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Abstract

We consider classes of graphs that enjoy the following properties:
they are closed for gated subgraphs, gated amalgamation and Cartesian
products, and for any gated subgraph the inverse of the gate function
maps vertices to gated subsets. We prove that any graph of such
a class contains a peripheral subgraph which is a Cartesian product
of two graphs: a gated subgraph of the graph and a prime graph
minus a vertex. Therefore, these graphs admit a peripheral elimination
procedure which is a generalization of analogous procedure in median
graphs. We characterize regular graphs of these classes whenever they
enjoy an additional property. As a corollary we derive that regular
weakly median graphs are precisely Cartesian products in which each
factor is a complete graph or a hyperoctahedron.
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1. Introduction

Classes of graphs that are regarded as median-like usually admit an elimi-
nation procedure. The first result of this type and a model for several oth-
ers was an expansion procedure for median graphs due to Mulder [11, 12],
cf. [9, 10]. Later a similar concept of gated amalgamation procedure was
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generalized to several median-like classes [2, 4, 5, 8]. Gatedness is a strong
condition that can be used in a quite general setting [15], and amalgamation
concepts appear to be useful also in other branches of graph theory, cf. [6].

All graphs considered in this paper are undirected, simple and finite.
A subset U of the vertex-set V (G) of a graph G is called gated if for every
x ∈ V (G) there exists a vertex u in U such that for any v ∈ U, u lies on a
shortest path from x to v. If, for some x, such a vertex u in U exists, it is
unique, and is called the gate αU (x) of x in U . Note that αU (x) is always the
closest to x among vertices of U . A subgraph of G induced by a gated subset
is called a gated subgraph of G. Clearly for any graph G its singletones and
G itself are gated subgraphs (which we call trivial gated subgraphs). For
each gated subset U the mapping αU : V (G) → U which maps x to αU (x)
will be called the gate function with respect to U .

Now, a graph G is said to be the (gated) amalgam of two gated subgraphs
G′, G′′ if G′ ∪G′′ = G, G′ ∩G′′ 6= ∅, and there are no edges between G′−G′′

and G′′ − G′. Note that G′ ∩ G′′ is also a gated subgraph. In other words,
we say that G is obtained by an amalgamation along the common gated
subgraph G′ ∩ G′′ of G′ and G′′.

The Cartesian product G = G1 G2 . . . Gk of graphs G1, G2, . . . , Gk

has the set of vertices V (G) = V (G1)×V (G2)×. . .×V (Gk), and two vertices
u = (u1, u2, . . . , uk), v = (v1, v2, . . . , vk) of G are adjacent if there exists j
(1 ≤ j ≤ k) such that ujvj ∈ E(Gj) and ui = vi for all i ∈ {1, 2, . . . , k}\{j}.
By πGi

we denote the natural projection to a factor Gi, that is πGi
(u) = ui.

It seems reasonable to require that a median-like class enjoys the fol-
lowing properties:

(G) closed for gated subgraphs,

(A) closed for gated amalgamations,

and often we wish the class to be

(C) closed for Cartesian multiplication.

Another interesting property is shared by several median-like classes:

(I) inverses of gate functions are gated, that is α−1

H (x) is a gated subset
for any gated subgraph H and any x ∈ V (H).

We say that a class of graphs A is a GACI class if it enjoys the above
four properties. Property (I) is characteristic for fiber-complemented graphs
as introduced by Chastand [8]. (Alternatively, a graph enjoys (I) if for
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any gated subgraph K of H a subgraph induced by α−1

H (V (K)) is gated.)
Hence any GACI class is a subclass of fiber-complemented graphs. Moreover,
fiber-complemented graphs are a GACI class in our sense, cf. [8]. Another
two examples of GACI classes are quasi-median and weakly median graphs,
cf. [2, 5].

A graph G of a GACI class A is called prime if it cannot be represented
as a Cartesian product of two smaller graphs of A nor as a gated amalgam
of two such graphs. It was proved in [8] that the following property of a
class of graphs A

(P) for any prime graph G of A the only gated subgraphs in G are the
trivial ones,

is characteristic for fiber-complemented graphs. Hence, alternatively we
could say that A is a GACI class of graphs if it enjoys properties (G), (A),
(C) and (P).

In the following section we prove that a GACI class admits a special
amalgamation procedure by which we obtain any graph of this class from
Cartesian products of prime graphs, where this procedure is performed in
an arboreal (alias tree-like) way. More precisely, for any gated subgraph W
of such a graph, G −W contains a so-called peripheral subgraph which is a
Cartesian product of a prime graph minus a vertex with a gated subgraph
of G. The corresponding procedure is a generalization of the peripheral
elimination procedure in median graphs where peripheral sets (the so-called
sets Uab) can be contracted in each step [13], see also [9, 10]. In Section 3 we
characterize regular graphs of a GACI class that has an additional (weak)
property; that is, we prove that they are precisely Cartesian products of
regular prime graphs of this class. As a corollary regular weakly median
graphs are characterized as Cartesian products, of which each factor is a
complete graph or a hyperoctahedron. Finally, we rediscover regular pseudo-
median graphs [3].

2. Arboreal Structure

Unless stated otherwise a graph will always mean a connected graph. Let
G be a graph of a GACI class A. A subgraph U of G is called peripheral
if there exist graphs G′, G′′,H and a prime graph P of A such that G is a
gated amalgam of G′ and G′′ along H, where G′ ∼= H P and U = G′ − H.
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Note that a peripheral subgraph does not necessarily belong to A, although
by a removal of a peripheral subgraph we obviously get a smaller graph
from A, namely G′′. Clearly, if G is a gated amalgam of two boxes (a box is
a Cartesian product of prime graphs) then it contains at least two peripheral
subgraphs.

On the left-hand side of Figure 1 a graph G that is a gated amalgam of
G′ and G′′ is shown schematically. On the right-hand side of the figure G′ is
depicted as a Cartesian product of a prime graph P (isomorphic to K4 − e)
and a gated subgraph H (isomorphic to P4). In this example the peripheral
subgraph is isomorphic to P4 K3.

Figure 1. A periphery of a graph

One of the basic properties of gated subgraphs is that the intersection of
two such subgraphs is also gated. Another result is also a straightforward
consequence of the definition.

Lemma 2.1. Let A,B,C be graphs such that B is a gated subgraph of A
and C is a subgraph of B. Then C is gated in B if and only if C is gated
in A.

The following easy result can be found in [14] or [7].

Lemma 2.2. Let G = G1 · · · Gl be a Cartesian product of connected
graphs. Then K is gated in G if and only if K = K1 . . . Kl, where each
Ki is gated in Gi.
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From now on we shall use a simplified notation to avoid too many symbols.
That is, a symbol for a set of vertices will occasionally mean a graph induced
by these vertices, and a symbol for a graph will in some cases stand also for
the set of its vertices.

Let G be a connected graph. A subset X of the vertex-set V (G) is a
cutset of G if G − X is a disconnected graph.

Lemma 2.3. Let X be a cutset of G. Then X induces a gated subgraph if
and only if G is an amalgam of gated subgraphs along the subgraph induced
by X.

Proof. Indeed if G is a gated amalgam of two subgraphs, such that their
intersection is induced by the vertices of X, then X is obviously a gated
cutset.

Conversely, if X is a gated cutset, let H1, . . . ,Hk be the connected
components of G − X. We first prove that each Hi ∪ X =: Gi is a gated
subgraph. Let u be a vertex of G−Gi. As X is gated there exists a unique
vertex αX(u) ∈ X which lies on a shortest path from u to any vertex v ∈ X.
Let w ∈ Hi. As X is a cutset there exists a vertex x ∈ X which lies on a
shortest path from u to w. Since αX(u) lies on a shortest path from u to x, it
also lies on a shortest path from u to w. In other words αGi

(u) = αX(u). We
easily conclude that G is an amalgam of two gated subgraphs, for instance
H1 ∪ X and H2 ∪ . . . ∪ Hk ∪ X.

Lemma 2.4. Let G be a gated amalgam of G1, G2 along G0, and X0 a cutset
of G1. If X0 ∩ G0 6= ∅, then α−1

G0
(X0 ∩ G0) is a cutset of G.

Proof. As X0 is a cutset of G1, there exist distinct components X1, X2 of
G1 −X0. Suppose that α−1

G0
(X0 ∩G0) is not a cutset of G. Then there must

be path P in G between vertices of X1 and vertices of X2. Clearly, there is no
such path lying entirely in G1, thus P goes through G2−G0. Hence X1∩G0,
X2 ∩G0 are both nonempty, thus X0 ∩G0 is a cutset of G0 Thus there exist
consecutive vertices x, y on P that belong to G2−G0 such that αG0

(x) ∈ X1

and αG0
(y) ∈ X2. Moreover, d(αG0

(x), x) = d(αG0
(y), y) =: k because x and

y are adjacent. As αG0
(x) is a gate for x in G0, it lies on a shortest path from

x to αG0
(y). Thus k+1 = d(x, αG0

(y)) = k+d(αG0
(x), αG0

(y)). This implies
the adjacency of αG0

(x) and αG0
(y) which contradicts the assumption that

they are in different components of G1 − X0.
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Lemma 2.5. Let G be a gated amalgam of G1, G2 along G0. Then a sub-
graph H of G is gated if and only if either

– H is a gated subgraph of G1 − G0, or

– H is a gated subgraph of G2 − G0, or

– H ∩G1 is a gated subgraph of G1 and H∩G2 is a gated subgraph of G2.

The latter gated subgraph H is contained in a subgraph of G induced by
α−1

G0
(H ∩ G0).

Proof. Let G be a gated amalgam of G1, G2 along G0, and suppose that H
is gated in G. If H has no vertices in G0 then obviously one of the first two
possibilities occurs. If H has a vertex in G0 then without loss of generality
it is enough to prove that H ∩ G1 is a gated subgraph of G1.

Suppose H ∩ G1 is not gated in G1. Then there exists a vertex x ∈
V (G1) for which there is no gate in H ∩ G1. Since G1 is gated, it is convex
(that is, every shortest path between vertices of G1 lies in G1), hence x does
not have a gate in H also with respect to G, a contradiction with H being
gated.

Now the proof of the converse. For the first two cases note that by
Lemma 2.1 a gated subgraph of Gi − G0 is also gated in G. For the last
case it is enough to prove that a vertex x ∈ V (G1) has a gate in H. We
claim that αH(x) is the same as the gate for x in H∩G1 which exists by the
gatedness of H ∩ G1. Let u be a vertex in (G2 − G0) ∩ H. As G2 is gated,
αG2

(x) lies on a shortest path from x to u. If αG2
(x) ∈ H then αH∩G1

(x)
lies on a shortest path from x to αG2

(x), and we are done. If αG2
(x) /∈ H

then αH(αG2
(x)) ∈ G0 and clearly it is equal to αH∩G1

(x). Thus H is a
gated subgraph of G.

The last sentence of the theorem follows from the fact that gated sub-
graphs are convex. Indeed, suppose that x ∈ H ∩ (G1 − G0) and x /∈
α−1

G0
(H ∩ G0). Then αG0

(x) /∈ H hence every shortest path from x to
vertices of H ∩ G0 would contain a vertex outside H, a contradiction to
convexity of H.

The following lemma implies the main result.

Lemma 2.6. Let A be a GACI class, G a graph of A which is not a box,
and W a proper gated subgraph of G. Then G − W contains a peripheral
subgraph of G.
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Proof. We prove this by induction on the number of vertices of G. Let G
be a gated amalgam of G1, G2 along G0, and W a gated subgraph of G. By
Lemma 2.5, W can be one of the three types of subgraphs.

Case 1. W is in G1 or G2.
We may assume without loss of generality that W is in G1. Hence W is
disjoint with G2 −G0. Suppose first that G2 is not a box. As G2 is smaller
than G, the claim holds in G2. Hence G2−G0 contains a peripheral subgraph
which is clearly in G − W , and which is obviously peripheral also in G. If
G2 is a box then G0 is also a box, a subproduct of G2 (using Lemma 2.2).
Obviously then G2 −G0 contains a peripheral subgraph and we are done in
this case.

Case 2. W contains vertices of G1 − G0 and G2 − G0.

By Lemma 2.5, W is a gated amalgam of gated subgraphs W1 and W2 along
W0 where Wi = W∩Gi for i = 0, 1, 2. By the last statement of this lemma W
is a subgraph of α−1

G0
(W0). Moreover, as we need to prove the existence of a

peripheral subgraph in G−W , it is enough to prove that there is a peripheral
subgraph in a complement of the whole α−1

G0
(W0) (which is gated by (I)).

So we may assume that W is equal to α−1

G0
(W0). As G1 is smaller than G,

there exists a peripheral subgraph U1 in G1 which is disjoint from W1. By
definition of peripheral subgraphs there exist gated subgraphs H1,H

′

1,H
′′

1

of G1, and a prime graph P, such that G1 is a gated amalgam of H ′

1 and
H ′′

1 along H1, where H ′

1 ' H1 P and U1 = H ′

1 − H1. If H1 ∩ G0 = ∅
then U1 is peripheral also in G and the proof is done. So let us assume
that H1 ∩ G0 6= ∅. As H1 ∩ G0 is gated in G, the set α−1

G0
(H1 ∩ G0) induces

a gated subgraph of G. By Lemma 2.4, the set α−1

G0
(H1 ∩ G0) is a cutset

of G (because H1 induces a cutset of G1 and H1 ∩ G0 6= ∅). Hence using
Lemma 2.3 we derive that G is a gated amalgam of two gated subgraphs
along their intersection α−1

G0
(H1 ∩ G0). As U1 ∩ W1 = ∅, one of these two

gated subgraphs obviously contains W = α−1

G0
(W0), so this case is reduced

to Case 1, and the proof is complete.

Theorem 2.7. Every graph of a GACI class can be reduced to a box (Carte-
sian product of prime graphs) by a succesive removal of peripheral subgraphs.

Note that this operation is a generalization of the removal of pendant vertices
in trees. Moreover by Lemma 2.6 we can start the procedure of removals
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with any peripheral subgraph in any part of G with a gated complement,
by which the name arboreal structure of these graphs is justified.

The inverse operation of the removal of peripheral subgraphs is closely
related to the peripheral expansion for median graphs as defined by Mul-
der [13]. In fact it is its generalization, so let us formulate it explicitly (we
prefer a term peripheral amalgamation here). Let G be a graph of A, and H
a gated subgraph of G. Then the peripheral amalgamation of G with respect
to H and a prime graph P of A is the graph obtained as amalgam of G and
H P along their common gated subgraph H.

Corollary 2.8. A graph G belongs to a GACI class A if and only if G can be
obtained from K1 by successive peripheral amalgamations from prime graphs
of A.

3. Regular Graphs of Median-Like Classes

Lemma 3.1. Let G and H be graphs and G H the Cartesian product of G
and H. Then G H is regular if and only if G and H are regular.

Proof. Obviously, the degree of a vertex of G H is the sum of degrees of
its coordinate vertices. Let G H be regular and x = (x1, x2) ∈ G H with
deg(x1) = k,deg(x2) = l. Hence for any a ∈ H, the vertex (x1, a) must have
degree k + l, hence deg(a) = l. The converse is obvious.

By assuming an additional (weak) condition for a GACI class we can nicely
characterize regular graphs of such a class.

Theorem 3.2. Let A be a GACI class of graphs such that for any prime
graph P

(R) if |V (P )|−1 vertices have the largest degree in P , then P is regular.
Then the subclass of regular graphs of A consists precisely of the Cartesian
products of regular prime graphs.

Proof. Clearly, the Cartesian products of regular prime graphs of a GACI
class A are regular graphs of A.

For the proof of the converse let G be a regular graph of the GACI class
A enjoying (R). If G is a box then by Lemma 3.1 it is regular only if its
factors (prime graphs) are regular. Thus we may assume that G is not a box.
Then by Lemma 2.6, G contains a peripheral subgraph U . Thus there exist
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gated subgraphs H,H ′,H ′′ of G and a prime graph P such that G is a gated
amalgam of H ′ and H ′′ along H, where H ′ ' H P and U = H ′ − H. By
looking at H ′ as the Cartesian product of H and P , set λ = πP (x), where x
is a vertex of H ′ ∩ H ′′. Suppose H is not regular. Then there exist vertices
a, b ∈ U, such that πP (a) = πP (b) 6= λ, which have different degrees in G,
contrary to the assumption that G is regular. Hence H must be regular,
and from the same reason all vertices in P − λ must have the same degrees.
Thus using (R) we derive that P is either regular or λ is the unique vertex
with the largest degree in P . But then observe that the vertices of H are
adjacent to vertices of G − H ′, thus G is not regular, a contradiction.

Bandelt and Chepoi introduced weakly median graphs as a common general-
ization of quasi-median and pseudo-median graphs. Unlike pseudo-median
graphs, weakly median graphs are closed for the Cartesian product oper-
ation, and as both classes they are also closed for gated amalgamation.
Moreover, they are a GACI class in our sense, as it is shown in the following
characterization from [2].

Theorem 3.3. A nontrivial graph G is a weakly median graph if and only if
it can be obtained by successive gated amalgamations from Cartesian prod-
ucts of the following prime graphs: complete graphs with 2 vertices, 5-wheels,
induced subgraphs (which contain a K4 or an induced 4-wheel) of hyperocta-
hedra, and 2-connected K4- and K1,1,3-free bridged graphs. The latter bridged
graphs are exactly the graphs which can be realized as plane graphs such that
all inner faces are triangles and all inner vertices have degrees larger than 5.
A weakly median graph is prime if and only if it does not have any proper
gated subgraphs other than singletones.

Recall that a hyperoctahedron (alias a cocktail party graph) is a graph on 2n
vertices, obtained from a complete graph K2n by deletion of edges forming
a perfect matching. A graph is bridged [1, 6] if it does not contain any
isometric (distance preserving) cycle of length greater than 3, that is each
cycle of length greater than 3 has a shortcut.

In the aim of applying Theorem 3.2 to weakly median graphs the only
remaining question is whether prime weakly median graphs enjoy also the
property (R). This is trivial in the case of regular prime weakly median
graphs (these are precisely all complete graphs on at least two vertices and
all hyperoctahedra on at least 6 vertices). The property is also obvious for
wheels. On the other hand, if P is an induced subgraph of a hyperocta-
hedron and is not regular then note that it has at least two vertices with
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not maximum degree (these are any two vertices of this graph which are
not adjacent). Finally, it is straighforward to check that the bridged graphs
introduced in Theorem 3.3 also enjoy (R) (by [2, Lemma 7] there are at
least two vertices of degree 2 or 3, and except for K3 and K4 − e all graphs
of this type have at least one vertex of degree at least 4). Combining these
observations with Theorem 3.2 we derive

Corollary 3.4. A graph G is a regular weakly median graph if and only if
G = G1 · · · Gk, k ≥ 1, where each Gi is a hyperoctahedron or a complete
graph.

From Corollary 3.4 we easily rediscover a characterization of regular pseudo-
median graphs due to Bandelt and Mulder [3]. Recall that a pseudo-median
graph is indecomposable (with respect to gated amalgamation) if and only
if it is a Cartesian product Qn H, where H is either a wheel, or a snake,
or an induced subgraph of a hyperoctahedron, cf. [4] (note that snakes are
bridged graphs introduced in Theorem 3.3 with no inner vertices).

Corollary 3.5. A graph G is a regular pseudo-median graph if and only if
G is Qn H for n ≥ 0 where H is either a hyperoctahedron or a complete
graph.
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