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Abstract

A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-
coloring of its vertex set there is a heterochromatic triple and the

hypergraph has the minimum possible number of triples. There is a

conjecture that the number of triples in such 3-tree is f@] for any

number of vertices n. Here we give a proof of this conjecture for any
n =0,1mod12.
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1. INTRODUCTION

A 3-graph is an ordered pair of sets G = (V,A). The elements of V are
called vertices. The elements of A are subsets of vertices of cardinality 3
and are called triples. Given a 3-graph G = (V, A) and a vertex v the trace
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Trg(v) of v in G is the graph with vertex set V\{v}, and a pair {z,y} is an
edge of T'rg(v) if and only if {v,z,y} is a triple of G.

A 3-coloring of a 3-graph is a surjective map from the vertex set onto
a set of three elements. A 3-graph is said to be tight (see [1]) if any 3-
coloring has a heterochromatic triple i.e., a triple whose vertices are colored
differently. A tight 3-graph is called a 3-tree if whenever we delete a triple
from it we obtain an untight 3-graph. Different 3-trees on n vertices may
have a different number of triples. From the results of [4], we know that
the maximum number of triples in any 3-tree is (";1) It is not difficult to
show that the minimum number of triples in such a 3-tree is not less than

[@] In [1] it was proved that this bound is sharp for any n of the form

% where p is a prime number, and it was conjectured that the bound is
sharp for any n. In [2] the case when n = 3,4mod 6 was solved and in [3] a
full proof for the case n = 2mod 3 is given.

Here we give the proof of the cases n = 0,1 mod 12. The case 1 mod 12

is solved via a generalization of a construction from [2].

2. THE CASE Omod 12

In order to prove the conjecture for any n it is sufficient to construct a 3-tree
with [@1 triples. In this section we deal only with the case n = 0 mod 12.

Let us consider the cyclic group Z,, = {0,1,...,n — 1}, its elements are
the vertices of the 3-graph H,, defined below.

Of course, we know how to add vertices. If e = {x1, 29,23} is a triple
and y is a vertex, then e+y = {14y, va+y, x3+y}. If F is any set of triples
and S any set of vertices then F'+S = {f +s|f € F,s € S}. It is important
to observe that all operations must be interpreted in the appropriate cyclic
group.

Denote by A, = {1,...,%5} CZy and B, = {1,..., {5} C A,.

For a € A, and b € B,,, let us consider the following triples:

ca = 10,2%,2a},
Cb = {07273_4—b}7
m = {0,2% +2b,4b — 1},

Those triples generate the set of triples of the 3-graph H, i.e., any triple
will be of the form ¢, +y or (, +y or 1, +y where y € Z,,. Formally, denote
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Hy, = Zn,({ea|ac A} U{G,m|beEB,})+Z,).

Our purpose is to show that H,, is a 3-tree with @ triples.

Proposition 1. H, has @ triples.

Proof. There are n(g — 1) + § triples generated by &,. The number of

triples generated by (, and 1 is %2. Those triples are all different and a

straightforward calculation gives the result. [
Let us construct an auxiliary hypergraph. For this, let m = O0mod 3 and
denote ag = {0,2%,a}.
The hypergraph G, is by definition (Z,,{aq | a € {1,..., 2 }} + Zn,).
Observe that the hypergraph generated by the set of even vertices in
H,, contains a copy of G,, /5 and also the hypergraph generated by the set of
odd ones by the automorphism =z — x + 1 of H,,.

Lemma 2. Let f be a non heterochromatic 3-coloring of Gy,. Then, all the
cosets of Ly, by the subgroup (%) = Z3 are monochromatic.

Proof. Denote t = 3. Let f be a red-blue-yellow 3-coloring for which
the lemma is false. Let y € Z,,, observe that for the 3-coloring f 4+ vy : a —
f(a+y) the lemma is also false. So we can suppose that |f(a:)| = 2, and

f(0) = f(—t) = R and f(t) = B. So for any a € {1,...,t} we have

ag+t={t,0,a+t} € Gy
and f(0) = R, f(t) = B. }:>f(a+t)7$Y7
ag —t={-t,t,a—t} € Gp

and f(—t) = R, f(t) = B. }if(a—t)#Y.

Therefore, since any 3-coloring is a surjective map there must be an = €
{1,...,t — 1} such that f(x) =Y. In this case we have

g +x={z,x—t,t}, ap —t={—t,t,x —t} € G

and f(—t) = R, f(t) =B, f(z) =Y. };‘f(ﬂf—t) = B,
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ctax+t={z+t,x,—t}, ap +t={t,0,z+t} € G

oy x {z z,—t}, « {t,0,z + t} e tt)=R
and f(—t) = f(0) = R, f(t) =B, f(z) =Y.

and this is a contradiction because oy + = = {x,x — t,x +t} € Gp,. [

Of course, the lemma is equivalent to the fact that any non heterochromatic
3-coloring of G, factorizes through a 3-coloring of the quotient hypergraph
Gm/(%), i.e., the 3-graph whose vertices are the cosets modulo (') and the
triples are the images of the triples in G, by the natural map (see [1] for a
more formal definition).

Let us prove a key property of the hypergraph H,.

Lemma 3. If f is a non heterochromatic 3-coloring of Hy, then f is sur-
jective in the set of odd vertices or is surjective in the set of even vertices.

Proof. For two vertices x,y € Z, define the distance between them as the
minimal natural number d such that (dmodn)+x =y or (dmodn)+y = .

Let f be a non heterochromatic 3-coloring of H,,. Both cosets, (2) and
(2) + 1 can not be monochromatic.

Suppose that f((2)+1) =Y, then f((2)) = {R, B} and since  — x +2
is an automorphism of H,, we also may assume that f(0) = R and f(2) =
B. Therefore the triple (; = {0,2,—1} contradicts the fact that f is non
heterochromatic. So, both cosets are bichromatic.

Let Y be the common color to both cosets. Let x and y be vertices
such that f({z,y}) = {R, B} and the distance between x and y is minimal.
Since x — x + 1 is an automorphism of H, we may assume that y = 0,
f(0) = R and f(x) = B. Therefore, f((2)) = {R,Y}, f({(2)+1) ={B,Y}
and v € {§+1,5+3,...,—1}. Of course, by the minimality of the distance
between x and y, for all z € {z + 1,z +2,...,—1} we have f(z) =Y.

For z € {§ + 1,5 +3,...,25 — 1}, let d be the solution in B,, of 2% —
2d + 1 = z. In this case the triple ng +1 — 4d = {1 — 4d,0,z2} € H, is
heterochromatic and this is a contradiction.

On the other hand, let x € {2% +1,2% +3,..., —1}.

If + = 1mod 4 then let us consider the solution d in B,, of 1 — 4d = x.
In this case, the triple {; — 2 = {—2,0,2} € H,, gives a contradiction.

If x = 3mod 4 then let d be the solution in B,, of 3 — 4d = x. In this
case we have
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nd+x:{x,x+2%—|—2d,2} € H,,

f(z) =B, f(x+2% +2d) =Y, f(2) # B. }:>f(2)=Y

and the triple {4 = {0,2,z} € H,, is heterochromatic, which is impossible.
|

Lemma 4. If f is a non heterochromatic 3-coloring of Hy, then f is sur-
jective in the set of odd wvertices and is also surjective in the set of even
vertices.

Proof. Let f be a non heterochromatic 3-coloring of H,, then by the pre-
ceding lemma we may suppose that f ((2)) ={R,B,Y}and R ¢ f((2) +1).
Since the hypergraph generated by (2) is isomorphic to G, 5, hence by

Lemma 2, for all o € (2) the coset (%) + a must be monochromatic. So, we

can suppose that f ((%)) = R and f ((¥) +2) = B.

For a better understanding, we urge the reader to remember (see the
beginning of Section 2) that we can add a set of vertices to a triple thus
obtaining in this way a set of triples.

For all b € B,, we have that

G+ (%) =1{0,2,3 — 4b} + (Z),
FUB) =R F((3)+2) =B §=f((3)+3-4) =B,
and R¢ f((%)+3—4b).

Observe that

U (3 +3-2)= U ((5)+a-1)

beBn beBn

and therefore for any b € B,,, f (<%> + 4b — 1) = B holds.
On the other hand
Go+4b—3+ (%) ={4b—3,4b— 1,0} + (%),
F((5)) =R f((5)+4—-1) =B = f((5)+4b-3) =B
and R ¢ f((%)+4b—3).
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Since every odd vertex is either in some coset of the form <%> +4b—1orin
some coset of the form (%) + 4b — 3, hence f ((2) +1) = B.

Let x € (2) a vertex colored yellow. Recall that f ((2) +z) =Y so we
can suppose that € {2,4,..., 5 —2} = 2B, U (% — 2IB3n). Ifz=2b,beB,
we have the heterochromatic triple 7, = {O,x —5,4b— 1} € H,. In any
other case, z = 5 —20b, b € B,, and the triple n,+x = {x, 0,5 +2b— 1} € H,
is heterochromatic and this is a contradiction. ]

Lemma 5. If f is a non heterochromatic 3-coloring of Hy, then all the
cosets of Z,, by the subgroup <%> & 73 are monochromatic.

Proof. Let f be anon heterochromatic 3-coloring of H,,, then by Lemma 4
f is surjective in the set of odd vertices and in the set of even vertices. Both
sets of vertices induce hypergraphs that are isomorphic to G,, /5. By Lemma
2 the cosets mod (n/6) in G,/ are monochromatic but these cosets are
precisely the cosets mod (n/3) in Zj,, (by the two isomorphisms). |

Lemma 6. H, is tight if and only if Hy,/ <%> is tight.

Proof. Any non heterochromatic 3-coloring f’ of H,/ <%> lifts to a non
heterochromatic 3-coloring f of H,. On the other hand (by the preceding
lemma) any non heterochromatic 3-coloring f of H,, factorizes (i.e., f =
f’ onat) through a non heterochromatic 3-coloring f" of H,,/ <%> . [

Theorem 7. H, is tight.

Proof. Denote H, = H,/ <%> . Let f’ be a non heterochromatic 3-coloring
of H,. As in the preceding lemma the map f’ factorizes through a non
heterochromatic 3-coloring f of fAIn, moreover by Lemma 4 f’ (and so f) is
surjective in the set of odd and in the set of even vertices. Denote by ¢t = ¢
and recall that f : Zn/(%) = Z; — {R,B,Y} is a non heterochromatic
red-blue-yellow 3-coloring of H,.

First we shall prove that there is an = such that f(z) = f(z+1). Suppose
not. If there is no y such that f(y) = f(y + 2) then, ¢ = 0mod 3, the cosets
(3), (3) + 1 and (3) + 2 are monochromatic and the triple Cﬁ—l modt =

{0,2,7} € H, gives a contradiction. So, there exists y € Z; such that
fly)=fly+2) =R If fly+1)=Ror f(y+3) = R then we are done.
Let f(y + 1) = B. The triple (¢;modt) +y+1 = {y+ 1,y + 3,9y} € H,
shows that f(y 4+ 3) = B. Taking as a new y the vertex y + 1 and repeating
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this argument the needed number of times we conclude that there is not a
yellow vertex which is a contradiction.

Therefore we can suppose that f(0) = R, f(1) = f(2) = B.
Forallb € B, = {1,..., {5} C Z;, denote b’ = —4bmodt € Z;. We have that

Gymodt = {0,2,0 + 3} € Hy,
f(0) =R, f(2) = B.
Observe that {V' : b € B, } = (4) C Z;. Since f is surjective in the set of odd

vertices there must be a vertex ¢ € (4) such that f(¢ +1) =Y and ¢ # 0.
Let ¢ be the element in B,, such that ¢ = —4cmodt¢. We have that

}:>f(b’+3)7éY.

(g% modt) —92=1{-20,1} € d,,
((emodt) —2={-2,0,d +1} e H, ¢=[f(-2)=R.
and f(0)=R, f(1)=B, f(d +1)=Y.

Now, let d be the element in B,, such that ¢’ + 4 = 4dmod ¢. We have that

(Cqmodt) +¢ +1={c +1,d +3,0} € H,,
¢,modt = {0,2,c + 3} € H, = f(d +3)=R.
and f(0) = R, f(2) = B, f(¢d +1) =Y.
Since f is surjective in the set of even vertices there must be a vertex z € (2)
such that f(z) = B. If x € (4) then b/ = 2 — ¢ —4 € (4). In this case the

triple R
(Gmodt)+cd +1={d +1,d +3,z} € Hy,

gives a contradiction. If x ¢ (4) then, ¥’ =z — ¢ — 2 € (4) and we have

(Gmodt)+c —1={c —1,d + 1,2} € Hy,

Fl@ =D #Y, f(¢ +1) =Y, f(z) = B. };‘f@’—l):B.

Therefore, the triple ((;modt) + ¢ —1 = {¢ —1,d +1,—2} € H,, is hete-
rochromatic, which is impossible. [

3. THE CASE 1mod12

When n = 1 mod 3 the bound for the number of triples in a tight 3-graph is

%. This bound can be reached in a 3-graph in which the trace of one
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vertex is a cycle and the trace of any other vertex is a tree. Such 3-graph
will be called an almost 3-tree.
Let M be a 3-tree with n vertices with n = 0mod 3 and suppose that
M has a set T of 5 disjoint triples. NLet C be a cycle passing through
every vertex of M. Define the 3-graph M obtained from M by the following
procedure:
e add a new vertex x,

e add the triples {*,v,w} where {v,w} is an edge of C,
e delete all the triples of T

It is easy to see, that if all the traces of vertices in M are connected then
M is an almost 3-tree. In particular, if we can prove that M is tight then
we have a proof of the conjecture on the minimum size of tight 3-graph for
the case n + 1. s

In this section we construct a 3-graph H,, which is an almost 3-tree and
prove that it is tight.

Recall our definition of H,, from Section 1

Hn = (Zm ({Ea ’ ac An} U {benb ‘ be Bn}) + Zn) 5

where

ea = {0,2%,2a}, ¢ = {0,2,3 — 4b} ,mp, = {0,2% + 2b,4b — 1},
Ay = {1,...,8} CZy, By={1,..., 15} CA,

and n = 0mod 12.
Let T be the set of triples {e,, /5 + Zn} and C be the cycle

{{z,2 +1} | € Z,,}. Let H, be the 3-graph obtained as above, i.e.,

H, = (Zn U{x}, ({ea ] a € AN{E}} U{Cm | b EBR} U {,0,1}) + Zy)
where, by definition, * + x = x for all x € Z,.

Theorem 8. H,, is tight.

Proof. The proof bellow is not valid for the case n = 12. However, for
that case we can prove that Hys is tight checking all possible colorings (the
number of colorings can be reduced using the symmetries of .F~I12 and the
fact that His is tight).

So, let s =n/12, s > 2 and let f be a non heterochromatic 3-coloring
of H,.
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There must be a vertex x in Z, such that f(z) = f(x) for if this is
not the case, then there are two consecutive vertices y, y + 1 such that
f(y) # f(y + 1) and therefore the triple {*,y,y + 1} gives a contradiction.

Then f is surjective in Z,. By Theorem 7 there must be an heterochro-
matic triple €95 + x € H,,. Since x — x + 1 is an automorphism of H,, and
H,,, we can suppose that x = 0. Let f(0) = R, f(4s) = B and f(8s) =Y.

We divide the proof in two cases when f(0) = f(2) and otherwise.
If f(0) = f(2) = R then

€1 + 8s = {8s,4s5,8s + 2},
Ea5_1 +2 = {2,85 + 2,45}, = f(8s+2) =B,
[2)= R, f(1s) = B, f(85) = V.

es = {0,8s,2s}, es-1 +2={2,85+2,2s}, B
ﬂ®=Rf®=RJ@$=Kﬂ&+®=B}iﬁ@g_ﬁ
¢+ 8s={8s,85+2,85— 1},
ns +4s = {4s,85 — 1,2s}, = f(8s—1) = B,
f(2s) =R, f(4s) = B, f(8s) =Y, f(8s5+2) = B.

e1 +4s = {4s,0,4s + 2},
€9s—1 +4s+2 = {4s+2,2,8s}, = f(4s+2) =R,
f(0)=R, f(2) =R, f(4s) =B, f(8s) =Y.

E925—2 = {0,88748 — 4},
£9s—3 +2=1{2,85+ 2,4s — 4}, = f(4s —4) = R,
FO) =R, f(2) = R, [(85) =Y, (85 +2) = B.

£9s—92 + 4s = {45,0,8s — 4},
€9 +8s —4={8s—4,4s —4,8s}, = f(8s—4)=R
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and

m + 8s = {8s,8s5 + 3,4s + 2},
n2+8s —4 ={8s — 4,85+ 3,4s}, = f(8s+3) =R.
f(45):Ba f(48+2):R1 f(88—4):R7 f(SS):Y

Moreover, if f(8s 4+ 1) = R then no matter the color of * is, some of the
triples {*,8s—1,8s}, {*,8s,8s+1} or {*,8s+1,8s+2} gives a contradiction.
Hence

8s—1={8s—1,85+ 1,45 +2} € H,
(s +8s {85 — 1,85+ 1,4s + 2} € H,, . f8s+1) =B
f4s+2)=R, f(8s—1) =B, f(8s+1) # R.
and the triple (1 +8s + 1 = {8s+ 1,85 + 3,8s} gives a contradiction.

Now, suppose that f(0) # f(2). If f(4s) = f(4s + 2) then using the
automorphism x — x — 4s we reduce the proof to the first case. By the
same argument f(8s) # f(8s + 2). Moreover,

51:{0,85,2}€ﬁn, } @)=Y,
f0) =R, f(8s) =Y, f(2) #R.

51—|—4S:{48,0,48+2}EI§;, L fAs+2) = R
f(0) =R, f(4s) = B, f(4s+2) # B. ’

£1+ 8s = {8s,4s,85 + 2} € H,,

fds) =B, f(8s) =Y, f(8s+2) #Y. }:'f<88+2)=3

and

e1+2={2,85+2,4}, e = {0,85,4} € H,, =Y
fO)=R, f(2) =Y, f(8s) =Y, f(8s+2) = B.

Again, using the automorphism z — x — 2 we reduce the proof to the first
case. ]
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