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Abstract

The study of domination in Cartesian products has received its
main motivation from attempts to settle a conjecture made by V.G.
Vizing in 1968. He conjectured that γ(G)γ(H) is a lower bound for
the domination number of the Cartesian product of any two graphs
G and H. Most of the progress on settling this conjecture has been
limited to verifying the conjectured lower bound if one of the graphs
has a certain structural property.

In addition, a number of authors have established bounds for dom-
inating the Cartesian product of any two graphs. We show how it is
possible to improve some of these bounds by imposing conditions on
both graphs. For example, we establish a new lower bound for the
domination number of T T , when T is a tree, and we improve an
upper bound of Vizing in the case when one of the graphs has k > 1
dominating sets which cover the vertex set and the other has a domi-
nating set which partitions in a certain way.
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1. Introduction

It is well known that the problem of deciding if a given graph has a dominat-
ing set no larger than a given positive integer is NP-complete for the class
of arbitrary graphs. However, if the problem is restricted to certain types
of graphs such as trees or interval graphs, then polynomial algorithms exist
for computing the domination number (denoted by γ in this paper). See
Chapter 12 of [8] for a discussion. The special structure of graphs in these
restricted classes is exploited to allow for fast computation. In addition,
some effort has been given to finding a formula for the domination number
of graphs whose structure is simple and well defined. An example of this
is the class of complete grid graphs which are Cartesian products of paths.
See the second chapter of [8].

For two given graphs G and H the Cartesian product G H is very
structured, having many copies of each of G and H as induced subgraphs.
It seems natural to try to relate the domination number of this product to
the domination numbers of G and H. In 1963 V.G. Vizing ([12]) posed the
problem of determining if γ(G H) ≥ γ(G)γ(H) for all pairs of graphs G
and H. Little progress has been made on this problem, which was made a
conjecture by Vizing in [13]. See [1], [11], [6] and [2]. With the exception
of the surprising and general result of Clark and Suen ([2]), the progress
has been to show the conjectured inequality holds when one of the graphs
satisfies some structural condition.

Several authors have proved lower or upper bounds for γ(G H) in terms
of invariants of G and H. The following theorem summarizes some of these.

Theorem 1.1. Let G and H be arbitrary graphs. Then
1. [12] γ(G H) ≤ min{γ(G)|H|, γ(H)|G|}, where |G| denotes the number

of vertices of G;
2. [10] γ(G H) ≥ |H|

∆(H)+1γ(G);

3. [11] γ(G H) ≥ max{γ(G)ρ(H), γ(H)ρ(G)}, where ρ(G) is the 2-
packing number of G;

4. [3] γ(G H) ≥ min{|G|, |H|};
5. [2] γ(G H) ≥ 1

2γ(G)γ(H).

In this paper we do not verify Vizing’s conjecture for any new classes of
graphs. Rather our approach is to show that some of the bounds for the
domination number of a Cartesian product can be improved by restricting
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the graphs in the product. If T1 and T2 are trees, then it is known that
γ(T1 T2) ≥ γ(T1)γ(T2) since Vizing’s conjecture holds if at least one of
the factors is a tree. In Section 4 we establish a more general lower bound
when T1 and T2 are isomorphic. In Section 3 we do not demand that G
and H are the same graph but do require that each has certain properties
with regard to different 2-packings, and we establish a lower bound for such
graphs. In Section 5 we generalize the upper bound of Vizing from 1963 in
the case when the vertex set of one of the graphs can be covered by k > 1
dominating sets and the other graph has a dominating set which partitions
into k subsets satisfying a certain property.

2. Terminology and Background

All graphs considered in this paper are finite, simple graphs. We follow the
definitions and notation of [8]. In particular, for vertex subsets A and B of
a graph G = (V, E) we say that A dominates B if each vertex of B is in the
closed neighborhood of A; that is, each vertex of B is in A or is adjacent
to some vertex of A. In case A dominates V we call A a dominating set
for G. The domination number of G is the smallest cardinality, γ(G), of a
dominating set for G. A subset A of V is called a 2-packing of G if the closed
neighborhoods of any two distinct vertices of A are disjoint. The 2-packing
number of G is the maximum cardinality, ρ(G), of a 2-packing of G. Since
every dominating set for G has a nonempty intersection with each closed
neighborhood, it follows that ρ(G) ≤ γ(G). We use |G| to denote the order
of G. By a labeling in G we mean a function L : X → {1, 2, 3, . . .}, where
X is allowed to be any subset of V . For ease of illustration we will often
write the label of a vertex next to the vertex and then refer to the natural
partition of X induced by the labeling. For example, in Figure 1 the vertex
set of C6 is partitioned into three 2-packings, V1, V2, V3 where Vk is the set
of vertices labeled k. If G = (V,E) and H = (W,F ) are graphs, then the
Cartesian product of G and H is the graph G H, whose vertex set is the
(set) Cartesian product V ×W . Two vertices (v1, w1) and (v2, w2) of G H
are adjacent if and only if they are equal in one coordinate and adjacent
in the other coordinate. Note that we distinguish between the Cartesian
product of sets, which is denoted by ×, and the Cartesian product of two
graphs, which is denoted using the symbol . It often becomes convenient
to consider the subgraph of G H induced by the set of vertices {v} ×W .
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This subgraph is isomorphic to H and is denoted by Hv. Similarly, for a
vertex w of H, Gw denotes the subgraph of G H induced by V × {w}.
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Figure 1. Elementary illustration

3. Lower Bounds

The central idea in our approach to establishing lower bounds for γ(G H) is
to require only part, although a carefully chosen part, of the vertex set of the
product to be dominated. Observe that for any vertex u of G, the vertices in
the subgraph Hu can be dominated only by those in the set NG[u]× V (H).
Therefore, if A is any maximum 2-packing of G and D dominates A×V (H),
then for every a ∈ A it follows that |D∩(NG[a]×V (H))| ≥ γ(H). The third
inequality of Theorem 1.1 is a direct consequence of these observations.

For the above approach, as traditionally applied, to yield a good lower
bound, at least one of the two graphs must have a 2-packing that is almost
as large as its domination number. In this section we relax that requirement
but instead impose conditions which take advantage of the fact that the
graph has a number of pairwise disjoint 2-packings. A related condition will
also be imposed on the other graph.

Lemma 3.1. Let V1, V2, . . . , Vk be pairwise disjoint subsets of V (G) such
that each is a 2-packing of G and assume H has an independent set of
cardinality at least k. Then γ(G H) ≥ ∑k

i=1 |Vi|.
Proof. Let D be a subset of V (G H) such that D dominates the set of
vertices W = ∪k

i=1(Vi×{hi}), where A = {h1, h2, . . . , hk} is an independent
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set in H. Since W is a 2-packing of G H, it follows that no vertex of
D can dominate more than one vertex of W . Therefore, |D| ≥ |W |. Any
dominating set for G H must dominate W , and so

γ(G H) ≥ |W | =
k∑

i=1

|Vi|.

A simple illustration of Lemma 3.1 is the pair of graphs G and H in Figure 1.
Let Vi be the set of vertices of G labeled i. Then ∪k

i=1(Vi × {hi}) is a 2-
packing of G H, so at least six vertices will be required to dominate G H.
The fact that V (G) × {x} dominates G H shows the domination number
of this Cartesian product is exactly six.

Lemma 3.1 may not be helpful in forcing a large lower bound for the
domination number of a particular Cartesian product since the 2-packing
sets of a graph may all have small cardinality while the domination number
is large. The next result generalizes Lemma 3.1 in two ways.

Lemma 3.2. Let V1, V2, . . . , Vk be pairwise disjoint subsets of V (G) and,
for each i, let ni denote the smallest cardinality of a set Wi that dominates
Vi. Let A1, A2, . . . , Ak be a collection of 2-packings of H such that for every
1 ≤ i < j ≤ k, if there is a vertex of Ai adjacent to a vertex of Aj, then no
vertex of Vi has a neighbor in Vj. Then γ(G H) ≥ ∑k

i=1 |Ai|ni.

Proof. Let D be a subset of V (G H) such that D dominates ∪k
i=1(Vi×Ai).

For a fixed i, if x ∈ Vi and u and v are distinct vertices of Ai, then no vertex
in D can dominate both (x, u) and (x, v) since Ai is a 2-packing. Therefore,
|Ai|ni vertices of D will be required to dominate Vi × Ai. But for y ∈ Vj

and w ∈ Aj , if uw ∈ E(H) , then xy 6∈ E(G). Thus no vertex of D
can dominate a vertex of Vi × Ai and a vertex of Vj × Aj . It follows that
γ(G H) ≥ |D| ≥ ∑k

i=1 |Ai|ni.

Consider the pair G1 and H1 of Figure 2. The graph H1 has domination
number equal to its 2-packing number, and so by the result of Barcalkin
and German in [1] it follows that γ(G1 H1) ≥ γ(G1)γ(H1) = 3 × 4 = 12.
Let V1, V2, V3, V4 and A1, A2, A3, A4 be the sets of vertices of G1 and H1,
respectively, induced by the given labelings in Figure 2. Then n1 = 2, n2 =
2, n3 = 1 and n4 = 1. Using Lemma 3.2 it follows that γ(G1 H1) ≥ 14.
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Figure 2. Example for Lemma 3.2

To get a reasonable lower bound using Lemma 3.2 it seems that one of the
graphs in a Cartesian product must have some 2-packings of cardinality
close to the domination number or must have a number of pairwise disjoint
2-packings. In the general case it is not at all clear how best to apply this
lemma. Consider the two graphs G2 and H2 in Figure 3. The different
labelings of G2 and H2 given in the following list illustrate how a range of
values can arise as the lower bound derived from the lemma depends on the
labelings chosen.

1. Let V1 = {x1, x5}, V2 = {x2, x7}, A1 = {y1, y5, y9}, A2 = {y3, y7}. Then
γ(G2 H2) ≥ 10.

2. Let V1 = {x1, x7}, V2 = {x3, x6}, V3 = {x2, x5}, A1 = {y1, y6}, A2 =
{y3, y8}, A3 = {y5, y10}. Then γ(G2 H2) ≥ 12.

3. Let V1 = {x1, x7}, V2 = {x2, x5}, A1 = {y1, y4, y7, y10}, A2 = {y2, y5, y8}.
Then γ(G2 H2) ≥ 14.

4. Let V1 = {x1, x7}, V2 = {x3, x6}, V3 = {x2, x5}, V4 = {x4}, A1 =
{y1, y6}, A2 = {y3, y8}, A3 = {y10}, A4 = {y5}. Then γ(G2 H2) ≥ 11.

We will now restrict our attention to special classes of graphs and apply
Lemma 3.2 to derive lower bounds for the domination number of a Carte-
sian product. Throughout this discussion we assume one of the graphs H
has a collection of 2-packings A1, A2, . . . , Ak whose union A is independent.
A simple instance of this is when γ(H) = 1 and the independence num-
ber of H is at least k. Assume A = {h1, h2, h3} is independent in H and
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let {x} be a dominating set for H. Let G be the path Pt : u1, u2, . . . , ut.
The vertex set of G partitions into three 2-packings, V1, V2, V3, where Vi =
{uj |j ≡ i (mod 3)}. By Lemma 3.2 it follows that γ(Pt H) ≥ t. Therefore,
γ(Pt H) = t since the set V (Pt)× {x} dominates Pt H.
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Figure 3. Example showing different labelings

The following result will allow us to produce similar lower bounds for the
Cartesian product of a graph H which has 2-packings whose union is inde-
pendent and a tree having small enough maximum degree.

Lemma 3.3. Let T be a tree with maximum degree n. The vertex set of T
can be partitioned into n + 1 sets each of which is a 2-packing.

Proof. Let x ∈ V (T ) be a vertex of degree n. Root the tree at x and
consider its n neighbors u1, u2, . . . , un. Assign label n + 1 to x and i to ui

for 1 ≤ i ≤ n. Vertex u1 has at most n− 1 children, so they can be assigned
labels from the set {2, 3, . . . , n}. Since the children of u1 are at a distance
of three from each of u2, u3, . . . , un, the subsets of the partial partition of
V (T ) induced by the labeled vertices are 2-packings. This process can be
continued until all vertices of T are labeled.

It is clear that if the tree has maximum degree less than n it is still possible,
if T has order at least n + 1, to label as in the above lemma so that V (T )
is partitioned into n + 1 sets which are 2-packings. The proof of the next
theorem now follows from a direct application of Lemmas 3.2 and 3.3.

Theorem 3.4. Let H be a graph which has an independent set A which is
a union of k pairwise disjoint 2-packings A1, A2, . . . , Ak. Let T be a tree of
maximum degree at most k − 1. Then γ(T H) ≥ |T | min

1≤i≤k
|Ai|.
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4. Lower Bound for γ(T T )

As indicated earlier, if T is a tree and H is any graph, then it follows
from the result of Barcalkin and German [1] that γ(T H) ≥ γ(T )γ(H).
In [9] Fink, et al, proved that if both G and H have the property that
each vertex of degree greater than one has exactly one neighbor of degree
one (they call such graphs generalized combs), then γ(G H) = γ(G)γ(H).
Jacobson and Kinch prove in [11] that if T1 and T2 are both trees such that
γ(T1 T2) = γ(T1)γ(T2), then at least one of them must be a generalized
comb. Note that for a tree T the quantity |T | − 2γ(T ) is strictly positive
unless T is a generalized comb, in which case it is zero.

In Corollary 2.2 of [7] Hartnell and Rall show that if T is a tree in
which each vertex of degree greater than one has at least one neighbor of
degree one, then γ(T H) ≥ γ(T )γ(H) + (|T | − 2γ(T )) for every graph
H of sufficiently large order. We now establish a lower bound which is an
improvement over the conjectured lower bound of Vizing for the Cartesian
product of any tree with itself.

Theorem 4.1. If T is any tree, then γ(T T ) ≥ γ(T )γ(T ) + (|T | − 2γ(T )).

Before giving the proof of Theorem 4.1 consider the following situation
which suggests why it might be true. Assume that G is a graph and A =
{v1, v2, . . . , vt} is a 2-packing in G. Let R be the vertices that remain when
the t closed neighborhoods are removed from G. That is, R = G−∪t

i=1N [vi].
Assume that D is a subset of V (G G) which dominates (A×A)∪ (R×R).
Since A×A is a 2-packing of G G, D must contain at least t2 vertices from
∪t

i=1N [vi]× ∪t
i=1N [vi], and none of these vertices is adjacent to any vertex

of R × R. It is straightforward to see that the set D must then contain
at least |R| vertices from (V (G) − A) × R to dominate R × R. Therefore,
γ(G G) ≥ t2 + |R|.

When G is a tree and has a maximum 2-packing, necessarily of order
γ(G), consisting entirely of leaves, the above bound coincides with that of
the theorem.

Proof of Theorem 4.1. Let T be a tree of order n and having domina-
tion number and 2-packing number γ(T ) = k = ρ(T ). Choose any maximum
2-packing B of T and color its vertices black. Let B = {b1, b2, . . . , bk}. If a
black vertex is a leaf, color its only neighbor yellow; otherwise color its neigh-
bors pink. Let Y be the set of yellow vertices, and let P be the set of pink
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vertices. Color the remaining vertices, if any, red. So R = V (T )−(B∪Y ∪P )
is the set of red vertices. Let D be any subset of T T having the following
properties:

1. D dominates all of B ×B;
2. For each black vertex bi that has pink neighbors, say Pi = P ∩N(bi) =
{p1, p2, . . . , pn}, D dominates Qi = {(p1, p2), (p2, p3), . . . , (pn−1, pn),
(pn, p1)};

3. For each connected component C of the subgraph 〈R〉 induced by R,
D dominates all vertices of C × C.

Because the set of black vertices is a 2-packing of T , D must contain |B|2 =
[γ(T )]2 vertices to dominate B × B. Assume bi ∈ B has a nonempty set
Pi = {p1, p2, . . . , pn} of pink neighbors. If (u, v) ∈ D dominates vertices in
both B ×B and Pi × Pi, then either u = bi or v = bi. That is, such a (u, v)
can dominate (bi, bi) but no other vertex of B ×B. Also, Qi is a 2-packing
(it is actually a 3-packing) in T T , and so Qi∪{(bi, bi)}) can be dominated
by no fewer than |Qi| = |Pi| members of D.

Consider now a component C of 〈R〉. Note that the distance in T
from any red vertex to a black vertex is at least two, so no vertex of D
can simultaneously dominate a vertex of C × C and a vertex of B × B. If
D ∩ (C ×C) dominates C ×C, then it follows from the fourth inequality of
Theorem 1.1 that |D ∩ (C × C)| ≥ |C|. Note also that no vertex of C × C
dominates a vertex in Pi × Pi, for any i. If a vertex (r, s) ∈ C × C is not
dominated by D ∩ (C × C), then there must exist in D a vertex d of the
form (x, s) or (r, x) where x ∈ Y ∪ Pj , for some j. If x ∈ Pj , then d does
dominate (x, x) ∈ Pj × Pj as well, but does not dominate any vertex of Qj .
If x ∈ Y , then d dominates exactly one required vertex, either (r, r) or (s, s).
Therefore,

|D| ≥ γ(T )γ(T ) + (|T | − 2γ(T )).

Since it is not known if Vizing’s conjectured bound holds for G G, a modified
Theorem 4.1 with the graph not required to be a tree would provide more
evidence in favor of the conjecture. However, such a statement is not true.
Although it can easily be shown that γ(G G) ≥ γ(G)γ(G)+(|G|−2γ(G)) if
γ(G) ≤ 2, the self-complementary graph G = K3 K3 shows the inequality
does not hold in general.
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5. Upper Bounds

Nearly all the published results on domination of Cartesian products have
been motivated by Vizing’s conjecture, and so authors have been interested
in lower bounds for the domination number of a Cartesian product. Possible
exceptions to this focus are attempts to find the domination number of grid
graphs and hypercubes. However, the fundamental challenge in domination
theory is to find small dominating sets and so it seems natural to establish
upper as well as lower bounds.

Consider the upper bound γ(G H) ≤ min{γ(G)|H|, γ(H)|G|} of Vizing
given in Theorem 1.1. This bound is valid for any pair of graphs G and H
and is verified by observing that if D is any dominating set of G, then
D × V (H) dominates G H. A similar dominating set for G H can be
obtained by interchanging the roles of G and H. Vizing’s result then follows.

There are several ways to generalize this upper bound. In what follows
we only consider one of two symmetric cases. Instead of using a copy of a
minimum dominating set D of G inside Gu, for each vertex u of H, we note
that it may be possible to build a smaller dominating set for the Cartesian
product if H has large enough maximum degree. Let x ∈ V (H) be a vertex
of degree ∆(H), and let D be a minimum dominating set of G. The set
(V (G) × {x}) ∪ (D × (V (H) − N [x]) dominates G H. This proves the
following theorem.

Theorem 5.1. For any two graphs G and H,

γ(G H) ≤ min{γ(G)|H| − (γ(G)(∆(H) + 1)− |G|),
γ(H)|G| − (γ(H)(∆(G) + 1)− |H|)}.

Of course, if H has several vertices of large degree whose neighborhoods are
disjoint, or nearly so, then it is possible to modify the above idea to get other
upper bounds. The statements of these become too unwieldy to include.

Another way to generalize Vizing’s upper bound of γ(G)|H| is to build a
dominating set for the product graph that uses the domination properties of
both graphs. To state this precisely requires several additional definitions.
A collection of subsets {A1, A2, . . . , Ak} of V (H) is called a dominating k-
cover of H if each Ai is a dominating set of H and V (H) = ∪k

i=1Ai. This is
a generalization of a domatic k-partition of H, in which the subsets are also
pairwise disjoint. Note that H has a dominating k-cover for all k ≥ 1 since
each Ai can be taken to be V (H). However, the upper bound given in the
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next theorem will, in general, be smaller when few vertices are repeated in
the cover. A dominating set D of G is called a k type dominating set if there
is a partition {D1, D2, . . . , Dk} of D, called a k type dominating partition,
such that for every x ∈ V (G) −D and every 1 ≤ i ≤ k, the vertex x has a
neighbor in Di.

The proof of the following theorem follows immediately from the defi-
nitions and is omitted. The original upper bound of Vizing is obtained by
taking k = 1. This will always be possible since V (H) is a dominating set
of H, and every dominating set of the graph G is itself a 1 type dominating
partition.

Theorem 5.2. Let k be a positive integer. Assume G is a graph with a k
type dominating set and H is any graph. Then

γ(G H) ≤ min
k∑

i=1

|Di||Ai|,

where the minimum is taken over all dominating k-covers {A1, A2, . . . , Ak}
of H and all k type dominating partitions {D1, D2, . . . , Dk} of a dominating
set of G.
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Figure 4. Illustration of the upper bound

As an example of how to apply Theorem 5.2 consider the graphs G and
H in Figure 4. Vizing’s upper bound for γ(G H) from Theorem 1.1 is
16 and is achieved using the dominating set V (G) × {a,w}. Theorem 5.1
does not give any improvement in this case. However, if D1 = {1, 2, 3},
D2 = {4} and D3 = {5}, then {D1, D2, D3} is a 3 type dominating set
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of G. Let A1 = {a, w}, A2 = {a, x, y, z} and A3 = {w, b, c, d}. The col-
lection {A1, A2, A3} is a dominating 3-cover of H, and so by Theorem 5.2,
γ(G H) ≤ ∑ |Di||Ai| = 14.
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