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1. Introduction

Minimum length bases of the cycle space of undirected graphs have a variety
of practical applications. They play a crucial role in chemical “ring percep-
tion” [6], structural flexibility analysis [16], electrical networks [5], and error
propagation in chemical reaction networks [9]. Brief surveys and extensive
references can be found e.g. in [13, 14].

In many cases the network graphs of interest are intrinsically directed. It
is natural therefore to ask for a description of the cycle structure in terms of
circuits, i.e., cycles that are following the directions of the arcs. This problem
is of particular interest for the analysis of the metabolites fluxed through
the large metabolic reaction networks of a cell. A central issue in Metabolic
Flux Analysis [7], for instance, is the computation of a certain basis of “flux
modes” which, in the case of networks of isomerization reactions [1] reduces
to the problems of finding circuit bases. The selection of a minimal weight
basis can help to reduce the ambiguities of previous methods in this field.

This contribution is organized as follows. In the following (rather
lengthy) section we introduce the basic notation and collect a number of
basis properties of the cycle spaces of directed graphs. In Section 3 we
prove a variant of Berge’s theorem stating that any strongly connected di-
graph has a basis consisting of all double edges and a collection of proper
circuits that correspond to a cycle basis of the underlying undirected graph.
In Section 4 we introduce the concept of “relevant circuits” and derive their
main properties. Section 5 is concerned with necessary conditions for a cir-
cuit to be relevant. These are used in the final section for the design of
an algorithm that extracts a minimal circuit basis in polynomial time from
a relatively small collection of certain short cycles by means of a greedy
procedure.

2. Preliminaries

2..1 Basic Notation

A digraph G(V,A) consists of a set V of vertices and a set A of arcs (directed
edges). We consider only graphs without self-loops and multiple arcs (unless
we explicitly use the term multi-graph), hence A can be regarded as a set
of ordered pairs of vertices, A ⊂ V × V . We write (x, y) = e ∈ A and call x
the initial and y the terminal vertex of e. We refer to both x and y as the
end-points of the arc e.
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A chain in G is an alternating sequence of vertices and arcs

(1) c = (x0, e1, x1, e2, x2 . . . , eq−1, xq−1, eq, xq)

such that either ek = (xk−1, xk) or ek = (xk, xk−1). In the first case we
speak of a forward arc, in the second case of a backward arc. The vertices
x0 and xq are the initial and terminal vertex of the chain, respectively.

A chain is closed if its initial and terminal vertices coincide. A chain
that does not contain the same arc twice is simple. A chain is elementary if
each vertex x appears only once with the possible exception that the initial
and terminal vertices may coincide. An elementary chain is of course always
simple. The length l(c) of the chain c is the number q of its arcs. A cycle is
a closed simple chain. Consequently, every cycle is the arc-disjoint union of
a collection of elementary cycles.

A walk is a chain in which ek = (xk−1, xk) ∈ A for all k, i.e., in which
each arc is transversed in forward direction. A path is a simple walk. A cir-
cuit is a simple closed path. An elementary circuit is a closed elementary
path and any circuit is therefore the arc-disjoint union of elementary cir-
cuits. A cycle or circuit c is proper if (x, y) ∈ c implies (y, x) /∈ c. Proper
cycles therefore have length |c| ≥ 3. A circuit of length 2 will be called a
double edge.

The directed distance d(x, y) between two vertices x and y is the length of
the shortest path with initial vertex x and terminal vertex y or d(x, y) = ∞
if no path from x to y exists. The directed distance satisfies d(x, y) = 0 =⇒
x = y and the directed triangle inequality d(x, y) + d(y, z) ≤ d(x, z), while
it is in general not symmetric.

If G(V, A) is a digraph, then G◦(V, A◦) denotes the underlying undi-
rected graph which is obtained by ignoring the direction of the arcs and
identifying double edges. In general we write B◦ for the set of edges of G◦

obtained from a set B ⊆ A of arcs by ignoring the direction and remov-
ing duplicate edges. A directed graph G(V, A) is weakly connected if the
undirected graph G◦(V, A◦) is connected.

A directed graph G(V, A) is strongly connected if for all x, y ∈ V there
is a path from x to y and a path from y to x. Furthermore, it is well known
that G(V,A) is strongly connected if and only if G(V,A) is weakly connected
and each arc is contained in a circuit.

A cut vertex in G(V, A) is a vertex x such that deleting x and all arcs
incident with x increasing the number of weakly connected components.
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A graph is 2-connected if it has no cut vertex. A block of G(V, A) is a max-
imal weakly connected induced subgraph of G(V, A) that does not contain
a cut vertex. Thus a block is either a 2-connected component (each pair of
vertices lies on a common elementary cycle), a pair of vertices connected by
an arc, or an isolated vertex. Similarly, a cut edge is an edge whose removal
disconnects the graph. A graph is 2-edge-connected if it has no cut edge.

2..2 Chains and Their Vectors

Let c1 = (x0, e1, x1, . . . , el, xl), c2 = (y0, f1, y1, . . . , fl, yl), and xl = y0.
Then the concatenation c1 ∗ c2 = (x0, e1, x1, . . . , el, xl = y0, f1, f1, . . . , fl, yl)
is again a chain. For simplicity we say that two chains c1 and c2 have no
interior vertex in common if c1 ∩ c2 ∩ V does not contain a non-terminal
vertex of either chain.

The following observations are obvious:

(1) Any chain can be regarded as the concatenation of its “individual steps”
(xi, ei+1, xi+1).

(2) The concatenation of two walks c1 and c2 is again a walk if and only
if the initial vertex of c2 coincides with the terminal vertex of c1.

(3) If c1 and c2 are simple paths that have no interior vertex in common
then their concatenation c1 ∗ c2 is again a simple path if the initial
vertex of c2 coincides with the terminal vertex of c1.

(4) If, in addition, the initial vertex of c1 and terminal vertex of c2 coincide
then c1 ∗ c2 is a circuit.

Let c be a simple chain in G. Then we define the arc-indexed vector C (with
coordinates C(e), e ∈ A) by

(2) C(e) =





+1 if e = ek ∈ c and ek = (xk−1, xk),
−1 if e = ek ∈ c and ek = (xk, xk−1),
0 if e /∈ c .

In other words, C(e) = +1 if e ∈ c is transversed by c in forward direction,
C(e) = −1 if e ∈ c is transversed in reverse direction and C(e) = 0 if
e /∈ c. For elementary chains there is a one-to-one correspondence between
the vector C and the chain c. This is not true in general.

The support of a vector C ∈ R|A| will be denoted by supp(C) = {e ∈
A|C(e) 6= 0}. If c1 and c2 are arc-disjoint chains and the initial vertex
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of c2 coincides with the terminal vertex of c1 then the vector associated
with the concatenation c1 ∗ c2 is C1 + C2. This motivates the definition of
the vector C for arbitrary chains c as the sum of the vectors associated with
its individual steps. In other words C(e) is the number of times in which c
transverses e ∈ A in forward direction minus the number of times in which
c transverses e in backward direction.

In the following we use the convention that a capital letter C is the
vector associated with the chain c.

2..3 The Cycle Space of a Digraph

The |V |×|A| incidence matrix H of the digraph G has the entries Hxe = +1
if x is the terminal vertex of the arc e, Hxe = −1 if x is the initial vertex
of e, and 0 otherwise. The cycle space C of G(V,A) is the subspace of R|A|
that is generated by the cycles of G(V,A). An important and well-known
result, see e.g. [4, Section II.3], is the following

Proposition 1. U ∈ C ⇐⇒ HU = 0.

A basis of the cycle space can be constructed as follows: Let T be a spanning
forest of G. For each e /∈ T there is a unique cycle ce in T ∪{e}. The cycles
ce are the fundamental cycles associated with the spanning forest T . The
associated set of vectors CT = {Ce|e ∈ A \ T} is a basis of the cycle space
C, see e.g. [3, Theorem 3.4]. The dimension of the cycle space is therefore

(3) ν(G) = |A| − |V |+ c(G◦)

where c(G◦) denotes the number connected components of G◦, i.e., the num-
ber of weak components of G. Note that this is the same construction which
is used in undirected graphs. Hence we can expect a close relationship
between the cycle space of the digraph G and the underlying undirected
graph G◦.

From the construction of the basis it follows that C has a basis consisting
of vectors with coordinates −1, 0, or +1.

2..4 Elementary Circuits

From a practical point of view those elements of C that follow the directions
of the arcs in G are of particular interest. The special role of the circuits is
emphasized by the following simple result which will be a useful tool in our
proofs:
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Lemma 2. Let z be a closed path in G. Then there is a collection {Ci} of
elementary circuits such that Z =

∑
i aiCi with ai ∈ N.

Proof. If each vertex in z is visited exactly once, then z is an elementary
circuit and there is nothing to show. Otherwise z contains a vertex x that
is visited more than once. Let x be the initial and terminal vertex of z. If
x is visited in an intermediate step then z is a concatenation of two closed
paths z1 and z2 starting from x, and hence Z = Z1 + Z2. We consider
the two parts independently of each other. After a finite number of such
decompositions x occurs only as initial/terminal vertex of each partial closed
path zi. Now let y be the first vertex in zi that occurs more than once. We
have zi = z1

i ∗ z2
i ∗ z3

i where z1
i is the path from x to y, z3

i is the part of
zi after the last occurrence of y, and z2

i is the closed path between the first
and last occurrence of z in z. By construction z1

i ∗ z3
i is a circuit and z2

i is
a closed path. This leads to a decomposition of z into a concatenation of
(not necessarily distinct) circuits. Thus the vector Z associated with z is a
sum of circuits with positive integer coefficients.

Remark. Using the same arguments it can be shown that each path can be
written as a concatenation of elementary paths (and circuits). Furthermore,
the non-closed paths can be concatenated to yield a single elementary non-
closed path.

It is natural hence to consider the non-negative cone of the cycle space,
K = {X ∈ C|Xk ≥ 0}. A vector U ∈ K is extremal if

(4) U =
∑

k

λkXk, Xk ∈ K and λk > 0 implies Xk = ξkU with ξk > 0,

i.e., if U cannot be represented as a positive linear combination of other
vectors from the cone K.

Lemma 3. If U is extremal in K and X ∈ K such that X 6= 0 and
supp(X) ⊆ supp(U); then X = µU for some µ > 0, i.e., there are no
distinct extremal elements with the same support.

Proof. Let λ = min{U(e)/X(e)|e ∈ supp(X)}. Then λX(e) ≤ U(e) with
equality for at least one e ∈ supp(X). Consider W = U − λX. We have
W ∈ K since W (e) ≥ 0 for all e ∈ A. Thus we can write U = W + λX.
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Hence W = 0 by the extremality of U and consequently U = λX, with λ > 0
and thus X = 1

λU .

The following proposition is well known, see e.g. [20, 8]. We include the
simple argument here to make this contribution self-contained.

Proposition 4. The elementary circuits of G are exactly the extremal vec-
tors of the cone K.

Proof. It follows immediately from Prop. 1 that the subgraph GX of G
with edge set supp(X) for any X ∈ K has neither a sink (vertex with out-
degree 0) nor a source (vertex with in-degree 0). Therefore GX contains a
circuit. Consequently, no proper subset of an elementary circuit can be the
support of a vector in K, i.e., every elementary circuit is an extremal vector
of K.

To see the converse, suppose X ∈ K is extremal. Let C be an elementary
circuit contained in supp(X), µ = mine∈C X(e), and X ′ = X−µC. We have
X ′(e) ≥ 0 and hence X ′ ∈ K. Since X is extremal we must have X ′ = 0
and thus supp(X) must be an elementary circuit.

Theorem 5. Let X ∈ K with integer coordinates. Then there is a collection
Q of (vectors associated with) elementary circuits such that

(5) X =
∑

C∈Q
a(C) C with a(C) ∈ N and supp(C) ⊆ supp(X).

Proof. If X is extremal there is nothing to show. Otherwise, let C be
(a vector of) an elementary circuit with supp(C) ⊂ supp(X). Set q =
min{X(e)|e ∈ supp(C)} ≥ 1 and X ′ = X − qC. We have HX ′ = 0
by linearity, X ′(e) ≥ 0, i.e., X ′ ∈ K, q ∈ N, and supp(X ′) ⊆ supp(X).
Furthermore, X ′(e) = 0 for at least one e ∈ supp(X). Hence we obtain
the desired decomposition by repeating the argument a finite number of
times.

In the following sections we will be concerned with bases of the cycle space
C. In order to simplify the language we will simply say “a circuit C” instead
of “a vector C associated with a circuit c”. Strictly speaking, this amounts
to considering equivalence classes of paths and circuits that yield the same
vector representation.
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3. Circuit Bases

Definition 1. A circuit basis is a basis of the cycle space C of G(V,A)
consisting exclusively of elementary circuits. A cycle basis is a basis of the
cycle space C of G(V,A) consisting exclusively of elementary cycles.

Lemma 2 raises the question under which conditions the circuits generate
the cycle space. This question was essentially answered by Berge [3]:

Proposition 6 [3]. A strongly connected digraph G(V, A) has a circuit
basis.

The converse of Proposition 6 is easily obtained:

Theorem 7. A digraph G(V, A) has a circuit basis if and only if each block
is either strongly connected or a single arc.

Proof. The cycle space of G(V, A) is the direct sum of the blocks of G.
Thus G(V,A) has a circuit basis if each block has a circuit basis or an empty
cycle space. The only blocks with empty cycle space are isolated vertices
and pairs of vertices that are connected by a single arc. Thus consider a
2-connected block G(V, A) that is not strongly connected. Then there is a
cut Q partitioning V into two non-empty subsets V ′ and V ′′ such that all
arcs in Q point from V ′ to V ′′. Choose an arc e ∈ Q; by 2-connectedness e is
contained in a cycle C. This cycle passes from V ′ to V ′′ and back, hence it
cannot be a circuit. Thus C does not have a circuit basis since e is contained
in a cycle but not in a circuit.

In other words, G(V, A) has a circuit basis if and only if its strongly con-
nected components are linked together in a tree-like fashion by individual
arcs or sequences of individual arcs. Because of this simple structure we
shall restrict ourselves to 2-connected digraphs from here on.

Double edges, i.e., circuits of length 2, play a special role, since they are a
major difference between graphs and digraphs. For instance, the cyclomatic
number of the underlying undirected graph is

(6)
ν(G◦) = |A◦| − |V |+ c(G◦) = |A| − d∗(G)− |V |+ c(G◦)

= ν(G)− d∗(G)

where d∗(G) denotes the number of double edges in G.
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Lemma 8. Let B◦ be a cycle basis of the undirected graph G◦, and let D(G)
be the set of double edges of G. Then B = B◦ ∪ D(G) is a cycle basis of G
with length

(7) `(B) = `(B◦) + 2|D|.

Proof. The cycles in B◦ are of course independent cycles of G. At each
double edge, we may choose one of the arcs to be part of the B◦-cycles that
contains the double edge. This shows that the double edges in D are indeed
independent of the set of B◦-cycles. Equation (6) hence implies that B is a
cycle basis of G. Equation (7) now follows immediately.

The following proposition shows that double edges are in a sense superfluous:

Proposition 9 [18]. If G(V, A) is strongly 2-edge-connected then one can
obtain a strongly connected graph G∗(V, A∗) by removing one of the two arcs
of each double edge.

The main result of this section is a variant of Proposition 6 (Berge’s
theorem).

Theorem 10. A strongly connected digraph G(V,A) has a circuit basis con-
sisting of the d∗(G) double edges and ν(G◦) proper elementary circuits.

Proof. We follow the construction of a cycle basis consisting of circuits
described in [3, Theorem 3.9] and [10] with slight modifications. Clearly
the theorem is correct for |V | ≤ 2. Suppose the assertion is correct for all
graphs with k < |V | vertices. Let c∗ = (x0, e1, x1, . . . , xh−1, eh, x0) be a
shortest circuit in G, h ≥ 2. Such a circuit exists as a consequence of strong
connectedness. Clearly, it is elementary. In particular, if G contains double
edges, we choose one of them.

Next we construct a multi-digraph G′ by replacing the circuit c∗ (with
vertex set W ) by a single vertex x∗ and by replacing each arc (y, z), y 6= W ,
z ∈ W by an arc from y to x∗ and each arc (z, y) by an arc from x∗ to y.
In particular, any double edge in G (except c∗ itself if it is a double edge)
becomes a double edge in G′. This contraction step may lead to multiple
parallel arcs incident with x∗. The resulting multi-digraph has |A|−h edges
and |V | − |W |+ 1 = |V | − h + 1 vertices, i.e., ν(G′) = ν(G)− 1.

Instead of iterating this construction immediately as in the original
proofs of Proposition 6 [3, 10] we first take care of the multiple arcs in G′.
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To this end we select one of the multiple arcs, say g; if one of them is part
of a double edge of G it gets selected first. Let Cg be a shortest circuit
through g in G′; note that if g was part of a double edge in G, then Cg is
just this double edge. We store Cg in a set C∗ and delete the arc g from G′,
obtaining a multi-digraph G′′. We repeat this procedure until, after remov-
ing q arcs, there are no further parallel arcs and we are left with a digraph
G∗. All double edges that have become part of multiple arcs in G′ are now
contained in C∗, all other double edges are passed on as double edges to G∗.

Thus G∗ has |V |−h+1 vertices and |A|−h−q edges, i.e., its cyclomatic
number is ν(G∗) = ν(G) − 1 − q. Clearly the circuits in C∗, which are
elementary by construction, are independent since each uniquely contains
one of the q removed parallel arcs. Consequently, the union C∗∗ of C∗ with
any cycle basis of G∗ consists of ν(G)− 1 independent cycles and hence is a
basis of the circuit space of the multi-digraph G′. The induction hypothesis
assumes that there is a circuit basis of G∗, hence C∗∗ can be chosen such
that it is a circuit basis of G′.

Now recall that each edge incident with x∗ in G′ corresponds to an
edge incident with a particular vertex xk ∈ W . Thus each circuit c ∈ C∗∗
is either an elementary circuit in G if it does not contain x∗ or it can be
lifted to a unique circuit ĉ in G by replacing x∗ with the vertices at which c
“enters” and “leaves” c∗ and the unique path within c∗ that connects these
two vertices. The set

(8) C = {ĉ|c ∈ C∗∗} ∪ {c∗}

contains ν(G′) + 1 = ν(G) elementary circuits, among which are all d∗(G)
double edges. Finally, consider the equation

(9)
∑

c∈C∗∗
acĈ + a∗C∗ = 0.

First we note that C∗(e) = 0 for all e ∈ A \ c∗. Thus, restricting (9) to the
arcs in A \ c∗ and using that the arcs c ∈ C∗∗ are linearly independent, we
obtain ac = 0 for all c ∈ C∗∗. Therefore a∗C∗ = 0, and C is indeed a set of
ν(G) independent circuits of G.

As a consequence of Theorem 7 we will restrict our attention in the remain-
der of this contribution to strongly connected digraphs.
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4. Minimum Circuit Bases and Relevant Circuits

For a vector Z ∈ C with integer coordinates we set

(10) |Z| =
∑

e∈A

|Z(e)|.

It follows from Theorem 5 that for all Z ∈ K with integer coordinates
there is a set Q of elementary circuits such that |Z| = ∑

C∈Q a(C)|C| with
a(C) ∈ N. Furthermore, we have |Z| ≥ |supp(Z)|, with equality if and
only if Z(e) ∈ {+1, 0,−1}, i.e., if and only if Z is an edge-disjoint union of
cycles. In particular, the elementary circuits are the minimal integer-valued
elements of K.

Lemma 11. Let B ⊂ K be a basis of C with integer coordinates. If B has
minimum length then it consists exclusively of elementary circuits.

Proof. Suppose Z is not an elementary circuit. Then it can be written in
the form (5), and |Z| > |C| for all C ∈ Q. Furthermore, we can replace Z
by one of the elementary circuits in Q. The resulting basis is strictly shorter
than B and still contains only vectors from the positive cone K with integer
coordinates. Thus B was not minimal.

Bases of the circuit space with minimum total length

(11) `(B) =
∑

C∈B
|C|

consisting of integer-valued vectors, C(e) ∈ Z, are of particular interest.

Definition 2. A minimum cycle (circuit) basis is a cycle (circuit) basis with
minimal length.

Theorem 12. Let G be strongly connected and let C be a shortest circuit
through an arc e ∈ A. Then there is a minimum circuit basis that contains
C. If C is the unique shortest circuit through e, then every minimal circuit
basis contains C.

Proof. Suppose B is a minimal circuit basis, and let e ∈ A. Set Be =
{C ∈ B|e ∈ C} and B∗ = B \ Be. Suppose C is a shortest circuit containing
e, C /∈ Be. Since B∗ ∪ {C} is obviously an independent set, there exists a
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circuit C ′ ∈ Be such that B′ = B ∪ {C} \ {C ′} is a circuit basis with length
`(B′) = `(B)+|C|−|C ′| ≤ `(B), since we have assumed |C| ≤ |C ′|. If C is the
unique shortest cycle through e we have |C| < |C ′|, and hence `(B′) < `(B),
contradicting the minimality of B. Thus C ∈ B for every minimal circuit
basis.

The argument used for the proof of Theorem 12 is the same as in the case
of minimal cycle bases of undirected graphs [21].

Corollary 13. Every minimal circuit basis B of a strongly connected digraph
contains the set D of double edges.

Proof. If e ∈ A is part of a double edge, then the double edge D = {e, e′}
is the unique shortest circuit containing e. By Theorem 12 D is an element
of every minimal circuit basis.

It is sometimes useful to consider undirected graphs as symmetric digraphs,
i.e., as digraphs in which (x, y) ∈ A implies (y, x) in A. The following result
shows that minimum cycle bases of undirected graphs and minimum circuit
bases of symmetric digraphs are essentially the same.

Theorem 14. Let G be a symmetric digraph. Then every minimum circuit
basis consists of the set D of double edges and a set B of circuits such that
B◦ = {C◦|C ∈ B} is a minimum cycle basis of the undirected graph G◦.

Proof. It follows from (6) that a minimum circuit basis of G cannot be
shorter than 2|D| + L, where L is the length of a minimum cycle basis of
G◦. Conversely, if B is a minimum circuit basis, then B \D is a set of ν(G◦)
independent proper cycles and corresponds to a cycle basis of G◦ with the
same length.

Now assume that G is symmetric, i.e., 2|D| = |A|. We will show that
every minimum cycle basis B◦ of G◦ can be lifted and extended to a circuit
basis of G with length L + |A|, which, as a consequence of the previous
paragraph must then be a minimum circuit basis. To this end we identify
each edge e of G◦ with one of the two arcs of G forming the corresponding
double edge. This amounts to lifting B◦ to the digraph G. Clearly, B∗ =
B◦ ∪ D is a basis of the cycle space with the minimum possible length.
However, the cycles C ∈ B◦ will in general not be circuits.

For each “negative” edge e, C(e) = −1, of a basis cycle C, there is a
double edge D = {e, e′} ∈ D such that either C ′ = C + D or C ′ = C −D is
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a cycle that coincides with C except for e, which is replaced by the forward
edge e′, C ′(e′) = +1. Clearly, C and C ′ have the same length and belong to
the same cycle C◦ of the undirected graph G◦. Since D is contained in B∗,
B∗∗ = B∗ ∪ {C ′} \ {C} is a basis of the cycle space with the same length.
Repeating this argument for all negative edges in C replaces the basis cycle
C with a basis circuit C+ of the same length. Note that C and C+ by
construction belong to the same cycle C◦ of G◦. We finally obtain a circuit
basis of G with length L + |A|.
The set of circuits of G(V, A) forms a matroid. A basis of the cycle space
with minimum weight can therefore be obtained by means of the greedy
algorithm [17] from the set of all circuits.

Definition 3. Let (Q, J) be a matroid on Q with the set J of independent
sets and let | . | : Q → R+ be a non-negative weight function on Q. Then A ∈
Q is | . |-relevant if there is a minimum weight basis B of (Q, J) containing A.

Definition 3 is the obvious generalization of Vismara’s relevant cycles of a
graph [23, 24].

Theorem 15. Let (Q, J) be a matroid with a non-negative weight function
| . | and C ∈ Q. Furthermore, let

I< =
{W ∈ J

∣∣|W | < |C| for all W ∈ W}
.

Then C is | . |-relevant if and only if W ∪ {C} ∈ J for all W ∈ J<.

Proof. Let A be | . |-relevant. Thus there is a minimum weight basis B
with A ∈ B. Let W be an independent set with |A′| < |A| for all A′ ∈ W.
Now suppose W ∪ {A} is dependent. Then there is an element A′′ ∈ W
such that B′ = (B \ {A}) ∪ {A′′} is again a basis. We have `(B′) < `(B)
contradicting the assumption that B has minimum weight. Hence W ∪ {A}
must be independent.

The converse implication follows directly from the applicability of the
greedy algorithm.

As an immediate consequence of Theorem 5 we may specialize Theorem 15
for circuits in the following form:

Corollary 16. A circuit is relevant if and only if it cannot be written as
linear combination of shorter circuits.
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We can now use Vismara’s approach [24] to extract the set R| . | of | . |-
relevant matroid elements by means of the modified greedy Algorithm 1
from Q.

Algorithm 1. R-Greedy [24]
Input: (Q, J), | . |
Output: R /∗ Set of | . |-relevant elements. ∗/

1. Sort Q by weight: {A1, A2, . . . , Am}; /∗ A1 with minimal weight. ∗/
Add A0, Am+1 with |A0| = 0 and |Am+1| = ∞;

2. B< ← ∅; B= ← ∅; R= ← ∅; R ← ∅;
3. for k = 1 to m + 1 do

4. if |Ak| > |Ak−1| then

5. R← R∪R=; B< ← B< ∪ B=;
6. R= ← {Ak}; B= ← {Ak};
7. else

8. if {Ak} ∪ B< ∈ J then

9. R= ←R= ∪ {Ak};
10. if {Ak} ∪ B< ∪ B= ∈ J then

11. B= ← B= ∪ {Ak};
In practice the test for linear independence X ∈ J is performed e.g. by
Gauss-Jordan elimination. In order to reduce the computational effort we
therefore compute a minimal basis B “on the fly”.

Lemma 17. Algorithm 1, R-Greedy, works.

Proof. For a set Z let us write Z<w = {A ∈ Z∣∣ |A| < w}, and let B
be a minimum weight basis. Then A is a relevant element if and only if
B<|A| ∪ {A} ∈ J, since we can order Q such that A is the first element with
weight |A| in the prescribed order.

Algorithms for listing all circuits of a digraph are available, see e.g. [15, 19].
The number of circuits in a digraph G(V, A) may be very large, however.
The straightforward application of the greedy algorithm or of Algorithm 1
to the set of all circuits will therefore not be feasible in most cases. In the
case of undirected graphs one can drastically reduce the initial set of cycles
[2, 14, 24]. In the following section we consider similar constructions for
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circuits in digraphs. The main difference is that in the undirected graph one
can work over GF (2) and explicitly use the vector addition of cycles. Here
we have the additional problem that the sum of circuits is in general not a
circuit.

5. Short Circuits

Definition 4. A circuit C is isometric if for any two of its vertices x and y
it contains a shortest path from x to y and a shortest path from y to x.

A circuit C is short if for any two of its vertices x and y it contains a
shortest path from x to y or a shortest path from y to x.

A circuit C is strictly arc-short if for each x in C there is an arc ex =
(v, w) such that C = P [w, x]+P [x, v]+ (v, w) where P [w, x] and P [x, v] are
shortest paths.

A circuit C is arc-short if C contains a vertex x and an arc e = (v, w)
such that C = P [w, x]+P [x, v]+(v, w) where P [w, x] and P [x, v] are shortest
paths.

Lemma 18. Every isometric circuit is short. A circuit C is short if and
only if it is strictly arc-short. Every short circuit is arc-short.

Proof. It follows directly from the definition that an isometric circuit is
short. For two distinct vertices x 6= y in C, we denote the path from x to
y in C by C[x, y]. Furthermore, we write S[x, y] for a path from x to y in
G that is shorter than C[x, y] provided such a path exists. We call S[x, y] a
shortcut from x to y. In this case S[x, y]∪C[y, x] is a closed path and hence
a linear combination of shorter circuits.

Suppose C is short. First we note that in this case there cannot be a
vertex x in C such that there are two vertices y, y′ in C and shortcuts S[x, y]
and S[y′, x]. Hence we have to consider three cases for each vertex x in C:
(i) There is no shortcut to or from x in C. Then we may choose any arc

e = (u, v) in C and see that C[x, u] and C[v, x] are shortest paths.
(ii) There is a shortcut from x to some y in C, see the l.h.s. of Figure 1.

Then there is also a shortcut S[x,w] from x to every vertex w in C[y, x]
(via S[x, y]). We can choose y such that it is maximal in the sense that
there is no shortcut S[x,w] for all w 6= y in C[x, y]. Necessarily there
is an arc e = (z, y) ∈ C[x, y]. Hence C[x, z] is a shortest path. Since C
is short C[y, x] must be a shortest path and the proposition follows.
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(iii) There is a shortcut from some y in C to x, see the r.h.s. of Figure 1.
This implies that there is a shortcut S[w, x] for all w in C[x, y]. Again
we choose y maximal in the sense that there is no shortcut from w to
x for all w 6= y in C[y, x]. Then there is an arc e = (y, z) ∈ C[y, x]. If
C[x, y] is not a shortest path then there is a shortcut S[x, y] and C is
not short.

x

y

e

x

y

z z

Figure 1: Cases (ii) and (iii) of Lemma 18. For details see text.

Conversely, suppose C is not short. We show that C is not strictly arc-short.
If C is not short then there are two vertices x 6= y in C such that there are
two shortcuts S[x, y] and S[y, x]. Now suppose there is an arc (u, v) ∈ C such
that there is neither a shortcut S[x, u] nor a shortcut S[v, x]. Since there is
a shortcut S[x, y] there are also shortcuts S[x, y′] for all y′ in C[y, x]. Thus
u cannot lie in C[y, x]. Similarly, there is a shortcut S[y′, x] for all y′ in
C[x, y] and hence v cannot be in C[x, y]. Hence u must be in C[x, y] \{x, y}
and v must be in C[y, x] \ {x, y}. Thus there cannot be an arc from u to v
in C.

Finally, a strictly arc-short circuit is trivially arc-short.

In undirected graphs, where a path from x to y is a path from y to x, a short
cycle is trivially isometric. In directed graphs, a circuit is isometric if for all
pairs of vertices x, y ∈ c the distance along the circuit equals the directed
distance in G, i.e., dc(x, y) = d(x, y). In general, short circuits therefore are
not isometric, as the graph G1 in Figure 2 shows.

We observe that a double edge is obviously isometric. However, not all
strongly connected digraphs have cycle bases consisting of isometric circuits.
The graph G2 in Figure 2 serves a counter-example. Arc-short circuits are
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useful because they can be constructed rather easily. In analogy to the
undirected case only short circuits can be part of a minimum circuit basis.

x

y

z

1 2

3

4

5

G1 G2

Figure 2. The graph G1 has ν = 4−3+1 = 2. The only circuits are the double edge
D = (x, z) and the triangle T = (x, y, z) which is not isometric since dT (x, z) =
2 < d(x, z) = 1. However, T is short, since for any two points, a shortest path in
one of the two directions runs along T .

The pentagon in G2 is not short since there are shortcuts S[3, 5] and S[5, 3].
It is arc-short, however, because it consists of the arc (2, 1) and the shortest paths
P [1, 4] and P [4, 2].

Theorem 19. If C is relevant then C is short.

Proof. Suppose C is contained in a minimum circuit basis and it is not
short. Then there are two vertices x and y in C such that C contains neither
a shortest path S[x, y] from x to y nor a shortest path S[y, x] from y to x. As
above, we write C[x, y] and C[y, x] for the paths from y to x and from x to y
along C, respectively. Note that C1 = C[x, y]+S[y, x], C2 = S[x, y]+C[y, x],
and C3 = S[x, y] + S[y, x] correspond to closed paths in G and by Lemma 2
each of them can be written as a (positive) linear combination of circuits
none of which is longer than C1, C2, or C3, respectively. By assumption we
have |Ci| < |C|, for i = 1, 2, 3. From

C = C[x, y] + C[y, x] = C1 + C2 − C3

we find that C itself can be written as a linear combination of circuits, all of
which are strictly shorter than C itself. Thus C is not relevant by Corollary
16, a contradiction.
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Theorem 19 is the direct generalization of the analogous result for undirected
graphs [11, 14]. The notion of short circuits, however, appears to be weaker
in directed graphs than in their undirected counterparts.

6. A Polynomial Time Algorithm for Minimum
Circuit Bases

The discussion in the previous section suggests a simple generalization of
Horton’s algorithm [14] to minimal circuit bases:

(1) Find a shortest path S[x, y] between any two vertices x and y;
(2) from each (x, y) ∈ A and z ∈ V construct an arc-short circuit

Cxy,z = (x, y) + S[y, z] + S[z, x] and
(3) use the greedy algorithm to extract a basis.

This procedure works in the undirected case since one can show that any
choice of a — usually not unique — shortest path S[x, y] will work [14]. The
ideas behind the proof of this result, however, are not applicable to paths
in digraphs.

We may, however, exploit a trick used e.g. in [12], namely perturbing
the arc weights by a small amount in such a way that no distinct subsets of
A have the same weight. Then the greedy algorithm can select the unique
minimal weight basis from the set of arc-short cycles that can be constructed
unambiguously because the shortest path S[x, y] from x to y is unique. If the
perturbation of the weights is small enough, then the weight of a basis B is
arbitrarily close to the unperturbed weight. Therefore the unique minimum
weight basis of the perturbed version is indeed one of the minimum weight
bases of the unperturbed problem.

It is easy to see that a perturbation with the desired properties indeed
exists. For instance, we label the arcs in some prescribed order by the
positive integers #e = 1, . . . , |A| and then set w(e) = 1 + ε3−#e, 0 < ε ¿ 1.
For ε < (|A||V |)−1 the difference between the length `(B) and the perturbed
length w(B) of the basis B is smaller than 1, hence the minimum weight basis
is indeed a minimum circuit basis.

In practice, the weighting scheme is of course numerically problematic.
It can, however, be replaced by a suitable lexicographic ordering of the arc
sets.
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Theorem 20. The complexity of computing a minimum circuit basis is at
most O(ν(G)|A|2|V |).

Proof. The collection of all shortest paths S[x, y] can be obtained e.g. by
a variant of Dijkstra’s or Floyd’s algorithm in O(|V |3) operations, see e.g.
[22]. There are at most O(|A||V |) arc-short circuits. Testing whether a
candidate circuit is elementary can be done in O(|V |) steps, this stage re-
quires O(|A||V |2) operations. Since |A| ≥ |V | this is less expensive than
O(|A|2|V |). The greedy algorithm requires at most O(|A||V |) tests for lin-
ear independence: each arc-short circuit must be tested against a partial
basis which contains at most O(ν(G)) circuits. Gauss elimination thus re-
quires O(|A|ν(G)) operations for each arc-short circuit. Hence the worst
case requirement is O(|A|2|V |ν(G)).

As in the case of minimum cycle bases of undirected graphs [14] we expect
that the algorithm performs much better for most graphs than the worst
case estimate of Theorem 20 suggests.
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