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Abstract

A well-known theorem of Hajós claims that every graph with chro-
mathic number greater than k can be constructed from disjoint copies
of the complete graph Kk+1 by repeated application of three simple
operations. This classical result has been extended in 1978 to colorings
of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs
by S. Gravier. In this note, we capture both variations to extend Hajós’
theorem to list-colorings of hypergraphs.
Keywords: list-coloring, Hajós’ construction, hypergraph.
2000 Mathematics Subject Classification: 05C15, 05C99.

1. Introduction

In 1961, Hajós [5] gave a construction of the graphs that are not k-colorable.
The construction uses the following simple operations:
(1) Add a new vertex or edge.
(2) Let G1, G2 be two vertex-disjoint graphs, and a1b1 and a2b2 be edges

in G1 and G2, respectively. Make a graph G from G1 ∪G2 by deleting
the edge aibi from Gi (for i = 1, 2), identifying a1 and a2 (the resulting
vertex is called a1a2), and adding a new edge b1b2 (see Figure 1).

(3) Identify two non-adjacent vertices.

a1

b1

G1 G2

G

b2

a2

a2a1

b1 b2

Figure 1. Operation (2)
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Theorem 1.1 (Hajós). Every non-k-colorable graph can be constructed by
operations (1)− (3) from disjoint copies of the complete graph Kk+1.

This classical result has been extended to colorings of hypergraphs by Ben-
zaken [1, 2] and to list-colorings of graphs by Gravier [4]. In this note we
capture both variations to extend Hajós’ theorem to list-colorings of hy-
pergraphs. However, Zhu [8] gave an analogue of Hajós’ theorem for the
circular chromathic number. Recently, the classical result was extended by
Mohar [6] in three slightly different ways to colorings and circular color-
ings of edge-weighted graphs (enhancing the channel assignment problem as
well). Moreover, it is mentioned in [6] that one of these extensions sheds
some new light on the fact that today no nontrivial application of Hajós’
theorem is known.

2. Hajós’ Theorem for List Colorings of
Hypergraphs

In a hypergraph H, the set of vertices and the set of hyperedges are denoted
by V (H) and E(H), respectively. Given a hypergraph H, a k-coloring of
the vertices of H is a mapping c : V → {1, 2, . . . , k} such that for every
hyperedge e of H there exist two vertices x, y ∈ e with c(x) 6= c(y), or
shortly |c(e)| ≥ 2. A hypergraph H is k-colorable if it admits a k-coloring,
and the chromatic number of H is the smallest integer k such that H is
k-colorable.

Vizing [7] and independently Erdős, Rubin, and Taylor [3] introduced
the concept of list colorings. This concept can be naturally extended to
hypergraphs in the following way. Suppose that each vertex v is assigned a
list L(v) of possible colors; we then want to find a vertex-coloring c such that
c(v) ∈ L(v) for all v ∈ V (H). In the case where such a coloring exists we
will say that the hypergraph H is L-colorable; we may also say that c is an
L-coloring of H. Given an integer k, the hypergraph H is called k-choosable
if it is L-colorable for every assignment L that satisfies |L(v)| ≥ k for all
v ∈ V (H). Finally, the choice number or list-chromatic number χl(H) of H
is the smallest k such that H is k-choosable.

Concerning the problem of coloring the hypergraphs, without loss of gen-
erality, we can restrict ourselves to hypergraphs with the Sperner property,
i.e., no hyperedge contains (as a subset) another hyperedge in a hypergraph.
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Indeed, if we have a coloring c of a hypergraph H and e, f are hyperedges
of H with e⊆ f , then condition |c(e)| ≥ 2 implies that |c(f)| ≥ 2. In all
of our constructions given below, by deleting the superfluous hyperedges of
the newly constructed hypergraph, we may assume that it has the Sperner
property.

In order to obtain Hajós’ theorem for list colorings of hypergraphs, we
will use the following operations:

(H1) Add a new hyperedge (possibly with new vertices) or a new isolated
vertex in a hypergraph H. The new hypergraph obtained by adding
a new hyperedge e is denoted by H ∨ e.

(H2) Let H1,H2 be two vertex-disjoint hypergraphs, and e1 and e2 be hy-
peredges in H1 and H2, respectively. Also, let a1 ∈ e1 and a2 ∈ e2.
Make a new hypergraph H from H1 ∪H2 by deleting the edge ei from
Hi (for i = 1, 2), identifying a1 and a2 (the resulting vertex is called
a1a2), and adding a new hyperedge e1 \ {a1} ∪ e2 \ {a2} ∪ {a1a2}.

(H3) If H is not L-colorable for some assignment L with |L(x)| ≥ k for each
x ∈ V (H), then identify two vertices u and v of H with L(u) = L(v)
into a new vertex uv. After this, if there are two hyperedges e, e′ of
H with e′ ⊆ e then remove e.

Notice that if H1 and H2 have the Sperner property then the hypergraph
obtained from H1 and H2 by operation (H2) also has the Sperner property.
Regarding the operation (H3), every hyperedge e which contains u or v is
replaced by e\{u, v}∪{uv}. Moreover remark that one could apply operation
(H3) to two adjacent vertices u, v. The second step of (H3) guarantees to
preserve Sperner Property.

Theorem 2.1. A hypergraph H can be constructed by operations (H1) –
(H3) from disjoint copies of any bipartite graph with choice number equal to
k + 1 if and only if χl(H) ≥ k + 1 ≥ 2.

Proof. Note that introducing a new vertex or a new hyperedge in a given
hypergraph does not decrease the choice number. The same holds if we
identify two (non-)adjacent vertices under the assumption of operation (H3).

Next we will show that the class of non-k-choosable hypergraphs is
closed under operation (H2). We use the same notation as in its description.
For i = 1, 2, since Hi is not k-choosable, there exists an assignment Li with
|Li(v)| = k for all v ∈ V (Hi) and such that Hi is not Li-colorable. We may
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assume that L1(a1) = L2(a2) by a suitable permutation of the colors. Now,
we create a list assignment L of V (H) by setting L(v) = Li(v) for v ∈ V (Hi).
We claim that H is not L-colorable. Indeed, suppose that there is an L-
coloring c of H. Then, |c(e1 ∪ e2)| ≥ 2. Moreover c(a1a2) = c(a1) = c(a2),
which implies that either |c(e1)| ≥ 2 or |c(e2)| ≥ 2. Therefore, c is either an
L1-coloring of H1 or an L2-coloring of H2, a contradiction. Since |L(v)| = k
for all v ∈ V (H), this shows that H is not k-choosable.

Thus, the only if part of the theorem is established. To prove the if part,
we will prove first that every non-k-choosable hypergraph can be obtained
by (H1) – (H3) starting with (hyper)graphs from the family of complete
multipartite graphs with choice number k + 1.

So, assume that this is false and that there exists a counterexample.
By operation (H1), we may assume that there is such a counterexample H
having Sperner Property. Then, there exists an assignment L with |L(v)| =
k for all v ∈ V (H) such that H is not L-colorable.

If χl(H) = ∞, then it contains a hyperedge with precisely one vertex.
In that case, starting with Kk+1 use (H3) to construct a hypergraph with a
single vertex and a single hyperedge, and afterwards use (H1) to obtain H.
Now, we may assume that the choice number of H is finite.

Define a relation ¹ on the hypergraphs whose set of vertices is V (H),
in the following way:

Ha ¹ Hb if and only if ∀ea ∈ E(Ha) ∃eb ∈ E(Hb) such that eb ⊆ ea.

Obviously, ¹ is a transitive and reflexive relation. By the Sperner property,
it follows that this relation is also antisymmetric. So, it is a partial ordering.
We say that Hb is greater than Ha (with respect to the relation ¹). Note
that if Ha is non-k-choosable, then Hb is also non-k-choosable.

According to the partial order ¹, we may assume that H is as great
as possible hypergraph regarding ¹ (which is still not constructible). Thus,
every greater hypergraph than H is constructible.

In what follows, we will prove that for any independent sets I1, I2 of H
with non-empty intersection, the set I1∪I2 is also independent in H. (Recall
that a set is independent if it contains no hyperedge as a subset.) Consider
the hypergraphs H ∨ I1 and H ∨ I2. Since I1, I2 are independent, we infer
that H ¹ H ∨ Ii and H 6= H ∨ Ii for i = 1, 2. So, it follows that these
two hypergraphs can be constructed from complete multipartite graphs by
operations (H1) – (H3).
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Let H1 and H2 be two vertex-disjoint copies of H∨I1 and H∨I2, respec-
tively. For every vertex x from H, we denote by x1 and x2 its counterparts
in H1 and H2, respectively.
Let a ∈ I1 ∩ I2. Now, using the same notation as in (H2) with I1, I2 playing
the roles of e1, e2, and a playing the role of a1 in H1 and a2 in H2, we
construct a new hypergraph H∗. Define an assignment L∗ on H∗ by setting
L∗(vi) = L(v) for each v ∈ V (H) and each i = 1, 2. Observe that H∗ is not
L∗-colorable. Finally, using the operation (H3), identify vertices x1, x2 from
H∗ for each vertex x of H. Since (H3) preserves the Sperner property, we
have that the obtained hypergraph is isomorphic to H if and only if the set
I1 ∪ I2 is not independent. Therefore, if I1 ∪ I2 is not an independent set,
we obtain a construction of H, which is a contradiction. So, the property
for independent sets is established.

From this property, it easily follows that the relation ∼ on vertices of
H defined as

a ∼ b if and only if {a} ∪ {b} is independent set,

is an equivalence relation. In particular this means that H is a complete
multipartite graph, which is a contradiction.

In [4], it was proven that using only rules (H1) and (H3) applied on
graphs, from any complete bipartite graph with choice number k+1, we can
construct every non-k-choosable multipartite graph. To achieve the proof
of the theorem, it is sufficient to observe that similarly using only rules
(H1) and (H3), from any bipartite graph with choice number k + 1, we can
construct every non-k-choosable bipartite complete graph.

Theorem 2.1 shows that, for a fixed k, any minimal graph (for the subgraph
relation) in the class of non-k-choosable bipartite graphs forms a basis for
the non-k-choosability of hypergraphs.
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