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Abstract

By Ulam’s conjecture every finite graph G can be reconstructed
from its deck of vertex deleted subgraphs. The conjecture is still open,
but many special cases have been settled. In particular, one can re-
construct Cartesian products.

We consider the case of k-vertex deleted subgraphs of Cartesian
products, and prove that one can decide whether a graph H is a k-
vertex deleted subgraph of a Cartesian product G with at least k + 1
prime factors on at least k + 1 vertices each, and that H uniquely
determines G.

This extends previous work of the authors and Sims. The paper
also contains a counterexample to a conjecture of MacAvaney.
Keywords: reconstruction problem, Cartesian product, composite
graphs.
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1. Introduction

In [15] Ulam asked whether a graph G is uniquely determined up to isomor-
phism by its maximal subgraphs, that is, the graphs Gx = G \ x obtained
from G by deleting a vertex x and all edges incident with it. The answer is
negative for infinite graphs [4]. For finite graphs the question is still open
and has become known as Ulam’s conjecture. Many partial results have
been found. For example, Dörfler [1] proved the validity of this conjecture
for finite nontrivial Cartesian products, that is, graphs which are the Carte-
sian product of at least two nontrivial factors. Actually a Cartesian product
of at least two nontrivial factors is already uniquely determined by any one
of its vertex deleted subgraps. This has first been shown by Sims [13] and
has been presented in terms of the semistability of Cartesian products in
[14]. For a different approach see [9].

Recently products of graphs have become popular objects of investiga-
tion from the algorithmic point of view [7]. In this vein Feigenbaum and
Haddad have studied the problems of minimal Cartesian product exten-
sions and maximal Cartesian product subgraphs of arbitrary graphs. Such
problems arise in the design of computer networks and multiprocessing ma-
chines. Both problems were shown to be NP-complete [3]. We will consider
the following problems in this paper:

1. Given a graph G′ that is the result of the deletion of k vertices from a
Cartesian product G, reconstruct G. (Weak k-reconstruction).

2. Given a graph G′, decide whether it is possible to extend the graph to a
Cartesian product by addition of k vertices and edges that are incident
with at least one of the added vertices.

For the case k = 1, both problems were solved by Imrich and Žerovnik [9].
They showed that arbitrary nontrivial Cartesian products (finite or infinite)
can be uniquely reconstructed, up to isomorphism, from an arbitrary ver-
tex deleted subgraph. An O(mn(∆2 +m log n)) algorithm that reconstructs
nontrivial Cartesian products from single vertex deleted subgraphs is pre-
sented in [5]. (As usual, n denotes the number of vertices, m the number of
edges, and ∆ the maximal degree of the vertices of a graph.)

In this paper we prove that a graph G is (up to isomorphism) uniquely
determined by any one of its k-vertex deleted subgraphs if it has at least
k + 1 prime factors on at least k + 1 vertices each (Theorem 1). We believe
that the reconstruction can be effected in polynomial time. This does not
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contradict the NP-completeness results of [3], because in our case the given
graph must be an induced graph of the resulting graph, whereas in the case
of minimal Cartesian product extensions the addition of arbitrary edges is
permitted.

MacAvaney conjectured [11] that a connected composite graph G12G2,
where G1 and G2 have more than two vertices, is uniquely determined by any
one of its two-vertex deleted subgraphs. This conjecture is stronger than our
result, but unfortunately not true, as the counterexample of Figure 1 shows.
It is due to Klavžar and can be extended to arbitrarily large counterexamples
(see Figure 2).

2. Preliminaries

We assume familiarity with general graph theoretic concepts, but will intro-
duce some basic notation and concepts pertaining to the Cartesian product.
For a more detailed introduction we refer to [7].

We will consider finite undirected graphs without loops or multiple edges
and write V (G) for the vertex set of a graph G and E(G) for its edge set.
E(G) will be considered as a set of unordered pairs xy = {x, y} of distinct
vertices of G.

N(v) denotes the neighborhood of the vertex v, that is, the set of all
vertices adjacent to v.

The Cartesian product of two graphs G1 and G2 is the graph G12G2

with vertex set V (G1)×V (G2), where (x1, x2)(y1, y2) ∈ E(G12G2) whenever
x1y1 ∈ E(G1) and x2 = y2, or x2y2 ∈ E(G2) and x1 = y1.

The Cartesian product of a K2, i.e. the complete graph on two vertices,
by itself is a square, K22K22K2 is the cube and K22K22K22 · · ·2K2 a
hypercube. Other examples of Cartesian products are prisms (products of
cycles by K2) and grid graphs (products of paths).

The Cartesian product is commutative, associative, and has the one-
vertex graph K1 as a unit. A product of several factors will be denoted by
G = 2i∈IGi. It is connected if and only if every factor is.

We can consider the vertices of G = 2i∈IGi as vectors x = (x1,
x2, . . . , x|I|) of length |I|. Moreover, two vertices x, y of G are adjacent
if there exists an index k ∈ I such that xi = yi for all i 6= k and {xk, yk} ∈
E(Gk). Such an edge e is called a Gk-edge. For simplicity we will also say
that e has color k with respect to the product decomposition G = 2i∈IGi

of G.
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For a vertex x of G = 2i∈IGi, we call xi the projection of x into the i-th
factor Gi. In symbols, xi = pi(x). Analogously one defines the projection of
a subset of V (G) into V (Gi) or the projection of a subgraph of G into Gi.

The distance between two vertices x, y of a graph G will be denoted by
dG(x, y) or simply d(x, y). It is well known that

dG(x, y) =
∑

i∈I

dGi(xi, yi)

if G = 2i∈IGi. It is not hard to see that any two shortest paths between
two vertices x and y of a connected product G have the same number of
edges of each color (see, for example [6]). If x and y differ in ` coordinates,
than there exist at least ` vertex-disjoint shortest paths between x and y.
In this case the coordinates in which x and y do not differ are identical for
every vertex on any of the shortest paths between x and y.

A subgraph H of a graph G is called convex in G if all shortest paths
of G between any two vertices of H are already in H. If this condition is
satisfied only for paths of length 2, we speak of 2-convexity. It is easy to see
that X is convex in Z if X is convex in Y and Y convex in Z.

A subgraph H of G is called isometric in G if dH = dG on H. Convex
subgraphs are isometric.

Now we define the product relation σ on the edge set E(G) of the product
G = 2i∈IGi. We say that two edges e, f are in the relation σ(2i∈IGi) if they
have the same color with respect to the product representation G = 2i∈IGi

of G. Clearly σ(2i∈IGi) is an equivalence relation and depends on the
product decomposition of G. For example, a cube can be represented in three
ways as a product of a square by a K2. Every one of these representations
induces a different edge-coloring.

It is known that among all product relations of G there exists a finest
one [12], which we will denote by σ(G). All factors of this representation
are indecomposable, or prime, as we will also call them. This decomposition
is the so-called prime factorization of G. It is unique up to isomorphisms
and up to the order of factors. We say that the Cartesian product has the
unique factorization property.

Note that a graph P is prime if it is nontrivial, that is, different from
K1, and if P = G2H implies that either G or H is K1.

Decomposable graphs will be called composite. In this paper, a Carte-
sian product graph will always denote a composite graph.
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Let G = 2Gi. Then Ga
k = {v | vi = ai, i 6= k} is called a Gk–layer through

the vertex a ∈ G. If Gk is connected, then the Gk-layers are the connected
components of the subgraph of G that consists of all edges of color k. Such
layers are convex in G.

A subgraph H in G = 2Gi is a d-box in G if it is representable in the
form H = 2pi(H), where d of the factors pi(H) are nontrivial and convex
in Gi and the others are one-vertex graphs. Note that for a d-box H the
number of σ-equivalence classes σ(H) is at least d and σ(H) ⊆ σ(G)|H
because of the unique factorization property.

Now we define three relations Θ, τ and δ on E(G) and describe their
role in the prime factorization of Cartesian products. Let e = xy ∈ E(G)
and f = x′y′ ∈ E(G) be two edges of G. We say that e and f are in relation
Θ, in symbols eΘf , if d(x, x′) + d(y, y′) 6= d(x, y′) + d(x′, y). Two edges e
and f are in relation τ if they are incident and if there is no chordless square
spanned by e and f . We also set eτe. Thus τ is reflexive, but not necessarily
transitive. Finally, the edges e and f are in relation δ if either eτf or if they
are opposite edges of a chordless square.

These relations are symmetric and reflexive, but in general not tran-
sitive. We denote their transitive closures by Θ∗, τ∗, and δ∗. From the
definition it easily follows that any pair of incident edges which belong to
distinct δ∗ classes span a unique chordless square. We say that the relation
δ∗ has the square property.

Feder [2] showed that σ = (τ ∪Θ)∗. Imrich and Žerovnik extended this
result to infinite graphs [8] and showed that σ is the convex hull of δ∗.

We will also need the restriction of relations to subgraphs. Let S be a
subgraph of G. Then σ(G)|S denotes the restriction of the relation σ(G) to
S, or, more precisely, to the edge-set E(S) of S.

Finally, for X ⊆ V (G), GX denotes the subgraph of G induced by the
vertex set V (G) \X. If X = {x} we simply write Gx instead of G{x}. For
|X| = k, GX is a k-vertex deleted subgraph.

3. Primality and Unique Reconstruction

Let G = 2k+1
i=1 Gi be a Cartesian product of k + 1 factors with at least three

vertices each, and X a set of k vertices of G.

Lemma 1. Let H be a d-box in G with d ≥ k + 1. Then S = H \ X is
isometric in GX , that is,
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dS = dGX
|S ,

and 2-convex in GX .

Proof. Let x and y be arbitrary vertices of S.
Assume first that they differ in k + 1 coordinates. Then there are at

least k+1 disjoint shortest paths between x and y in G. The deleted vertices
cannot be on all shortest paths, hence

dS(x, y) = dGX
(x, y) = dG(x, y).

Now assume that x and y differ in ` < k+1 coordinates. If there is a shortest
path of length dG(x, y) in S then there is nothing to prove. Therefore we
can assume that all disjoint shortest paths are ”broken” by the vertices of
X. Because H is a d-box in G with d ≥ k + 1, there are at least k + 1 − `
pairs of vertices xi, yi in H adjacent to x and y, respectively, which differ
from x and y in exactly one of the k + 1− ` coordinates common to x and
y in H. The shortest paths between these pairs of vertices xi and yi are
disjoint and cannot all be broken by k − ` vertices, therefore

dGX
(x, y) = dG(x, y) + 2

and
dS(x, y) = dGX

(x, y).

Furthermore, S is 2-convex in GX , since H is convex in G and since there
is no 2-path in G \H between vertices of S.

Lemma 2. Let S be a 2-convex isometric subgraph of an arbitrary graph G,
then

σ(S) ⊆ σ(G)|S .

Proof. From the fact that the distances in S are the same as in G and the
definition of Θ we see that Θ(S) = Θ(G)|S . Any pair of edges in S which
are in relation τ are clearly in relation τ in G (otherwise S would not be
2-convex in G). Therefore τ(S) ⊆ τ(G)|S and because of σ = (τ ∪ Θ)∗ the
assertion follows.

From now on we will assume that G = 2Gi is a Cartesian product of at
least k + 1 prime factors on at least k + 1 vertices each. Clearly, for any j,
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V (Gj) \ pj(X) 6= ∅, because |V (Gj)| > |X|. Furthermore, since k > 1, for
any j and any x ∈ V (Gj)\pj(X) the inverse image p−1

j (x) of x is composite;
in fact, it is isomorphic to the product of the other factors.

The lemmas will be used in the proof of our main theorem. Another
consequence of the lemmas is the following interesting result on the primality
of GX . Since it will not be used in the proof of Theorem 1, the proof of
Proposition 1 will be given in the last section.

Proposition 1. Let G be a Cartesian product graph of at least k + 1 prime
factors on at least k + 1 vertices each and X ⊆ V (G), |X| = k. Then GX is
prime.

Our assumptions imply that for each i there is at least one box of the form

Si = Hi2(2j 6=iGj).

There is at least one set of such boxes Si (i ∈ I) in GX , such that ∩i∈ISi 6= ∅.
To see this, take a vertex v such that pi(v) 6∈ pi(X) for every i ∈ I and
construct Si as a convex maximal Cartesian product subgraph containing
p−1

i (pi(v)). We call such a set of boxes a box skeleton of G in GX .

Figure 1: A counterexample to MacAvaney’s conjecture

We are now ready to prove the main result of this paper.

Theorem 1. Let G be a Cartesian product graph with at least k + 1 prime
factors on at least k + 1 vertices each and G′ = GX the graph induced by
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V (G) \X, |X| = k. If G′′ is a Cartesian product with at least k + 1 factors
on at least k+1 vertices each such that G′ is an induced subgraph of G′′ and
|V (G′′)| = |V (G′)|+ k, then G′′ ' G.

Proof. The case k = 1 was proved in [9]. Thus, let k > 1. The proof is
effected by the following construction.

1. Find a maximal box skeleton {Si}.
2. For all i ∈ I compute σ(Si).

By Lemma 2,
σ(Si) ⊆ σ(G)|Si .

This takes account of the fact that the Hi ⊆ Gi may have more than
one equivalence class.

3. Compute the transitive closure, say R, of the union of the σ(Si). In
other words, R is the equivalence relation (∪i∈Iσ(Si))? on S = ∪i∈ISi.
For each factor Gi of G, there is a Gi-layer in S and all edges of this
layer are in the same equivalence class of R, therefore σ(G)|S = R.

Because of the unique factorization property, any extension of R to G′′

satisfying the square property yields a product relation on graph isomorphic
to G.

For k = 2 this partially solves the conjecture of MacAvaney, that a connected
Cartesian product G12G2, where G1 and G2 have more than two vertices,
is uniquely determined by any of its two vertex deleted subgraphs. It should
be noted that MacAvaney does not require the factors to be prime, so there
was hope that the conjecture held despite Theorem 1. However, this is not
the case, as the counterexample of Figure 1 due to Klavžar [10] shows. In
fact, there exists an infinite family of counterexamples (see Figure 2). We
pose the following problem.

Problem 1. Is it true that any connected product graph G with k ≥ 2
prime factors on more than max{3, k} vertices each is uniquely determined
by each of its k-vertex deleted subgraphs?

The properties required are perhaps too weak. The reason for our choice
is that we hoped to design an algorithm which would reconstruct graphs
enjoying the properties given in Problem 1.
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Figure 2. G2P3 \ {x, y} ' H2P3 \ {x, y}

As one of the referees suggested, it is likely that it is possible to recon-
struct graphs under weaker conditions. For example, it might be true that
a graph with k factors on more than max{3, k} vertices each is uniquely
determined by each of its ((k + 1)k−1 − 1)-vertex deleted subgraphs! We
have no counterexample.

Another possibility to strengthen the conjecture is to weaken either the
condition on the number of factors or the condition on the size of factors.
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4. Proof of Proposition 1

First a lemma:

Lemma 3. Prime factors of G are subgraphs of prime factors of GX . In
symbols,

σ(G)|GX
⊆ σ(GX)

Proof. Take an arbitrary edge e = uv from GX . Without loss of generality,
we can assume that e lies in a G1-layer of G. In G there is at least one G1-
layer Gx

1 that does not meet X. Let e′ = u′v′ be the edge of Gx
1 where u′

has the same first coordinate as u and v′ has the same first coordinate as v.
Clearly, p1(e) = p1(e′).

Since G is the Cartesian product of k + 1 factors, there exist at least k
shortest paths P ⊂ G from u to u′. Hence, there exist at least k minimal
subgraphs P2K2 (say B1, B2, . . . , Bk) in G which connect e and e′.

We consider two cases:

1. Suppose there exists a subgraph Bi which does not intersect the vertex
set X. Because any pair of incident δ∗-nonequivalent edges in G can span
only one chordless square (square property of δ∗), eδ∗e′ on GX and therefore
e and e′ are σ(GX)-equivalent.

2. All subgraphs Bi meet the vertex set X. Then each such subgraph con-
tains exactly one vertex from X. Take any subgraph Bi and denote it by
B. On B there exists a vertex z ∈ X and two edges g = pq and g′ = rs in
B with p1(g) = p1(g′) = p1(e) and qz, sz ∈ E(G) (see Figure 3). Now we
have three subcases:

(a) There is no vertex x /∈ B adjacent to p and r (see Figure 3a). Then
gτfτf ′τg′ and therefore gδ∗g′ on GX .

(b) There is a vertex x /∈ B adjacent to p and r and no vertex y /∈ B
adjacent to x, q and s (see Figure 3b). Then gτfδf ′τg′ and therefore
gδ∗g′ on GX .

(c) There is a vertex x /∈ B adjacent to p and r and a vertex y /∈ B adjacent
to x, q and s (see Figure 3c). Let w ∈ B be the common neighbor of
p, r and z in G. Then replacement of w and z by x and y in B gives
rise to a subgraph of GX isomorphic to P2K2, in contradiction to the
assumption of Case 2.
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Because any pair of incident δ∗-nonequivalent edges in G can span only one
chordless square (square property of δ∗), eδ∗gδ∗g′δ∗e′ on GX and therefore
e and e′ are σ(GX)-equivalent.

Since the edges of Gx
1 are σ(GX)-equivalent by Lemma 2 this means

that any edge in an arbitrary G1-layer is σ(GX)-equivalent to an edge in
Gx

1 . This proves the lemma.

Figure 3. Three possible subcases

Now we can prove Proposition 1:

Proof. We proceed by induction on the number of missing vertices. The
case k = 1 was proved in [9]. We therefore assume that any Cartesian
product of l + 1 prime factors on l + 1 vertices each and with at most l (but
at least one) missing vertex is prime for l < k. Let

G = (G12G2)2(2k+1
i=3 Gi) = GI2GII

be a factorization of G. We consider two cases:

1. If |pI(X)| = 1, let pI(X) = v. From [9] we infer that GI \ v is prime. By
Lemma 1 all subgraphs Gx

I \ X are 2-convex and isometric in GX , and by
Lemma 2

σ(Gx
I \X) ⊆ σ(GX)|Gx

I \X .
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By Lemma 3 the edges in the subgraphs Gx
I \X are σ(GX)-equivalent. Let

σI denote the σ-class of edges in GI -layers.
Select an arbitrary σ(G)-class β 6= σI .
Each (prime) factor of G has at least k+1 vertices. Since |X| = k, there

exists a GII -layer Gu
II in G disjoint to the vertex set X and adjacent to at

least one vertex in X. Because |Gu
II | > k and since each vertex is incident

with all σ(GII)-classes there exists at least one edge e ∈ Gu
II in β with one

endpoint x adjacent to x′ ∈ p−1
I (v) \X and the other endpoint y adjacent

to y′ ∈ p−1
I (v) ∩X.

There is a unique chordless square in G spanned by the incident edges
e and xx′. In GX they do not span such a square. Therefore e and xx′ are
σ(GX)-equivalent, whence β and σI are in the same σ(GX)-class. Therefore
all edges of GX are σ(GX)-equivalent, i.e., GX is prime.

2. If |pI(X)| > 1 we consider the following two subcases.

(a) If k = 2, we can choose the factorization G = (G12G2)2G3 = GI2GII

such that two vertices from X differ in the third coordinate. As there
are two GI -layers with a missing vertex, the edges of all subgraphs
Gx

I \ X are σ(GX)-equivalent by Lemmas 1, 2 and 3. Because there
exists at least one Gu

II -layer in GX , where the vertex u is adjacent to
X in G, we infer the primality of GX as in the first case.

(b) If k > 2, there is at least one GII -layer (say Gx
II) with at least one and

at most k − 2 vertices from X.
(As there are at least two GII -layers intersecting X, at least one of
them, say Gx

II , contains at most bk
2c ≤ k − 2 vertices from X.) By

the induction hypothesis, Gx
II \X is prime and therefore the edges of

all subgraphs Gy
II \X are σ(GX)-equivalent by the same arguments as

before.
Let σII denote the σ(GX)-class of edges in the subgraphs Gy

II ∩X.
Let β 6= σII be an arbitrary σ(G)-class.
Each prime factor of G has at least k + 1 vertices. Since |X| = k, there
exists a GI -layer Gu

I in G disjoint to X and adjacent to at least one
vertex in X. Because |Gu

I | > k and since each vertex is incident to all
σ(GI)-classes there exists at least one edge xy = e ∈ Gu

I that is in β
and where x is adjacent to a vertex x′ ∈ Gv

II \X and y is adjacent to
a vertex y′ ∈ Gv

II ∩X.
There is a unique chordless square in G spanned by the edges xy = e
and xx′ because they are incident. In GX they do not span such a



Weak k-Reconstruction of Cartesian Products 285

square. Therefore they are σ(GX)-equivalent, whence β and σII are
the same σ(GX)-class. Thus all edges of GX are σ(GX)-equivalent, i.e.,
GX is prime.
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