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Abstract

For a graph G, a positive integer k, k ≥ 2, and a non-negative
integer with z < k and z 6= 1, a subset D of the vertex set V (G) is said
to be a non-z (mod k) dominating set if D is a dominating set and for
all x ∈ V (G), |N [x] ∩ D| 6≡ z (mod k).

For the case k = 2 and z = 0, it has been shown that these sets
exist for all graphs. The problem for k ≥ 3 is unknown (the existence
for even values of k and z = 0 follows from the k = 2 case.) It is the
purpose of this paper to show that for k ≥ 3 and with z < k and z 6= 1,
that a non-z(mod k) dominating set exist for all trees. Also, it will be
shown that for k ≥ 4, z ≥ 1, 2 or 3 that any unicyclic graph contains
a non-z(mod k) dominating set. We also give a few special cases of
other families of graphs for which these dominating sets must exist.
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1. Introduction

In 1989, Sutner [7] studied the following problem. Suppose each vertex of a
graph is equipped with an indicator light and a switch. If the switch of a
vertex is switched, the light of that vertex and all its neighbors will change
from off to on or from on to off. Sutner asked whether there always was a
set of switches which when switched resulted in the lights being on at all
the vertices. He referred to this problem as the All-Ones Problem. He in
fact showed that there such a set of switches exist for all graphs.

Transforming this problem into standard graph theory notation; does
there exist a subset of vertices, D, so that |N [x] ∩ D| ≡ 1(mod 2) (alter-
natively |N [x] ∩ D| 6≡ 0(mod 2)) for every vertex x in G. Here N [x] is
the closed neighborhood of x, which consists of x and all its neighbors in
G. Note, another way to define this is that |N [x] ∩ D| odd for all x in G.
Sutner’s proof used cellular automata and extends an earlier proof of Galvin
who supplied an algorithmic proof to the case of trees. In 1996, Caro [3]
gave a graph theoretic proof. These results will be further extended and
generalized here.

Recently, the problem of generalizing this to values k other than 2 was
raise and published in GRAPHNET by Caro. He suggested the question of
whether for any graph G, there exists a set D so that |N [x] ∩ D| 6≡ 0 (mod
k) for every vertex x in G. We explore a more general problem. For a graph
G, a positive integer k, k ≥ 2, and a non-negative integer with z < k, a
subset D of the vertex set V (G) is said to be a non-z (mod k) dominating

set if D is a dominating set and for all x ∈ V (G), |N [x] ∩ D| 6≡ z (mod k).

As noted above, for the case k = 2 and z = 0, these sets exist for all
graphs. In fact, this result implies that for any k even and z = 0, these
dominating sets exist. The problem for k ≥ 3 is unknown for odd values of
k. It is the purpose of this paper to show that for k ≥ 3 and with z < k

and z 6= 1, that a non-z(mod k) dominating set exists for all trees. Also, it
will be shown that for k ≥ 4, z 6= 1, 2 or 3 that any unicyclic graph contains
a non-z(mod k) dominating set. We also give a few special cases of other
families of graphs for which these dominating sets must exist.

2. Non-z(mod k) Dominating Sets for Trees

Observe that if z = 1, then by considering the G = K1,m where m is a
multiple of k, then it is obvious that G does not contain a non-z(mod k)



On non-z (mod k) Dominating Sets 191

dominating set. Consequently, the condition on z in the next result is
necessary.

Theorem 1. Let T be a tree, k ≥ 2 a positive integer, and z 6= 1, be a mem-

ber of the cyclic group Zk. Then T contains non-z(mod k) dominating set.

Proof. Let T be any tree, we will present an algorithm which will produce
a non-z(mod k) dominating set, which in fact is independent. The process
will consist of two steps, first a labeling of the vertices of T and then the
construction of the non-z(mod k) dominating set. Choose any vertex x in
T and consider T as being rooted at x.

Bottom – Up Labeling of V (G) — Starting with the endvertices and
labeling up the tree as follows:

1. Label all endvertices positive.

2. A vertex is labeled neutral if at least one of its children is negative.

3. A vertex, with no negative children, is labeled negative if the number
of its positive children is positive and non-z(mod k), and is labeled
positive otherwise.

This labeling is clearly well defined, and each vertex is labeled positive,
neutral or negative. Now using this labeling we give a process for finding a
set D, which will be shown to be a non-z(mod k) dominating set.

Top – Down construction of D — Starting at the root and adding ver-
tices, one at a time to D as follows:

1. The root is in D if and only if it is a positive vertex. Now considering
the children of a vertex for which it has been decided whether it is in D.

2. A neutral vertex is never in D.

3. A positive vertex is added to D if and only if its parent is not in D.

4. A negative vertex is added to D if the number of vertices in the inter-
section of the closed neighborhood of its parent and D is equivalent to
a (mod k).

Continue this process until a decision about the inclusion of every vertex
has been completed. It remains to show that the set D is a non-z(mod k)
dominating set. Let x be any vertex in T .

First suppose that the vertex x was a neutral vertex. Of course x is not
in D and since x is neutral it follows from the labeling scheme, that x had at
least one negative child. Depending on how many of x’s positive neighbors
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were included in D, either 0 or 1 of x’s negative children would have been
included in D, thus assuring that x is adjacent to some element of D and
having |N [x] ∩ D| 6≡ z (mod k).

Now suppose that x was a positive vertex. If x is in D then its parent
and none of its children are included in D, so |N [x] ∩ D| = 1 (mod k), and
since z 6= 1, |N [x] ∩ D| 6≡ z (mod k). If x is not in D, then its parent is
in D as well as all of its positive children, and again this implies that x is
adjacent to some element of D and has |N [x] ∩ D| 6= z (mod k), since to
have x labeled positive it had to have z(mod k) positive children.

Now suppose that x was a negative vertex, note its parent is neutral.
If x is in D then its parent and none of its children are included in D, so
|N [x] ∩ D| ≡ 1 (mod k), and since z 6= 1, |N [x] ∩ D| 6≡ z (mod k). If x is
not in D, all of its positive children are in D and by the labeling process
the number of its positive children is positive and non-z(modk), so it follows
that x is adjacent to some element of D and has |N [x] ∩ D| 6≡ z (mod k).

Hence it follows that D is a non-z dominating set. It is easy to see that
D is independent. Suppose a parent and child were both in D. Neither is
neutral, since neutrals are never in D. The child can not be negative, since
by the labeling of the parent would be neutral. But, if the child is positive,
it would only be included if the parent were not, hence D is independent.
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Figure 1. An example of a tree where the algorithm of Theorem 1 yields different

sized sets when rooted at different vertices.
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Figure 1 shows a tree for which the algorithm in Theorem 1 yields non-
3(mod 4) dominating sets of vastly different sizes when the tree is rooted at
different vertices. This tree can be generalized by taking larger stars with
3(mod 4) endvertices on each end or by picking alternate z and k and stars
of appropriate order on the ends.

The algorithm in Theorem 1 is clearly linear in the number of vertices
in T since the labeling only requires consideration of the children of any
vertex, while the choice for inclusion in D only requires consideration of the
unique parent of any vertex.

As is often the case for dominating sets, it would be nice to find the
smallest non-z(mod k) dominating set. Unfortunately, the example above
indicates that the algorithm gives non-z(mod k) dominating sets of vastly
differing sizes. In addition, since the algorithm always yields and indepen-
dent set and the smallest non-z(mod k) dominating set is not necessarily
independent, for example the double star, where the middle edge would be
a smallest non-z(mod k) dominating set when z 6= 2, and smallest inde-
pendent sets can be arbitrarily large, the algorithm is not able to yield the
smallest non-z(mod k) dominating set in all cases. But the algorithm does
yield a bound; for convenience let γz,k(G) denote the order of the smallest
non-z(mod k) dominating set in G. Also let α(G) denote the independence
number of G, the order of the largest set of independent vertices in G.

Corollary 2. If T is a tree, k a positive integer k ≥ 2, z < k and z 6= 1, a

non-negative integer, then it follows that γz,k(T ) ≤ α(T ).

Proof. This follows since the non-z(mod k) dominating set constructed in
Theorem 1 is a maximal independent set.

3. Non-z(mod k) Dominating Sets for Other Graphs

In the next result we present an alternative proof for establishing the exis-
tence of non-z(mod k) dominating sets in trees as long as z 6= 1 or 2. In
addition, the process yields the following criteria; that any vertex can be
distinguished and have a further restricted intersection with the dominating
set.

Before proceeding we make a useful observation to help to construct
these dominating sets.
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Lemma 3. For any graph G, with cut edge e = uv, let u ∈ G1 and v ∈ G2

be the graphs of G− e. If there exists a non-z(mod k) dominating subset D1

of G1 such that |N [u]∩G1| 6≡ (z − 1) (mod k), and a is not in D1, then for

any non-z(mod k) dominating subset D2 of G2 it follows that D1 ∪ D2 is a

non-z(mod k) dominating subset of G.

Proof. This follows since the vertex u, which has |N [u] ∩D1| ≡ i (mod k)
with i 6= z − 1 or z can be dominated by at most one more vertex, possibly
v, when rejoining the two subgraphs. Of course the number of vertices
dominating v, and all of the other vertices of G, remains the same, since u

is not in D1.

This lemma will be useful in the next two results.

Theorem 4. For any tree T , x any vertex in T , positive integer k, k ≥ 3,
and z 6= 1 or 2, a member of the cyclic group Zk, T contains a non-z(mod k)
dominating set D of T such that |N [x] ∩ D| 6≡ (z − 1)(mod k).

Proof. Proceed by induction on the order of T . It is easy to check that
this is true for all trees of order less than six. Suppose the result is true for
all trees of order at most n and let T be a tree of order n + 1 and choose x

to be any vertex in T .

Case 4.1. Suppose x is an endvertex of T .
Let y be the vertex of T adjacent to x and let D ′ be a non-z(mod k) domi-
nating set of T − x such that |N [y] ∩ D′| 6≡ (z − 1) (mod k).

Subcase 4.1.1. Suppose y is an element of D ′.
The set D′ is a non-z(mod k) dominating set of T such that |N [x] ∩ D ′| 6=
(z − 1) (mod k), since z 6= 2.

Subcase 4.1.2. Suppose a is not an element of D ′.
The set D = D′ ∪ {x} is a non-z(mod k) dominating set of T such that
|N [x] ∩ D| 6≡ (z − 1) (mod k).

Case 4.2. The vertex x is not an endvertex of T .
Let T1, T2, . . . , Tr be the trees in the forest T −{x}, with yi in Ti the vertex
of Ti adjacent to x. For convenience let S = {y1, y2, . . . , yr}. Further, let D′

i

be a non-z(mod k) dominating set of Ti such that |N [yi]∩D′

i| 6≡ (z−1) (mod
k). Note, by Lemma 3 above, for each i, the vertex yi must be contained
in D′

i, for otherwise, by induction, choosing any non-z(mod k) dominating
subsets D1 of T − Ti with |N [x] ∩ D1| 6≡ (z − 1) (mod k), it would follow
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that the set D = D1 ∪D′

i would be a non-z(mod k) dominating subset of T

such that |N [x] ∩ D| 6≡ (z − 1) (mod k) and the result would follow.

Subcase 4.2.1. |S| ≡ z (mod k).

The set D′ = D′

1 . . . D′

2 ∪ . . . ∪ D′

r ∪ {x} is a non-z(mod k) dominating set
of T such that |N [x] ∩ D′| 6≡ (z − 1) (mod k).

Subcase 4.2.2. |S| ≡ i (mod k) for some non-negative integer i < k with
i 6= z − 1 or z.

It this case it follows that the set D ′ = D′

1 ∪ D′

2 ∪ . . . ∪ D′

r is a non-z(mod
k) dominating set of T such that |N [x] ∩ D ′| 6≡ (z − 1) (mod k).

Subcase 4.2.3. |S| ≡ z − 1 (mod k) and |S| > k − 1.

If |S| > k − 1 then it must follow that T ′ = T − (T1 ∪ T2 ∪ . . . ∪ Tz−1 ∪ x)
is a non-empty subforest of T . Furthermore, note that |T ′∩S| ≡ 0 (mod k).
By induction, there is a non-z(mod k) dominating set of T1∪T2∪. . .∪Tz−1∪x,
say D∗, such that |N [x] ∩ D∗| 6≡ (z − 1) (mod k). Subsequently, it follows
that the set D′ = D∗∪D′

j+1∪D′

j+2∪ . . .∪D′

r is a non-z(mod k) dominating
set of T such that |N [x] ∩ D′| 6≡ (z − 1) (mod k).

It only remains to consider that case when |S| = z − 1.

Subcase 4.2.4. |S| = z − 1.

Claim. For j = 1, 2, 3, . . . , z − 1 the degree of yj in Tj is z − 1.

Suppose this is not the case. Without loss of generality, suppose deg(y1) 6≡
z − 1 mod k. Furthermore, assume that deg(y1) 6≡ z (mod k). Let u1,

u2, . . . , um be the neighbors of y1 in T1. Consider the trees of T1 − y1. By
induction we can find a non-z(mod k) dominating set of each of these trees,
say Di∗, such that |N [ui] ∩ D∗

i | 6= z − 1 (mod k). By Lemma 3, ui must be
contained in D∗

i , but then it follows that D∗

1 ∪ D∗

2 ∪ . . . ∪ D∗

m would form a
non-z(mod k) dominating set of T1, say D∗, such that |N [y1]∩D ∗ | 6= z − 1
(mod k), with y1 6∈ D∗. Consequently yielding the desired set by the Lemma.
Thus, we may assume for each j = 1, 2, . . . , z−1 that degTj

(yj) ≡ z or z−1.

Suppose degTj
y1 ≡ z (mod k). Let D1 be a non-z(mod k) dominating

set of T1 − y1 that, by Lemma 3 above, contains all the neighbors of y1 and
let D2 be a non-z(mod k) dominating sets of the tree T −(T1−y1) such that
|N [x] ∩ D2| 6≡ z − 1 (mod k). Also observe that |N [x] ∩ D2| = 1 or 2, since
the degree of y1 in T − (T1 − y1) is 1. Subsequently, it follows that the set
D∗ = D1 ∪ D2 is a non-z dominating set of T such that |N [x] ∩ D| 6≡ z − 1
(mod k).
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Hence it must be the case that the degree of yj in Tj is = z − 1 (mod k) for
j = 1, 2, 3, . . . , z − 1. Suppose, for some j, the degree of yj in Tj is at least
k+z−1. Again without loss of generality, we may assume that j = 1. Let the
neighbors of y1 in T1 be z1, z2, z3, . . . , zm, with m ≡ z− 1 (mod k) and m at
least k+z−1. In T1−y1, for j = z, z+1, . . . ,m, let T ∗

j be the tree containing
zj , and T ∗ = T −(T ∗

z ∪T ∗

z+1∪ . . .∪T ∗

m). By Lemma 3, for j = z, z+1, . . . ,m,
we can find non-z(mod k) dominating sets D∗

j of T ∗

j containing zj having
|N [zj ]∩D∗

j | 6≡ z−1 (mod k). Also, by induction a non-z(mod k) dominating
set of T ∗, say D∗, such that |N [x] ∩ D ∗ | 6≡ z − 1 (mod k). Now since
m−z+1 = 0 (mod k) it follows that the set D1 = D∗∪D∗

k∪D∗

k+1
∪ . . .∪D∗

m

is a non-z(mod k) dominating set of T such that |N [x] ∩ D1| 6≡ z − 1 (mod
k). Hence the claim follows.

Thus, we have x, with neighbors y1, y2, y3, . . . , yz−1 and subtrees
T1, T2, T3, . . . , Tz−1 of T − x and let u1, u2, u3, . . . , uz−1 and x be all of
the neighbors of y1. In T1 − y1, let Tu1

, Tu2
, Tu3

, . . . and Tuk−1
be the

trees containing u1, u2, u3, . . . and uk−1 respectively. By induction, for t =
1, 2, . . . , z − 1 we can find Dut such that Dut is a non-z(mod k) dominating
set of Tut with |N [ut] ∩ Dut | 6≡ z − 1 (mod k) and further having ut ∈ Dut .
Also, for j = 2, 3, . . . and z − 1 let Dj be a non-z(mod k) dominating set of
Tj with |N [yj ]∩Dj | 6= z − 1 (mod k). Again, by Lemma 3, we may assume
that yj is in Dj . As a consequence, the set

D = Du1
∪ Du2

∪ . . . ∪ Duk−1
∪ D2 ∪ D3 ∪ . . . ∪ Dk−1

is a non-z(mod k) dominating sets of T with |N [x] ∩ D| 6= z − 1 (mod k)
and the theorem follows.

We now use this result to allow us to show that if G is a unicyclic graphs,
then for most k and z, a non-z(mod k) dominating set of G exists.

Theorem 5. For any unicyclic graph G, positive integer k, k ≥ 4, and non-

negative integer with z < k and z 6= 1, 2 or 3, G contains a non-z(mod k)
dominating set.

Proof. Let G be a unicyclic graph of order n, we will assume it is connected,
for otherwise we simply consider the components separately. Also, we may
assume that for all unicyclic graphs of order less than n, they contain non-
z(mod k) dominating sets.
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Case 5.1. Suppose G is a cycle.

Let D be any maximal independent set. This is certainly a non-z(mod k)
dominating set since |N [x]∩D| = 1 or 2 for all vertices of G and z 6= 1 or 2.

Case 5.2. Suppose G is not a cycle.

Let V = {v1, v2, . . . , vt} be the vertices adjacent to vertices of the unique
cycle a in G, and let T1, T2, . . . , Tt be the trees in G−C such that vi is in Ti

(some may be isolated vertices.) By Theorem 4, there is a non-z dominating
set Di of Ti such that |N [vi] ∩ Di| 6≡ z − 1 (mod k) and by Lemma 3 we
may assume that for each i, vi is in Di. Suppose, for some vertex x on C,
there are T neighbors of x in V , for T 6= 0 or T 6= z − 2, z − 1 or z(mod
k). Let H1 be the subtree of G with x and all the subtrees of its neighbors
in G − C. Let H2 be the subtree G − H1. A non-z(mod k) dominating set
of G results, by taking the union of a non-z(mod k) dominating set of H1

which contains all the neighbors of x and does not contain x and any non-
z mod k dominating set of H2. Consequently, we may assume that every
vertex u on C is adjacent to tu vertices, where tu = 0 or tu ≡ z − 2, z − 1
or z(mod k).

Now let D = D1 ∪ D2 ∪ . . . ∪Dt ∪ V (C). It follows that |N [x] ∩ D| 6≡ z

(mod k), for each x on C. Furthermore, since |N [vi]∩Di| 6≡ z − 1 or z(mod
k), it follows that |N [vi] ∩ D| 6≡ z (mod k), hence D is a non-z(mod k)
dominating set of G completing the proof.

Now we give a few special cases of other families of graphs for which these
dominating sets exist. Before proceeding we give two definitions. For graphs
G and H, we say that G is H-free if G does not contain an induced copy of
H. A graph G is m-separable if the set of vertices of degree at least m is
independent. For a subset of vertices A we will employ the notation N(A)
to denote the set of neighbors of the vertices of A.

Theorem 6. Let k and m be a positive integers with k ≥ 3 and 1 < m < k.

If a is a member of the cyclic group Zk, with z = 0 or z ≥ m, and if G is a

K1,m-free graph, then G contains a non-z(mod k) dominating set.

Proof. Let G, k,m and z be as above. Choose D to be any maximal inde-
pendent set of G. Since D is a maximal independent set, D is a dominating
set, and since G is K1,m-free, it follows that |N [x] ∩ D| 6≡ z (mod k), for
each x in G, and the result follows.
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Theorem 7. Let k and m be a positive integers with k 6= 3 and 1 < m < k.

If z is a member of the cyclic group Zk, with z = 0 or z ≥ m + 1, and if G

is an m-separable graph, then G contains a non-z(mod k) dominating set.

Proof. Let G, k,m and z be as above. Note if δ(G) ≤ m−1 then V (G) is a
non-z(mod k) dominating set. If δ(G) ≥ m, then let A be the set of vertices
having degree at least m. Since G is m-separable, A is an independent
set. Let D = A ∪ (V (G) − N(A)). We now show that D is a non-z(mod k)
dominating set. Suppose x ∈ D and deg(x) ≥ m. It follows that |N [x]∩D| =
1 (mod k). If x ∈ D with deg(x) < m then |N [x] ∩ D| 6≡ z (mod k).
Finally, for any other vertex x of G, since the deg(x) < m, it follows that
|N [x] ∩ D| 6≡ z (mod k), thus D is a non-z(mod k) dominating set.

4. Problems and Conclusion

Although these results yield non-z(mod k) dominating sets for trees and
specific other families of graphs, the general problem of determining whether
these sets exist for all graphs remains open. Of course, when these sets do
exist, the problem of determining the order of the smallest such set also
would be a worthwhile question to resolve. In addition, the exploration
of relationships between other types of dominating sets and non-z(mod k)
dominating sets would be of interest, as would establishing relationships
between the minimum sizes of these sets.

Another possible direction of study is to relax the definition slightly. As
is the case with ”standard” domination, one could define an ”open” non-
z(mod k) dominating set to be a dominating set D so that for every vertex x

in V −D, |N [x]∩D| 6≡ z (mod k). Note that V (G) vacuously becomes such
a dominating set. So finding the minimum order is the problem. There are
other related problems that arise from this definition, for example, note that
these sets exist, even when z = 1. For m a multiple of k, and G = K1,m it
is obvious that the only ”open” non-1(mod k) dominating set, is V (G). Are
unions of these stars the only such graphs? Note, when z 6= 1 and G is not
the empty graph, it is easy to see that an ”open” non-z(mod k) dominating
set that is properly contained in V (G) exists. This follows since, if it were
not the case then for each x in V (G), deg(x) = z (mod k), otherwise V −{x}
would be the required set. But then for any edge xy in G, it follows that
V − {x, y} would be an ”open” non-z(mod k) dominating set.
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