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Abstract

We show that the pairs {T, DT } where T is a tree and DT its dual
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graphs endowed with its natural homomorphism ordering.
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1. Introduction

Let G,H be directed graphs. A homomorphism from G to H is an arc-
preserving map φ from the vertex set of G to that of H. We write G → H if
there exist a homomorphism from G to H, and G 6→ H otherwise. G and H
are called homomorphically equivalent if G → H and H → G; we then write
G ↔ H. A directed graph G is called a core if it is not homomorphically
equivalent to any directed graph with fewer vertices. The relation→ induces
a natural order on the classes of homomorphically equivalent graphs, called
the “skeleton” of the category of finite directed graphs. Thus the standard
order-theoretic terminology can be applied here: If G 6→ H and H 6→ G then
G and H are called incomparable; we then write G||H. The pair {G,H}
is called a maximal 2-antichain if G and H are incomparable and every
directed graph is comparable to G or H. Though this is a purely order-
theoretic definition, we will see that these maximal 2-antichains are related
to an important algorithmic phenomenon.

A couple (P, D) of directed graphs is called a duality if for every directed
graph G, we have P → G if and only if G 6→ D. This relationship is denoted
by the equation

P →=6→ D(1)

where P → denotes the class of graphs admitting a homomorphism from P
and 6→ D the class of graphs not admitting a homomorphism to D. Here,
“P” and “D” stand respectively for “primal” and “dual”: A greedy search
for a homomorphism from a graph G to D would require |D||G| steps, but
(1) allows to replace it by a greedy search for a homomorphism from P to G
in |G||P | steps. Thus the existence of a duality (P, D) implies that problem
of deciding whether a given directed graph admits a homomorphism into
D is solvable in polynomial time. The dualities in the category of directed
graphs are characterised in [5, 9] (see also [6, 7]):

Theorem 1 [5, 9]. Given a directed graph P , there exists a directed graph
DP such that (P, DP ) is a duality pair if and only if P is homomorphically
equivalent to an orientation of a tree.

The bottom of the skeleton of the category of directed graphs consists of the
directed paths P0, P1 and P2, where Pi is the directed path with i edges. It
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is not hard to see that any other directed graph is comparable to all three
of these paths.

As we shall see below any other core tree T satisfies T ||DT . As any other
directed graph is comparable to T or DT , {T, DT } is a maximal 2-antichain.
We will show that in fact the maximal 2-antichains are characterised in
this way.

Theorem 2. The maximal 2-antichains in the category of directed graphs
are precisely the pairs {T,DT } where T is a core tree different from P0, P1, P2

and DT is its dual.

The characterisation of larger maximal antichains does not seem so simple:
For instance, given two incomparable trees T1, T2 with duals D1, D2, one
can find the anichain {T1 ∪ T2, D1, D2} as well as {T1, T2, D1 ×D2}. More
possibilities arise when considering larger families of pairwise incomparable
trees. And it is not clear either whether all maximal antichains are related
to trees in a similar fashion.

The situation is even more complex with relational systems of a given
type ∆: [9] contains the characterisation of all duality pairs for all such
relational systems. As above these duality theorems induce (with a few
exceptions) maximal antichains. However a result similar to Theorem 2 is
not valid as we have infinitely other situations not covered by duality theo-
rems. Let us consider just the simplest example of relational systems of type
∆ = (2, 2) which we may view as Blue-Red colored oriented graphs (with
homomorphisms preserving the colors). Then the systems ({0, 1}, {(0, 1)B})
(i.e. the single blue arc) and ({0, 1}, {(0, 1)R}) (i.e., the single red arc) are
not a duality pair while it is easy to see that they constitute a maximal
antichain. There are 3 more such exceptional pairs.

Note also that there are infinitely many quintuplets of the form
{({0, 1, 2, 3}, {(0, 1)R, (2, 3)B}), TB, DTB

, TR, DTR
}. All these quintuplets are

maximal 5-antichains for 2-coloured graphs. But perhaps there is a hope
that for a given type ∆, Theorem 2 admits only finitely many exceptions,
which correspond to the “irregularities” at the bottom of the lattice.

Let us also note that the problem is interesting and hard for infinite
graphs. It has been proved in [8] that for every countable infinite graph
G, G not equivalent to K1,K2,Kω, there exists a graph H such that G||H.
There are also infinitely many maximal such antichains, however, as pointed
in [8], all maximal antichains seem to contain a finite graph.
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2. Gaps in the Category of Directed Graphs

The initial observation towards a proof of Theorem 2 is the following:

Lemma 3. Let {G,H} be a maximal antichain. Then one of the following
holds:
• For any directed graph G′ such that G×H → G′ → G we have G′ ↔

G×H or G′ ↔ G.
• For any directed graph H ′ such that G×H → H ′ → H we have H ′ ↔

G×H or H ′ ↔ H.

Proof. Assume both possibilities fail. Let G′ and H ′ be a corresponding
counterexamples. Let K be the disjoint union of G′ and H ′. Then K is
comparable to G or to H. If K → G, then H ′ → G whence H ′ → G×H.
Similarly, K → H implies G′ → G×H. On the other hand, G → K implies
G → G× (G′ ∪H) → G′, and similarly H → K implies H → H ′.

Following [9], a couple (X,Y ) of directed graphs is called a gap if X → Y ,
Y 6→ X and for every K such that X → K → Y we have K ↔ X or K ↔ Y .
According to the previous lemma, if {G,H} is a maximal antichain, then
(G × H, G) or (G × H,H) is a gap. The gaps in the category of directed
graphs are characterised as follows:

Theorem 4 ([9] Theorems 2.8, 3.1). A couple (X, Y ) is a gap in the
category of directed graphs if and only if there exists a tree T such that
T ×DT → X → DT and Y ↔ X ∪ T .

Note that this result brings us closer to the proof of Theorem 2: Let {G,H}
be a maximal antichain. Then without loss of generality, assume (G×H, H)
is a gap, hence there exists a directed tree T such that H ↔ (G ×H) ∪ T .
We then have T 6→ G whence (DT × T ) → (G ×H) → G → DT . We now
need to show that H ↔ T and G ↔ DT . To carry out this task we will need
a greater knowledge of the bottom part of the category of directed graphs.

3. Duals of Thunderbolts

The algebraic length of a tree T is the least n such that T admits a homo-
morphism to Pn. The core with algebraic length at most 2 are just P0, P1

and P2. We define the thunderbolt Tn, n ≥ 1 as follows:
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• The vertices of Tn are the integers from 0 to 2n − 1, along with two
additional vertices A and B.

• The arcs of Tn are (2i, 2i + 1), 0 ≤ i ≤ n− 1, (2i, 2i− 1), 1 ≤ i ≤ n− 1,
(A, 0) and (2n− 1, B).

Note that the thunderbolts have algebraic length 3. For any tree T with
algebraic length n ≥ 3 and any homomorphism φ : T 7→ Pn, any path of
shortest length between a vertex of φ−1(0) and φ−1(3) is a thunderbolt.
Nešetřil and Zhu [11] have shown that the thunderbolts Tn, n ≥ 1 are
precisely the cores trees with algebraic length 3. We have T1 ↔ P3 and
Tn+1 → Tn for all n. Therefore, for every tree T with algebraic length at
least 3, there exists some n0 such that Tn → T for all n ≥ n0. Thus, the
bottom of the category of directed graphs consists of the paths P0, P1, P2,
above which we find the infinite decreasing chain {Tn : n ≥ 1}.

Let Dn be the graph obtained from Tn+1 after removing the vertices A,
B and identifying the vertices 0 and 2n−1 to a new vertex labelled 0. Then
Dn is an orientation of the (2n− 1)-cycle with a unique directed path with
two edges, namely {2n, 0, 1}. We have Tn 6→ Dn, since any homomorphism
from Tn to Dn would have to identify both vertices 0 and 2n − 1 of Tn to
the vertex 0 of Dn. The path in Tn connecting 0 to 2n − 1, alternating in
forward edges and backward edges, would then have to be mapped to the
rest of the cycle, but the cycle turns out to be just a bit too short. In fact,
this argument is the basis of the following result:

Lemma 5. Dn is the dual of Tn.

Proof. Let G be a directed graph. If Tn → G, then G 6→ Dn since Tn 6→
Dn. It remains to show that if Tn 6→ G, then there exists a homomorphism
φ : G 7→ Dn.

A vertex v of G is called a middle point of G if both its indegree and its
outdegree are at least one. Let M be the set of middle points of G. Note
that any vertex of G that is not in M is either a source or a sink. We define

f : V (G) 7→ {0, 1, 2, . . . ,∞}

by letting f(u) be the length of a shortest path that starts in M and ends
in u, alternating in forward and backward arcs (with the first arc being a
forward arc). We can now define the homomorphism φ : G 7→ Dn by
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φ(u) =





f(u) if 0 ≤ f(u) ≤ 2n,

2n if f(u) > 2n and u is a source,

0 if f(u) > 2n and u is a sink.

Clearly (φ(u), φ(v)) is an arc of Dn whenever (u, v) is an arc of G and
f(v) > 0. In the case where f(v) = 0 we must have f(u) ≥ 2n, otherwise
we could define a homomorphism from Tn to G. Hence φ(u) = 2n and φ is
a homomorphism.

Let us remark that [3, 4] proves path duality for unbalanced cycles. This can
be used for an alternative, although more complicated proof of Lemma 5.
(We thank to an anonymous referee for this information.)

Corollary 6. Let T be a tree with algebraic length at least 3. Then {T,DT }
is a maximal antichain.

Proof. If T has algebraic length at least 3, then there exists some n such
that Tn → T . By Lemma 5 we then have T 6→ Dn whence Dn → DT .
Therefore, DT contains an odd cycle and DT 6→ T . By the definition of
dualities, we also have that T 6→ DT (since DT → DT ) and any other
directed graph is comparable to T or DT . Therefore {T,DT } is a maximal
antichain.

4. Proof of Theorem 2

Lemma 7. Let T be a tree with algebraic length at least 3. Then for every
directed graph X such that DT × T → X → DT and DT 6→ X 6→ DT × T ,
there exists a directed graph Y such that DT × T → Y → DT and X||Y .

Proof. Since T has algebraic length at least 3, there exists some n such
that Tn → T . We then have

Tn+1 → (Tn ×Dn) → (T ×DT ) → X.

In particular this shows that X 6→ P2; in fact we may even assume that no
connected component of X admits a homomorphism to P2. It is still possible
for X to be bipartite, but in this case for m > |V (X)| we have X 6→ Dm
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(since removing any vertex from Dm results in a graph which admits a
homomorphism to P2), and Dm 6→ X (since X is bipartite). Therefore
X||(Dm ∪ (DT × T )).

Suppose that X is nonbipartite. As seen in [9, 10], for any undirected
graph W with odd girth larger than |V (X)| and chromatic number larger
than |V (X)||V (DT )|, we have X 6→ (W × DT ) and (W × DT ) 6→ X. The
classical theorem of Erdős [1] guarantees the existence of such a graph W .
We then have (T ×DT ) → (W ×DT ) → DT , and X||(W ×DT ).

Now, all that is needed to complete the proof of Theorem 2 is to apply
this result at the point where we left it at the end of Section 2. We know
that if {G,H} is a maximal antichain, then without loss of generality there
exists a directed tree T such that DT × T → G × H → G → DT and
H ↔ (G×H)∪T . Of course, T has algebraic length at least 3. The interval
from DT × T to DT is isomorphic to the interval from T to DT ∪ T , with
the natural lattice-theoretic isomorphisms between the two.

Now, if G 6↔ DT then by the previous result there exists Y between
DT × T and DT such that Y ||G. We have T 6→ Y whence H 6→ Y ; and
Y 6→ H (for otherwise we would have Y → DT × H → G × H → G).
Therefore G,H and Y are pairwise incomparable, contradicting the fact
that {G,H} is a maximal antichain.

Similarly, if H 6↔ T , then G × H 6↔ DT × T , hence there exists Y
between DT ×T and DT such that Y ||(G×H). We then find that G,H and
(Y ∪T ) are pairwise incomparable, again contradicting the fact that {G,H}
is a maximal antichain.
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[9] J. Nešetřil and C. Tardif, Duality Theorems for Finite Structures (Character-
izing Gaps and Good Characterizations), J. Combin. Theory (B) 80 (2000)
80–97.
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