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post systems satisfying some extra axioms. Their underlying graphs
have lots of structure: the components are modular graphs or median
graphs. Yet another axiom guarantees that the underlying graph is
also connected. The main results of this paper concern if-and-only-if
characterizations involving signpost systems satisfying additional ax-
ioms on the one hand and modular, respectively median graphs on the
other hand.

Keywords: signpost system, modular graph, median graph.
2000 Mathematics Subject Classification: 05C99, 05C12, 05C75.

*Supported by SWON, Ministry of Education and Science, The Netherlands.



310 H.M. MULDER AND L. NEBESKY

1. Introduction

Usually, when we travel and want to find our way from u to w, we look
for signposts towards w and follow them until we reach w. That is, at u
we follow the signpost to w, by which we first arrive at v. Then at v we
look for the next signpost to w. We can denote this step in our journey
by the triple (u,v,w): here u is the point where we currently are, w is the
final destination, and v is the point where we first arrive after following the
direction of the signpost at u.

In this paper we introduce the concept of a signpost system on a set V'
as a ternary relation satisfying three basic axioms. We introduce the under-
lying graph of a signpost system. As a first step in the study of signposts
systems, we consider signpost systems satisfying additional axioms. Thus
we get the modular and median signpost systems. There is a close relation
between these signpost systems and modular and median graphs. Especially
median graphs constitute an important class in the universe of all graphs.
Loosely speaking, there are as many median graphs as there are connected
triangle-free graphs in the universe of all graphs, see [3]. Median graphs are
well studied, they have quite diverse applications in e.g. location theory, dy-
namic search problems, consensus theory, conflict models, the measurement
of dissimilarities, and the transcription history of mediaeval manuscripts.
There are relations with discrete structures from several other mathemati-
cal areas. For a recent survey see [4]. The importance of these classes of
graphs gives rise to the study of modular and median signpost systems.

We present some basic results on signpost systems, and we present some
important examples that we need to clarify certain subtleties in the remain-
ing of the paper. Our main results are of the following type. If @ is a
modular (median) signpost system on a set V', then each component of the
underlying graph of @ is modular (respectively median). Note that we do
not have an ‘if and only if” here. It turns out that, when the underlying
graph is disconnected, then modularity of the components does not guaran-
tee modularity of the signpost system. The same can be said in the median
case. In the final section of the paper, we introduce an additional axiom.
Combined with the modular or median axioms, this guarantees connectivity
of the underlying graph. In this case we are able to obtain ‘if and only if’
results: now @ is a modular (median) signpost system with the additional
axiom if and only if its underlying graph is a modular (median) graph.
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2. Preliminaries

Throughout this paper all graphs and sets are supposed to be finite. Let
G = (V, E) be a (finite) graph. Let u and v be two vertices of G. Then d(u,v)
denotes the distance between v and v, that is, the length of a shortest path
between u and v. The interval between u and v is the set I(u,v) defined by

I(u,v) = {w | w lies on a shortest u, v-path}.

We call I the interval function of G. See [5] for an extensive study of the
interval function of a graph. For u,v,w € V we write

I(u,v,w) = I(u,v) N I(v,w) N I(w,u).

A connected graph G is a modular graph if I(u,v,w) # 0, for all u,v,w in
V, cf. [2]. Tt is an easy exercise to prove that a modular graph is bipartite.
Any vertex in the intersection I(u,v,w) is called a median of u, v, and w.
A connected graph G is a median graph if |I(u,v,w)| = 1, for all u,v,w
in V. Thus, a median graph is a modular graph with unique medians.
One characterization of median graphs that is quite useful for our purposes
is given by Theorem 3.1.8 in [5]: a connected graph G is a median graph
if and only if it is triangle-free and |I(u,v,w)| = 1, for all u,v,w in V
with d(u,w) = 2. In [5] this theorem was proved in the search for minimal
sufficient conditions for a graph to be a median graph. As an easy byproduct
of the proof of this theorem we get the following characterization of modular
graphs: a connected graph G is a modular graph if and only if it is triangle-
free and I(u,v,w) # 0, for all u,v,w in V with d(u,w) = 2.

Note that median graphs are connected triangle-free graphs of a very
special type. Therefore it may be surprising at first sight that there is
an easy one-to-one correspondence between a quite restricted subclass of
the class of median graphs on the one hand and the class of all connected
triangle-free graphs on the other hand, see [3]. In other words this means
that the “density” of the median graphs in the universe of all graphs is the
same as that of the connected triangle-free graphs.

Examples of modular graphs are the covering graphs of modular lattices.
Actually, this is the example from which they derive their name. Examples
of median graphs are the covering graphs of distributive lattices, the trees,
the hypercubes, and the grid graphs. Note that a hypercube is the covering
graph of a finite Boolean lattice. The survey paper [4] may serve as a first
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introduction to median graphs, their applications and the various guises in
which they occur in quite diverse mathematical areas. There exist various
algebraic structures related to median graphs, see [4]. Amongst these are
ternary relations on the vertex set of the graph. These ternary relations are
then characterized completely in terms of axioms on the ternary relation.
As an example may serve the so-called median algebras, a ternary relation
m:V xV xV — V on aset V that satisfies the axioms

(ml) m(u,u,u) = u,

(m2) m(m(u,v,w),m(u,v,x),y) = m(m(w, z,y),u,v),

see [11, 1]. For another set of axioms for such median algebras see [6, 7].

The ternary relation discussed in this paper is new and is quite different
from those listed in [4]. It is closely related to the notion of a step system
of a graph, see below or [8]. Yet another way to deal with the algebraic
properties of median-type structures can be found in [9], where trees are
characterized using a binary operation. This result can be interpreted as a
special case of our Theorem 10 below.

The paper is organized as follows. In Section 3 we introduce the notion
of a signpost system and its underlying graph. Some basic results and
examples are given. It turns out that connectivity of the underlying graph
is an issue: if the underlying graph is disconnected, then some peculiar things
can happen. In Section 4 we introduce the modular and median signpost
systems, and we prove that the components of their underlying graphs are
modular, respectively median. We present examples to show what may
happen when the underlying graph is disconnected. In the last section we
introduce an additional axiom. With the help of this axiom we are able
to prove our main results: a signpost system @ satisfying this additional
axiom is modular (median) if and only if its underlying graph is a modular
(median) graph.

Recall that we restrict ourselves to the finite case. Some of the results
below also hold (trivially) for the infinite case, others may or may not hold
in the infinite case, but we will not pursue that here.

3. Signpost Systems

Throughout this paper Q C V x V x V denotes a ternary relation on a
(finite) set V. The underlying graph Gg of @ has V' as its vertex set, and u



MODULAR AND MEDIAN SIGNPOST SYSTEMS AND ... 313

and v are joined by an edge in G if and only if (u,v,v) € Q.
A ternary relation Q on V is a signpost system or a signposting on V if @
satisfies the following axioms:

(s1) if (u,v,w) € Q, then (v,u,u) € Q, for u,v,w in V,
(s2) if (u,v,w) € Q, then (v,u,w) ¢ Q, for u,v,w in V,
(s3) if u # v, then there exists a t € V such that (u,t,v) € @, for u,v in V.

Axiom (s1) guarantees us that we can find our way back. Axiom (s2)
prevents us from getting stuck in a loop. Axiom (s3) guarantees that at
any point there are signposts to all other points. In practice this may be
realized only by combining the existing signpost system with a map.

An axiom for a signpost system @ giving conditions for triples in @) will
be called a signpost aziom. Note that, by axiom (s1), we have (u,v,v) € Q
if and only if (v,u,u) € Q. Moreover, it follows from axiom (sl) that uv
is an edge in Gg if and only if (u,v,w) € @ for some w in V. Axiom (s2)
implies that G does not contain loops, whence is a simple graph.

The following basic lemma was presented in [8] in the context of step
systems. For the sake of completeness we include a proof here.

Lemma 1. Let Q be a signpost system on a set V, and let u,v,w € V. If
(u,v,w) € Q, then v # u # w.

Proof. Let (u,v,w) € Q. By (sl), we have (v,u,u) € @, whence also
(u,v,v) € Q. Then it follows from (s2) that u # v. Now assume that
u = w, so that (w,v,w) € Q. Then (s1) implies that (v, w,w) € Q. On the
other hand, by (s2) we have (v, w,w) ¢ Q. This contradiction implies that
u # w. |

An immediate consequence of Lemma 1 is that @ is empty whenever |V| < 1.
Therefore, in the sequel we will always assume that |V| > 2, although this
is not essential. Note that, in this case, it follows from (s3) that G has no
isolated vertices.

Let us have a closer look at the relation between a signpost system @
on the set V' and its underlying graph G = (V, E). Fix a vertex = in G.
Assume that (u,v,z) is in Q. Then, by axiom (s2), (v,u,x) is not in Q.
Thus, seen from z, we may orient edges in E as follows: u — v if and only
if (u,v,z) € Q. By E, we denote the set of oriented edges (or arcs), as seen
from x. Let G, be the subgraph of G induced by F,. Since all edges in G
are oriented, GG is a directed graph. Note that between any pair of vertices
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there is at most one arc. We call G, the z-orientation of G. By axiom
(s3), Gy is a spanning subgraph of G in which all vertices distinct from z
have positive outdegree. By definition of the underlying graph, (u,x,z) is
in @ for each neighbor u of x. So all edges incident with x are oriented
towards x. Thus z is the unique sink of G, where a sink is a vertex with
positive indegree and zero outdegree. Note that not all edges of G need to
be oriented.

These observations give us an easy way to construct signpost systems
from graphs. Take any graph G = (V| E). For each vertex z of G, we choose
a spanning subgraph G, containing all edges incident with z. Now we orient
the edges of G, such that z is the unique sink in the resulting digraph. Then
we construct the signpost system @ as follows: (u,v,z) € @ if and only if
u — v is an arc in G,. It is easy to see that () satisfies the three signpost
axioms (s1), (s2), (s3). Obviously, G is the underlying graph of Q.

First we consider the case that GG is connected. Then we can always
construct the necessary digraphs G: for instance, take a spanning subtree
of G that contains all edges incident with = and orient the edges in this
spanning subtree towards x. Another prime example is the following: if uw
is an edge in G with d(v,z) = d(u,z) — 1, then we call (u,v,z) a step in G,
that is, by going from u to v along the edge uv, we take a step closer to x.
The step system Q¢ of G is the ternary relation on V consisting of all the
steps in G as defined in this way. It is easily seen that the step system of a
graph G is a signpost system if and only if G is connected.

The step system of a graph G was introduced in [8] to study the system
of all geodesics in G, see also [10]. The main result of these papers is a
characterization of step systems in terms of axioms on the ternary relation.
More precisely, let @@ be a ternary relation with underlying graph G. Then
@ is the step system of G if and only if G is connected and () satisfies a
prescribed set of axioms. Note that connectivity of G is essential: it is an
open problem whether connectivity of G may be replaced by axioms on Q.

If G is disconnected, then it is not always possible to construct the
digraphs G. For, if H is a component of G, and « is in another component,
then the orientation of edges in H must result in a digraph H, without
sinks. This is only possible if H contains a cycle, that is, if H is not a tree.
For the component containing x we can proceed as above in the connected
case.

Let Gg, be the underlying graph of the step system Q¢ of a graph G.
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Then we have
w € E(Gg,) & (u,v,v) € Qg < uwv € E(G).

So we have Gg, = G.
Let G be a graph, and let @) be its step system. Then we can easily
verify that ) satisfies the following axiom:

(s4) if (u,v,w), (w,z,v) € Q, then (u,v,x) € Q, for u,v,w,z in V.

Let @) be a signpost system on V' with underlying graph G, and let Q¢
be the step system of Gg. Then one might ask whether we have Q¢, = Q.
It turns out that for this question connectivity of G is essential. The result
of Nebesky [8, 10] mentioned above now reads as follows: let () be a ternary
relation on V; then Q¢, = Q if and only if () satisfies a set of five axioms
(one of which is our axiom (s4) above) and G is connected. In the present
paper we study a special case, see Section 5. Here we do not need to require
that G is connected because now connectivity follows from the axioms.
But let us first consider the disconnected case a little more closely.

Let H be a connected graph with at least one cycle. A sinkless orienta-
tion of H is an orientation of all the edges of H such that a digraph results
without any sinks. Note that the digraph necessarily contains a directed cy-
cle. Now we describe a construction for signpost systems that will provide
us with convenient examples. Let G; = (Vi, E) and Gy = (Va, E2) be two
non-trivial connected graphs, each with a sinkless orientation (so that each
contains a cycle). Let G = (V, E) be the disjoint union of G; and Ga, that
isViNnVa=0and F1NEy =0, and V = V;UV; and E = F1UFE5. Note that
G is a disconnected graph with a sinkless orientation. Now we construct the
ternary relation @Q on V' as follows. Let QQg, be the step system of G;, for
1 = 1,2. Then we set

Q=Qc UQag, U{(u,v,z) | uvis an arc in G and z is in Gy}
U {(u,v,z) | uv is an arc in G2 and x is in G;}.

It is easily checked that @ is a signpost system that also satisfies axiom (s4).
We call @) the signpost system of G with its sinkless orientation. Clearly,
the underlying graph of ) is G. Moreover, we have Qg = Qg, U Qg,. Thus
we have constructed an example of a signpost system for which we have

Qcq 7 Q.
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Hence, in general, we do not have Q¢, = @ for signpost systems, even
if they satisfy the additional axiom (s4). We call a signpost system @ a
graphic signpost system if the equation Qg, = @ holds for (). By the above
observations, a graphic signpost system necessarily satisfies axiom (s4).
As observed above, in [8] a characterization of graphic signpost systems
(in the guise of step systems) is given in the case that connectivity of the
underlying graph is presupposed. It is an open problem to find a character-
ization solely in terms of signpost axioms in this case.

4. Modular and Median Signpost Systems

Recall that V be a finite set with |V| > 2. A modular signpost system on V
is a signpost system () that satisfies axiom (s4) and the following axiom:

(s5) if (u,v,v), (v,w,w) € Q, (u,v,z), (w,v,x) ¢ Q and u # w, then there
exists t € V such that (u,t,z), (w,t,z) € Q, for u,v,w,x in V.

In terms of the underlying graph, axiom (s5) reads as follows: if we have
three distinct vertices u, v, w with edges uv, vw, and from u or w we cannot
get ‘closer’ to x via v, then there exists a common neighbor ¢ of v and w
such that we can get ‘closer’ to = via t.

First we present two basic facts on modular signpost systems.

Lemma 2. Let Q) be a modular signpost system on a finite set V. If (u,v,v),
(v,w,w) € Q, and u # w, then (u,v,w) € Q.

Proof. Suppose, to the contrary, that (u,v,w) ¢ Q. Since (v,w,w) € @,
it follows from (s2) that (w,v,w) ¢ Q. Hence, by (s5), there exists a vertex
t in V such that (u,t,w), (w,t,w) € Q. Thus we have a conflict with
Lemma 1. [

Lemma 3. Let Q be a modular signpost system on a finite set V. with un-
derlying graph G. Then G is triangle-free.

Proof. Assume that G has a triangle on u, v, w, so that v # v # w # u.
By the definition of G, we have (u,v,v), (v,w,w), (v,u,u), (u,w,w) € Q.
So, by Lemma 2, we have (u, v, w), (v,u,w) € @. This is impossible by (s2).

|
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The following lemma tells us that the restriction of a modular signpost
system to a component of the underlying graph is just the step system of
that component.

Lemma 4. Let QQ be a modular signpost system on a finite set V. with un-
derlying graph G. Then, for any component H of G, the ternary relation

P={(u,v,w) €Q | u,v,we V(H)}
defined on V(H) is the step system of H.

Proof. Note that H is the underlying graph of P. Let R denote the step
system of H. Suppose, to the contrary, that P # R. Then there exist
vertices u, v, w in H with v # u # w such that

(1) (u,v,w) € PAR

and

(r,s,t) € P if and only if (r,s,t) € R

2
@ for all r,s,t € V(H) such that d(r,t) < d(u,w),

where d is the distance in H. Write n = d(u,w). Since u # w, we have
n > 1. We consider two cases.

Case 1. (u,v,w) € R.
Note that, by (1), we have (u,v,w) ¢ P. Since R is the step system of
the graph H, we have uv € F(H) and d(v,w) = n — 1. Since H is the
underlying graph of P, it follows that (u,v,v) € P. Hence we have v # w,
that is, n —1 > 0, so that n > 2. If we would have n = 2, then vw would be
an edge in E(H), so that (v,w,w) € P. But now, u and w being distinct,
Lemma 2 would imply that (u,v,w) € P, which is not so. Therefore, we
have n > 3.

Now there exists a neighbor x of v in H such that d(x,w) = n—2, so that
u # x. Then (v, z,w) is a step in R, whence (v, z,w) is in P, by (2). By (s2)
we have (z,v,w) ¢ P. Since v is a neighbor of u and =z, it follows from the
definition of the underlying graph of @ that (u,v,v),(v,z,z) € P. Recall
that (u,v,w) ¢ P. Hence we deduce from (s5) the existence of a vertex y
in V such that (u,y,w), (z,y,w) € Q. Obviously, y is a vertex in H. Since
d(x,w) =n — 2, we have (x,y,w) € R, by (2). Hence d(y,w) =n — 3. But
(u,y,w) € Q implies that u and y are adjacent, and we have a conflict with
d(u,w) = n. This settles Case 1.
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Case 2. (u,v,w) ¢ R.

Note that now we have (u,v,w) € P. So, by (s1), we have (v,u,u) € P.

Assume that n = 1, that is, uw is an edge in H. Then (u,w,w) € PNR.
Since (u,v,w) ¢ R, we must have v # w. So, by Lemma 2, we have
(v,u,w) € P. But this is impossible by (s2). This implies that n > 2.

Now let z be a neighbor of u in H with d(z,w) = n — 1. Then we
have (u,z,w) € R. Note that we must have v # z. Moreover, we have
(z,u,w) ¢ R. Since d(z,w) < d(u,w), it follows that also (z,u,w) ¢ P.
Since (u,v,w) € P, we have, by (s2), (v,u,w) ¢ P. Now, uv and uz
being edges in H, we have (v, u,u), (u,z,z) € P. Therefore we can apply
axiom (s5), which gives us a vertex t of G with (v,¢,w), (z,t,w) € Q. Then
vt and zt are edges in (G, whence in H, so that t is a vertex of H, and
(z,t,w) € P. Since d(z,w) < d(u,w), it follows that (z,¢,w) € R, so that
d(t,w) = d(z,w) — 1 = n — 2. But now we deduce that d(v,w) < n — 1.
Since d(u,w) = n, we have d(v,w) = n — 1. This implies that (u,v,w) € R,
which produces a contradiction. This settles Case 2.

Thus we have shown that R = P. [

In view of Theorem 5 below, axiom (s5) is much too strong in the sense
that it is mot a characterization of the signpost systems with the property
in Lemma 4 (the restriction to any component of the underlying graph is
precisely the step system of that component). So one may ask for an axiom
or a set of axioms that characterizes such signpost systems. This is a varia-
tion of the problem of characterizing the graphic signpost systems in terms
of signpost axioms only.

Theorem 5. Let QQ be a modular signpost system with underlying graph G.
Then each component of G is a modular graph.

Proof. Note that, by Lemma 4, the restriction of () to any component
H of G is precisely the step system of H. This means that, for any three
vertices u, v, w of a component H, we have

(u,v,w) € Q if and only if d(u,v) = 1 and d(v,w) = d(u,v) — 1.

From Lemma 3 it follows that G is triangle-free. So it suffices to prove that
I(u,z,w) # 0, for any three vertices u,z,w in the same component H of G
with d(u,w) = 2. If x € I(u,w), then we are done. So we may assume that
x & I(u,w).
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Take three vertices u,z,w of H with d(u,w) = 2 and = ¢ I(u,w). Note
that we have d(u,z) + d(z,w) > 3. Without loss of generality we assume
that d(u,x) > d(w, z). Since d(u,w) = 2, it follows that d(u,z) > d(w,x) >
d(u,z) —2 > 0. If we have d(w,x) = d(u,z) — 2, then we have d(u,w) +
d(w,x) = d(u, ), so that w € I(u,z). This implies that I(u,z,w) # 0, and
we are done. So we may assume that d(u, x) > d(w,z) > d(u,x)—1 > 1. Let
v be a common neighbor of u and w. Note that we have (u,v,v), (v, w,w) €
Q). We distinguish two cases.

Case 1. d(u,x) = d(w, z).

Then we have d(u,z)—1 < d(v,z) < d(u,z)+1. If d(v,z) = d(u,x)—1, then
clearly v € I(u,x,w), and we are done. So suppose that d(v,z) > d(u,z).
Since d(u,x) > 2, it follows from the fact that @ is the step system of G
that (u,v,z), (w,v,x) ¢ Q. Hence, by axiom (s5), there exists a vertex ¢ in
G such that (u,t,z), (w,t,x) € Q. Then t is a common neighbor of u and w
with d(t,z) = d(u,x) — 1 = d(w,x) — 1, so that ¢ lies in I(u,z,w), and we
are done.

Case 2. d(u,x) = d(w, z) + 1.
Since v is a common neighbor of v and w, we have d(w,z) < d(v,z) <
d(u,z). Assume that d(v,z) = d(w,x) = d(u,z) — 1. If d(w,z) = 1, then
w, v,z would induce a triangle. By Lemma 3, this is impossible. So we
necessarily have d(w,z) > 2 and d(u,z) > 3. Now (u,v,x) is a step in Q.
Let z be a neighbor of v with d(z,z) = d(v,z) — 1 = d(u,z) — 2. Then
(v,z,2) is a step in @ as well, so that (z,v,z) is not a step in Q. Since
d(v,z) = d(w, ), it follows that (w,v,x) is not a step in G, hence also not
a step in (). On the other hand, v being a common neighbor of z and w, we
know that (z,v,v) and (v, w,w) are steps in ). Hence it follows from axiom
(sb) that there exists a vertex ¢ such that (z,¢,z) and (w, t, z) are steps in @,
and thus in G. This implies that t is a common neighbor of z and w in G with
d(t,z) =d(z,x)—1 =d(u,z)—3 as well as d(t, z) = d(w, z)—1 = d(u, x) — 2.
This impossibility shows that d(v,x) > d(w, ), so that d(v,z) = d(u, x).

Now it follows that (u,v,v) and (v, w,w) are steps in @, but (u, v, z) and
(w,v,z) are not. So, by axiom (s5), we can find a vertex v' with (u,v’, x),
(w,v';2) € Q. Then (u,v',z) is a step in the step system of G, whence
d(v',z) = d(u,z) — 1. Moreover v’ is a common neighbor of u and w. Now
we replace v by v' and apply the previous arguments on u,v’, w, x instead of
on u,v,w,x. This settles Case 2 and concludes the proof of the Theorem. m
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Let H be the graph consisting of two disjoint 4-cycles and an additional
vertex v adjacent to one vertex on each of the 4-cycles, say to v on the one
cycle and to w on the other cycle. We obtain a sinkless orientation of H
in the following way: orient the two 4-cycles so that they become directed
cycles, and orient the two edges incident with v towards the 4-cycles. Let
G be the graph consisting of the disjoint union of H and yet another 4-
cycle C. Orient C' to make it a directed cycle as well. Thus we obtain a
sinkless orientation of G from the sinkless orientations of H and C. Let @
be the signpost system constructed from G with its sinkless orientation (as
constructed at the end of Section 3). Then each of the two components of
G is a median graph, whence also a modular graph. On the other hand, let
x be any vertex in C. Then (u,v,v) and (v, w,w) are in @, but (u,v,z) and
(w,v,z) are not in Q. Since v is the only common neighbor of v and w, we
do not find a vertex ¢ such that (u,¢,z) and (w,t,z) are both in @. That is,
Q@ does not satisfy axiom (s5), so that it is not a modular signpost system.

In the next section we will see that, for an ‘if and only if’ situation, we
need connectivity of the underlying graph of the signpost system.

As soon as one has modular signpost systems the question arises whether
there is a “median analogue”. Consider the following axiom:

(s6) if (u,v,v), (v,w,w) € Q with u # w, then there exists at most one
x € V such that = # v and (u, z,x), (z,w,w) € @, for u,v,w,z in V.

In terms of the underlying graph axiom (s6) ‘forbids’ K3 in G.

A median signpost system is a modular signpost system satisfying axiom
(s6). The difference between modular and median graphs is the unicity of
medians. For median signpost systems we could replace axioms (s5) and
(s6) by a single axiom. But we prefer the situation where median signpost
systems are modular signpost systems satisfying an additional axiom.

Theorem 6. Let Q be a median signpost system with underlying graph G.
Then each component of G is a median graph.

Proof. By Theorem 5 it follows that each component of G is a modular
graph. Axiom (s6) guarantees that medians of triples of vertices are unique,
which completes the proof. [

The same signpost system above serves as an example that the condition
that all components of the underlying graph are median graphs is not enough
to guarantee that the signpost system itself is median.
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5. Modular and Median Graphs

Let @ be a signpost system on the finite set V' with |[V| > 2. Let G be the
underlying graph of ). In this section we will study the connected case. It
turns out that in the present case connectivity follows from the axioms (s1)
up to (s5) together with the following additional axiom:

(s7) if (u, v, 2), (v, w,2), (u,y,y), (y, w,w) € Q, then (u,y, ), (y,w, ) € Q,
for u, v, w, x, y € V.

Lemma 7. Let Q be a modular signpost system on V' satisfying axiom (s7)
with G as its underlying graph. Let x € V', and let H be a component of G.
If vy, ..., vm are vertices in H, m > 1, with

(vi, Vig1,2) € Q for each i,0 < i < m,
then d(vg, vy,) = m, where d denotes the distance in H.

Proof. Let P C (@) be defined as in Lemma 4. Then P is the step system
of H. We proceed by induction on m. The case m = 1 follows from the
definition of underlying graph. The case m = 2 follows from Lemma 3.
Let m > 3. Let vp, ..., v, be vertices in H with (vg, v1,2), (v1,v2,2), ...,
(Um—1,Vm,z) € Q. We want to prove that d(vg,vy,) = m. Assume, to
the contrary, that d(vg,v,,) # m. By the induction hypothesis we have
d(vg,vm—2) = m — 2 and d(vg,vm-1) = m — 1. So d(vo,vm) < m — 1.
Since H is a modular graph, it is bipartite. Since d(vy,—1,vm) = 1, we get
d(vg,vm) = m — 2. Now (Vp—1,Um—2,v0) and (Um—1,Vm, Vo) are steps in
H, so that (Vm—2,Um-1,v0), (Vm,Vm—1,v0) ¢ Q. Since (Vym—2, Vm—1,Vm—1),
(Um—1,Um—1,Vm) € P, axiom (s5) implies that there exists a vertex ¢ in
V such that (vy,—2,t,v0), (Vm,t,v9) € Q. Then, by definition of G, v,,—ot
is an edge in G, whence in H. Hence (vy,—2,t,v0), (Um,t,v) are in P and
therefore,

(3) d(vg,t) =m — 3.

Since (Vm—2,Vm—1,2), (Vm—1,Vm,x), (Vm—2,t,t), (t,0m,vm) € @, axiom
(s7) implies that (v,—2,t,z) € Q. Since we have (vg,v1,z), (v1,v2,),
oy (Um—3,vm—2,2) € @, it follows from the induction hypothesis that
d(vg,t) = m — 1, which contradicts (3). |
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Lemma 8. Let Q be a modular signpost system on V' satisfying aziom (sT)
with G as its underlying graph. Then G is connected.

Proof. Assume, to the contrary, that G is disconnected. Let H be an
arbitrary component of G. Then there exists a vertex x of G outside H.
Choose a vertex ug in H. Then, obviously,  # ug. So, by axiom (s3), we
can find a vertex u; with (ug,u1,x) in Q. Then ug and u; are adjacent in
G, whence they both lie in H. In particular we have u; # x. Similarly, we
can find an infinite sequence u1, u9,us, ... in H such that

(Up,Unt1,2) € Q for alln=0,1,2,....

Since H is finite, there exist ¢ and j with 0 < ¢ < j such that u; = u; and
Ui, . ..,uj—1 are mutually distinct. From Lemma 1 and (s2) it follows that
J > 1+ 2, s0 that {u;,...,uj—1} induces a cycle in H. Since H is bipartite
this cycle is even. Hence j = i + 2m, for some positive integer m. Clearly,
d(ui, Uitm+1) < m. But by Lemma 7 we have d(u;, ujtm+1) = m + 1. This
contradiction completes the proof. [

Let V be a finite nonempty set. We now present the main results of our
paper.

Theorem 9. Let Q) be a signpost system on V', and let G be its underlying
graph.

(a) If Q is a modular signpost system satisfying axiom (s7), then G is a
modular graph and Q) is its step system.

(b) If G is a modular graph, then Q is a modular signpost system satisfying
aziom (s7) and Q is the step system of G.

Proof. (a) Let @ be a modular signpost system satisfying axiom (s7).
From Lemma 8 it follows that GG is a connected graph, so that G is a modular
graph, by Theorem 5. By Lemma 4, () is the step system of G.

(b) Let G be a modular graph, so that G is connected. Let u, v, w,z be
vertices in V' with (u,v,v), (v,w,w) € Q, (u,v,x), (w,v,z) ¢ Q and u # w.
From the fact that (u,v,v), (v, w,w) € Q it follows that v is a common neigh-
bor of u and w. Since G is bipartite, u # w implies that d(u,w) = 2. From
(u,v, ), (w,v,z) ¢ Q it follows that d(v,z) > d(u,x),d(w,x), so that v ¢
I(u,w,z). Moreover, we have d(u,z) —1 < d(w,z) < d(u,z)+1. In particu-
lar, this means that u is not between w and = and w is not between u and z.
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Hence, by modularity, there exists a vertex ¢ in I(u,w,x). This implies that
t is a common neighbor of u and w with d(¢,z) = d(u,z) — 1 = d(w, z) — 1.
So, G being the underlying graph of @, we have (u,t,x), (w,t,x) € Q. That
is, @ satisfies axiom (s5) and is a modular signpost system. By Lemma
4, @ is the step system of G. It is easily verified that @ also satisfies
axiom (s7). |

Theorem 10. Let (Q be a signpost system on V', and let G be the underlying
graph of Q.

(a) If Q is a median signpost system satisfying axiom (s7), then G is a
median graph and Q) is its step system.

(b) If G is a median graph, then Q is a median signpost system satisfying
aziom (s7) and Q is the step system of G.

Proof. Let Q be a median signpost system satisfying axiom (s7). By the
previous theorem, we only need to check unicity of medians. But this is a
simple consequence of axiom (s6).

On the other hand, if G is a median graph, then by the previous theorem
@ is modular and it is the step system of G. It is straightforward to check
that @) also satisfies axiom (s6). |

To conclude the paper we rephrase these two theorems from the perspective
of graphs. This provides us with a new characterization of modular graphs
as well as a new characterization of median graphs.

Corollary 11. Let G = (V, E) be a graph. Then G is a modular graph if
and only if there exists a modular signpost system Q satisfying axiom (s7)
such that G = Gg.

Corollary 12. Let G = (V, E) be a graph. Then G is a median graph if and
only if there exists a median signpost system @ satisfying axiom (s7) such
that G = Gg.

By now, median-type graphs are abundant in the literature: pseudo-modular
graphs, pseudo-median graphs, quasi-median graphs, weakly modular graphs,
etcetera, etcetera. It may be interesting to continue the study of signpost
systems by searching for weaker axioms than (s5) up to (s7) to obtain
“pseudo-modular signpost systems”, and so on. This could be a first step
in finding the axiom(s) characterizing the graphic signpost systems.
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