all graphs G with α(G) ≤ 2 and having
|V (G)| ≤ 9 satisfy Hadwiger’s Conjecture. In fact a Kdn/2e minor can be
obtained by contracting the edges of a connected dominating matching.

Suppose now that G is α-critical, α(G) = 2, and |V (G)| = 10. Then if
G = Ck−1

3k−1, G1, G2 or G3, or any inflation thereof, we have shown that G
satisfies Hadwiger’s Conjecture. So suppose G is not one of these. Then G
must contain Γ1 = G1 as an induced subgraph. This 9-vertex subgraph G1

is α-critical.

We proceed to investigate how vertex v10 is adjacent to the vertices
v1, . . . , v4. Since {v1, v3} is independent, v10 is joined to vertex v1 and/or
vertex v3. Similarly, since {v2, v4} is independent, v10 is joined to vertex
v2 and/or vertex v4. So vertex v10 is joined to two, three or all four of
{v1, . . . , v4}.

Case 1. Suppose v10 is adjacent to all four of {v1, . . . , v4}. Edge v1v10

must be critical, so at least one of v6 and v7 is not adjacent to v10. But then
v10 ∼ v9. If v10 ∼ v5, v6, v7 or v8, then the corresponding edge would not be
critical, so v10 is adjacent to none of v5, . . . , v8. So G is an inflation of G1

where {v9, v10} lie in the same atom and so we are done.

So let us assume that vertex v10 is not adjacent to at least one of
v1, . . . , v4.

Case 2. Suppose now that v10 ∼ v2, v3 and v4, but v10 6∼ v1 (without
loss of generality). Then v10 ∼ v6 and v10 ∼ v7. Then v10 6∼ v8 (since edge
v2v10 is critical), v10 6∼ v5 (since edge v4v10 is critical), and v10 ∼ v9 (since
α = 2). But then G must be an inflation of G1 where vertices v3 and v10

belong to the same atom and we are done.

Case 3. So suppose v10 is adjacent to exactly two of the vertices v1, v2,
v3, v4. Then these two must in turn be adjacent. So suppose v10 ∼ v3, v4

and v10 6∼ v1, v2. Then v10 ∼ v8, v6 and v7. If v10 ∼ v5, then v10 6∼ v9. But
then G is an inflation of G1 (where vertices v10 and v7 belong to the same
atom) and once again we are done.

So suppose v10 6∼ v5. Thus v10 ∼ v9. So G is isomorphic to the graph
G4 pictured in Figure 6.3(a) and redrawn in Figure 6.3(b) to better exhibit
its symmetries.
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This is a new α-critical graph which we haven’t encountered before. Let us
now consider any inflation H of graph G4.

Figure 6.3(a)

Figure 6.3(b)

Case 3.1. Suppose A6 ≤ A2 and A4 ≤ A1. Let M1 and M2 be complete
matchings of A6 into A2 and A4 into A1, respectively. Clearly M1 ∪ M2 is
a connected dominating matching. The vertices not spanned by M1 ∪ M2

induce an 8-atom graph H ′ of “left-over vertices” which is an inflation of an
8-vertex graph with α ≤ 2. Then H ′ satisfies HC and thus has Kdn′/2e as
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a minor. Contracting the edges of M1 ∪ M2 into single vertices results in a
graph containing Kdn/2e. Hence H satisfies HC.

Case 3.2. Suppose A6 ≤ A3 and A1 ≤ A4. Let M1 be a complete
matching of A6 into A3 and M2, a complete matching of A1 into A4 and
continue as before.

Case 3.3. Suppose A8 ≤ A4 and A2 ≤ A3. Let M1 be a complete
matching of A8 into A4 and M2, a complete matching of A2 into A3 and
continue as before.

Case 3.4. Suppose A4 ≤ A8 and A2 ≤ A6. This case is symmetric to
Case 3.2.

Now also suppose that H does not satisfy HC. Without loss of generality,
we may assume that A6 ≤ A3. By Case 3.2 we may assume that A4 < A1.
Then by Case 3.1 it follows that A2 < A6. But then by Case 3.4, A8 < A4

and by Case 3.3, A3 < A2. But then A3 < A2 < A6 ≤ A3, a contradiction.

So we may conclude that any inflation of a graph with α ≤ 2 and
having no more than ten vertices (and any inflation of such a graph) satisfies
Hadwiger’s Conjecture and moreover we can contract such a graph to a graph
containing a clique on at least half the number of its vertices by contracting
the edges of a connected dominating matching.

We have carried out a similar investigation when |V (G)| = 11. As α-
critical graphs with α = 2 and having eleven vertices we obtain two new
graphs, G5 and G6, (shown below in Figures 6.4 and 6.5 respectively) not
covered before. More specifically, G5 arises in Case 1 and G6 arises in Case 3.

We assert that any inflation H of graph G6 satisfies Hadwiger’s Conjec-
ture. This follows by an argument similar to those above. More particularly,
let Case 1 denote the situation when A2 ≤ A3 and A8 ≤ A4; Case 2, the
situation when A4 ≤ A1 and A6 ≤ A2; Case 3, the situation when A1 ≤ A4

and A6 ≤ A3; and Case 4, the situation when A2 ≤ A6 and A4 ≤ A8. As-
sume then that H does not satisfy Hadwiger’s Conjecture. Without loss of
generality, we may assume that A2 ≤ A3. But then by Case 1, A4 < A8; by
Case 2, A1 < A4; by Case 3, A3 < A6 and by Case 4, A6 < A2. But then
we have A6 < A2 ≤ A3 < A6, a contradiction.

We now turn our attention to graph G5. The reader is directed to the
second drawing of G5 shown in Figure 6.4 to more clearly see the symme-
tries which we shall appeal to below. We prove that any inflation H of G5

satisfies HC.
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Figure 6.4(a)

Figure 6.4(b)

Let us denote by Case A, the situation when A1 ≤ A5 and A3 ≤ A6. The
associated complete matchings of A1 into A5 and A3 into A6 give the desired
result. The reader sees that by (rotational) symmetry in Figure 6.4 (b), four
other cases follow.
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Figure 6.5

Let Case B denote the situation in which A4 ≤ A9, A5 ≤ A2 and A6 ≤ A10.
The three associated complete matchings then give the desired result. This
time there are four additional cases which follow by rotating G5 clockwise
succesively through angles of 2π/5 radians and another five cases which
follow by reflecting the graph about a vertical axis of symmetry such as the
axis through atom A2 and the midpoint of the family of edges joining A5

and A6.

Case C denotes the situation in which A9 ≤ A4, A5 ≤ A7 and A6 ≤ A8.
Again the associated complete matchings serve to give the desired result.
Also here there are an additional four cases which are settled by rotating
the graph by multiples of 2π/5 radians clockwise.

Finally, let Case D denote the situation in which A4 ≤ A9 ≤ A10,
A9 ≤ A11, A2 ≤ A1, A2 ≤ A3, A5 ≤ A7 and A6 ≤ A8. First, let M1 and M2

be complete matchings of A5 into A7 and A6 into A8, respectively. Then let
A′

7 and A′
8 be the vertices of A7 and A8, respectively, that are not covered by

the matching M1 ∪ M2. By symmetry, we may assume that A′
8 ≤ A′

7. This
implies that there is a complete matching M3 of A′

8 into A′
7. Furthermore,

there are complete matchings M4 and M5 of A4 into A9 and A2 into A3,
respectively. Eventually, let A′

9 be the vertices of A9 not covered by M4.
Then there is a complete matching M6 of A′

9 into A11. Clearly, M =
⋃6

i=1 Mi

is a matching that covers all vertices from A2∪A4∪A5∪A6∪A8∪A9 and the
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reader can easily check that the matching M is connected and dominating.
Then it gives the desired result. Also here there are four additional cases.

To finish the proof, we claim that these four cases are sufficient. Suppose
that this is not true, i.e., none of the situations described in Case A,B,C or D
occur in the inflation H of G5. To arrive at a contradiction, we first choose
the smallest atom among the five atoms A2, A5, A6, A10 and A11 that belong
to the K5 of G5. By symmetry, we may assume that this atom is A2. Then
A2 ≤ Ai for i ∈ {5, 6, 10, 11}. Furthermore, by symmetry, we may assume
that A11 ≤ A10. Then we conclude that A8 < A4, since otherwise we have
Case B, because of A11 ≤ A10 and A2 ≤ A5. Now, we distinguish two cases.

Case 1. Suppose A3 ≤ A2. Then A10 < A8, since otherwise we have
Case A. Because of A3 ≤ A2 ≤ A10 < A8 ≤ A4, it follows that A3 < A4.
Also A3 ≤ A6 follows by transitivity and, therefore, A5 < A1, since otherwise
we have Case A. But then, because of A3 < A4, A5 < A1 and A10 < A8, we
have Case C, a contradiction.

Case 2. Suppose A2 < A3. Then A9 < A11, since otherwise, because of
A8 < A4, we have Case C. Then, using Case A, we conclude that A6 < A8

and, using transitivity, we conclude that A9 < A10. This, by Case A, implies
A5 < A7. Then, using Case C, we infer that A4 < A9. Since A8 < A4 <
A9 < A10, it follows that A8 < A10 and, therefore, A6 < A10, by transitivity.
Furthermore, we infer that A1 < A2, since otherwise we have Case D with
A5 < A7, A6 < A8, A4 < A9 < A10, A9 < A11 and A2 ≤ A3. Because of
A1 < A2, it follows from Case A, that A11 < A7. Since A4 < A9 < A11 < A7,
we have A4 < A7. Furthermore, since A1 < A2 ≤ A5, we have A1 < A5.
Then, using Case A, we conclude that A6 < A3. Since A11 < A7, it then
follows by Case C that A4 < A1. Now, we have A8 < A4 < A1 and
A1 < A2 ≤ A6 < A8, a contradiction.

Thus, in both cases we arrived at a contradiction. This proves our claim
and completes the proof of Theorem 4.1.

7. Connected Matchings

Let us denote by the name CONNECTED MATCHING the following prob-
lem (already posed in our Introduction):

Given a graph G and a positive integer k, is there a connected matching
M in G such that |M | ≥ k?
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A well-known NP-complete problem called CLIQUE is stated as follows [9]:

Given a graph G and a positive integer k, is there a clique K in G with
|K| ≥ k?

Theorem 7.1. CONNECTED MATCHING is NP-complete.

Proof. Clearly the problem is in NP and we shall reduce CLIQUE to
CONNECTED MATCHING.

Let G be any graph and construct a new graph H as follows. Given two
disjoint copies G1 and G2 of G, join all vertices of G1 to all vertices of G2.
Now attach to each vertex v of V (G1) ∪ V (G2) a new edge joining v to a
new vertex v′ and let H be the resulting graph on 4|V (G)| vertices.

Suppose first that H has a connected matching M . Then M is composed
of edge set M11 consisting of edges of the form vv′ where endvertex v lies in
G1, edge set M1 having both endvertices in G1, edge set M12 consisting of
edges having one endvertex in G1 and the other in G2, edge set M2 consisting
of edges having both endvertices in G2 and M22 made up of edges of the
form vv′ where v lies in G2. Then for i = 1, 2, the endvertices of Mii in Gi

a an a complete subgraph Qi of Gi. Thus

|M | = |M11| + |M22| + |M1| + |M12| + |M2|

≤ |V (Q1)| + |V (Q2)| + (2|V (G)| − |V (Q1)| − |V (Q2)|)/2

≤ |V (G)| + |V (Q)|,

where Q is a maximum complete subgraph of G.

Conversely, it is easy to see that H has a connected matching of size
|V (G)| + |V (Q)|, where Q is a largest complete subgraph in G. Thus G
has a complete subgraph of size at least k if and only if H has a connected
matching of size at least |V (G)| + k. Therefore CLIQUE has been reduced
to CONNECTED MATCHING and thus the latter is NP-complete.

8. Concluding Remarks

When commencing this investigation, our feeling was that Hadwiger’s Con-
jecture might fail for some α = 2 graphs and that a counterexample might
possibly be obtained as an inflation of some small graph G having α = 2
(in the same way that a counterexample to the related conjecture of Hajós
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turned out to be simply an inflation of the 5-cycle, as noted by Catlin [4],
see also [12]).

The main outcome of our investigations is that this seems not to be so;
at least G will have to have at least twelve vertices.

It is unfortunate that we have not been able to carry our investigation
through to a final conclusion for Hadwiger’s Conjecture with respect to α = 2
graphs. It has been likewise disappointing not even to be able to improve
the trivial constant 1/3. (See the Introduction.) A possible improvement
would be to the value 2/5 perhaps by being able to repeatedly contract three
edges of a 5-cycle into two vertices.

So Hadwiger’s Conjecture seems to remain one of the great challenges
of discrete mathematics, even for graphs with α = 2.
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