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Abstract

A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-
coloring of its vertex set there is a heterochromatic triple and the
hypergraph has the minimum possible number of triples. There is a
conjecture that the number of triples in such 3-tree is dn(n−2)

3 e for any
number of vertices n. Here we give a proof of this conjecture for any
n ≡ 0, 1mod 12.
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1. Introduction

A 3-graph is an ordered pair of sets G = (V, ∆). The elements of V are
called vertices. The elements of ∆ are subsets of vertices of cardinality 3
and are called triples. Given a 3-graph G = (V,∆) and a vertex v the trace
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TrG(v) of v in G is the graph with vertex set V 8 {v}, and a pair {x, y} is an
edge of TrG(v) if and only if {v, x, y} is a triple of G.

A 3-coloring of a 3-graph is a surjective map from the vertex set onto
a set of three elements. A 3-graph is said to be tight (see [1]) if any 3-
coloring has a heterochromatic triple i.e., a triple whose vertices are colored
differently. A tight 3-graph is called a 3-tree if whenever we delete a triple
from it we obtain an untight 3-graph. Different 3-trees on n vertices may
have a different number of triples. From the results of [4], we know that
the maximum number of triples in any 3-tree is

(
n−1

2

)
. It is not difficult to

show that the minimum number of triples in such a 3-tree is not less than
dn(n−2)

3 e. In [1] it was proved that this bound is sharp for any n of the form
p−1
2 where p is a prime number, and it was conjectured that the bound is

sharp for any n. In [2] the case when n ≡ 3, 4mod 6 was solved and in [3] a
full proof for the case n ≡ 2mod 3 is given.

Here we give the proof of the cases n ≡ 0, 1mod 12. The case 1mod 12
is solved via a generalization of a construction from [2].

2. The Case 0mod 12

In order to prove the conjecture for any n it is sufficient to construct a 3-tree
with dn(n−2)

3 e triples. In this section we deal only with the case n ≡ 0mod 12.
Let us consider the cyclic group Zn = {0, 1, . . . , n− 1}, its elements are

the vertices of the 3-graph Hn defined below.
Of course, we know how to add vertices. If e = {x1, x2, x3} is a triple

and y is a vertex, then e+y = {x1+y, x2+y, x3+y}. If F is any set of triples
and S any set of vertices then F +S = {f + s|f ∈ F, s ∈ S}. It is important
to observe that all operations must be interpreted in the appropriate cyclic
group.

Denote by An = {1, . . . , n
6 } ⊂ Zn and Bn = {1, . . . , n

12} ⊂ An.
For a ∈ An and b ∈ Bn, let us consider the following triples:

εa = {0, 2n
3 , 2a},

ζb = {0, 2, 3− 4b} ,

ηb = {0, 2n
3 + 2b, 4b− 1}.

Those triples generate the set of triples of the 3-graph Hn i.e., any triple
will be of the form εa + y or ζb + y or ηb + y where y ∈ Zn. Formally, denote
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Hn = (Zn, ({εa | a ∈ An} ∪ {ζb, ηb | b ∈ Bn}) + Zn) .

Our purpose is to show that Hn is a 3-tree with n(n−2)
3 triples.

Proposition 1. Hn has n(n−2)
3 triples.

Proof. There are n(n
6 − 1) + n

3 triples generated by εa. The number of
triples generated by ζb and ηb is n2

6 . Those triples are all different and a
straightforward calculation gives the result.

Let us construct an auxiliary hypergraph. For this, let m ≡ 0mod 3 and
denote αa = {0, 2m

3 , a}.
The hypergraph Gm is by definition (Zm, {αa | a ∈ {1, . . . , m

3 }}+ Zm).
Observe that the hypergraph generated by the set of even vertices in

Hn contains a copy of Gn/2 and also the hypergraph generated by the set of
odd ones by the automorphism x 7→ x + 1 of Hn.

Lemma 2. Let f be a non heterochromatic 3-coloring of Gm. Then, all the
cosets of Zm by the subgroup 〈m

3 〉 ∼= Z3 are monochromatic.

Proof. Denote t = m
3 . Let f be a red-blue-yellow 3-coloring for which

the lemma is false. Let y ∈ Zm, observe that for the 3-coloring f + y : a 7→
f(a + y) the lemma is also false. So we can suppose that |f(αt)| = 2, and
f(0) = f(−t) = R and f(t) = B. So for any a ∈ {1, . . . , t} we have

αa + t = {t, 0, a + t} ∈ Gm

and f(0) = R, f(t) = B.

}
⇒ f (a + t) 6= Y,

αa − t = {−t, t, a− t} ∈ Gm

and f(−t) = R, f(t) = B.

}
⇒ f (a− t) 6= Y.

Therefore, since any 3-coloring is a surjective map there must be an x ∈
{1, . . . , t− 1} such that f(x) = Y. In this case we have

αt−x + x = {x, x− t, t} , αx − t = {−t, t, x− t} ∈ Gm

and f(−t) = R, f(t) = B, f(x) = Y.

}
⇒ f(x− t) = B,
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αt−x + x + t = {x + t, x,−t}, αx + t = {t, 0, x + t} ∈ Gm

and f(−t) = f(0) = R, f(t) = B, f(x) = Y.

}
⇒ f(x + t) = R

and this is a contradiction because αt + x = {x, x− t, x + t} ∈ Gm.

Of course, the lemma is equivalent to the fact that any non heterochromatic
3-coloring of Gm factorizes through a 3-coloring of the quotient hypergraph
Gm/〈m

3 〉, i.e., the 3-graph whose vertices are the cosets modulo 〈m
3 〉 and the

triples are the images of the triples in Gm by the natural map (see [1] for a
more formal definition).

Let us prove a key property of the hypergraph Hn.

Lemma 3. If f is a non heterochromatic 3-coloring of Hn, then f is sur-
jective in the set of odd vertices or is surjective in the set of even vertices.

Proof. For two vertices x, y ∈ Zn define the distance between them as the
minimal natural number d such that (d mod n)+x = y or (dmod n)+y = x.

Let f be a non heterochromatic 3-coloring of Hn. Both cosets, 〈2〉 and
〈2〉+ 1 can not be monochromatic.

Suppose that f(〈2〉+1) = Y , then f(〈2〉) = {R,B} and since x 7→ x+2
is an automorphism of Hn we also may assume that f(0) = R and f(2) =
B. Therefore the triple ζ1 = {0, 2,−1} contradicts the fact that f is non
heterochromatic. So, both cosets are bichromatic.

Let Y be the common color to both cosets. Let x and y be vertices
such that f({x, y}) = {R,B} and the distance between x and y is minimal.
Since x 7→ x + 1 is an automorphism of Hn we may assume that y = 0,
f(0) = R and f(x) = B. Therefore, f(〈2〉) = {R, Y }, f(〈2〉 + 1) = {B, Y }
and x ∈ {n

2 +1, n
2 +3, . . . ,−1}. Of course, by the minimality of the distance

between x and y, for all z ∈ {x + 1, x + 2, . . . ,−1} we have f(z) = Y .
For x ∈ {n

2 + 1, n
2 + 3, . . . , 2n

3 − 1}, let d be the solution in Bn of 2n
3 −

2d + 1 = x. In this case the triple ηd + 1 − 4d = {1 − 4d, 0, x} ∈ Hn is
heterochromatic and this is a contradiction.

On the other hand, let x ∈ {2n
3 + 1, 2n

3 + 3, . . . ,−1}.
If x ≡ 1mod 4 then let us consider the solution d in Bn of 1 − 4d = x.

In this case, the triple ζd − 2 = {−2, 0, x} ∈ Hn gives a contradiction.
If x ≡ 3mod 4 then let d be the solution in Bn of 3 − 4d = x. In this

case we have
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ηd + x =
{
x, x + 2n

3 + 2d, 2
} ∈ Hn,

f(x) = B, f(x + 2n
3 + 2d) = Y, f(2) 6= B.

}
⇒ f(2) = Y

and the triple ζd = {0, 2, x} ∈ Hn is heterochromatic, which is impossible.

Lemma 4. If f is a non heterochromatic 3-coloring of Hn, then f is sur-
jective in the set of odd vertices and is also surjective in the set of even
vertices.

Proof. Let f be a non heterochromatic 3-coloring of Hn then by the pre-
ceding lemma we may suppose that f (〈2〉) = {R, B, Y } and R /∈ f (〈2〉+ 1) .

Since the hypergraph generated by 〈2〉 is isomorphic to Gn/2, hence by
Lemma 2, for all α ∈ 〈2〉 the coset

〈
n
3

〉
+ α must be monochromatic. So, we

can suppose that f
(〈

n
3

〉)
= R and f

(〈
n
3

〉
+ 2

)
= B.

For a better understanding, we urge the reader to remember (see the
beginning of Section 2) that we can add a set of vertices to a triple thus
obtaining in this way a set of triples.

For all b ∈ Bn we have that

ζb +
〈

n
3

〉
= {0, 2, 3− 4b}+

〈
n
3

〉
,

f
(〈

n
3

〉)
= R, f

(〈
n
3

〉
+ 2

)
= B

and R /∈ f
(〈

n
3

〉
+ 3− 4b

)
.




⇒ f

(〈
n
3

〉
+ 3− 4b

)
= B.

Observe that
⋃

b∈Bn

(〈
n
3

〉
+ 3− 4b

)
=

⋃

b∈Bn

(〈
n
3

〉
+ 4b− 1

)

and therefore for any b ∈ Bn, f
(〈

n
3

〉
+ 4b− 1

)
= B holds.

On the other hand

ζb + 4b− 3 +
〈

n
3

〉
= {4b− 3, 4b− 1, 0}+

〈
n
3

〉
,

f
(〈

n
3

〉)
= R, f

(〈
n
3

〉
+ 4b− 1

)
= B

and R /∈ f
(〈

n
3

〉
+ 4b− 3

)
.




⇒ f

(〈
n
3

〉
+ 4b− 3

)
= B.
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Since every odd vertex is either in some coset of the form
〈

n
3

〉
+ 4b− 1 or in

some coset of the form
〈

n
3

〉
+ 4b− 3, hence f (〈2〉+ 1) = B.

Let x ∈ 〈2〉 a vertex colored yellow. Recall that f
(〈

n
3

〉
+ x

)
= Y so we

can suppose that x ∈ {2, 4, . . . , n
3 − 2} = 2Bn ∪

(
n
3 − 2Bn

)
. If x = 2b, b ∈ Bn

we have the heterochromatic triple ηb =
{
0, x− n

3 , 4b− 1
} ∈ Hn. In any

other case, x = n
3−2b, b ∈ Bn and the triple ηb+x =

{
x, 0, n

3 + 2b− 1
} ∈ Hn

is heterochromatic and this is a contradiction.

Lemma 5. If f is a non heterochromatic 3-coloring of Hn, then all the
cosets of Zn by the subgroup

〈
n
3

〉 ∼= Z3 are monochromatic.

Proof. Let f be a non heterochromatic 3-coloring of Hn, then by Lemma 4
f is surjective in the set of odd vertices and in the set of even vertices. Both
sets of vertices induce hypergraphs that are isomorphic to Gn/2. By Lemma
2 the cosets mod (n/6) in Gn/2 are monochromatic but these cosets are
precisely the cosets mod (n/3) in Zn (by the two isomorphisms).

Lemma 6. Hn is tight if and only if Hn/
〈

n
3

〉
is tight.

Proof. Any non heterochromatic 3-coloring f ′ of Hn/
〈

n
3

〉
lifts to a non

heterochromatic 3-coloring f of Hn. On the other hand (by the preceding
lemma) any non heterochromatic 3-coloring f of Hn factorizes (i.e., f =
f ′ ◦ nat) through a non heterochromatic 3-coloring f ′ of Hn/

〈
n
3

〉
.

Theorem 7. Hn is tight.

Proof. Denote Ĥn = Hn/
〈

n
3

〉
. Let f ′ be a non heterochromatic 3-coloring

of Hn. As in the preceding lemma the map f ′ factorizes through a non
heterochromatic 3-coloring f of Ĥn, moreover by Lemma 4 f ′ (and so f) is
surjective in the set of odd and in the set of even vertices. Denote by t = n

3
and recall that f : Zn/

〈
n
3

〉 ∼= Zt → {R, B, Y } is a non heterochromatic
red-blue-yellow 3-coloring of Ĥn.

First we shall prove that there is an x such that f(x) = f(x+1). Suppose
not. If there is no y such that f(y) = f(y + 2) then, t ≡ 0mod 3, the cosets
〈3〉, 〈3〉 + 1 and 〈3〉 + 2 are monochromatic and the triple ζ t

4
−1 mod t =

{0, 2, 7} ∈ Ĥn gives a contradiction. So, there exists y ∈ Zt such that
f(y) = f(y + 2) = R. If f(y + 1) = R or f(y + 3) = R then we are done.
Let f(y + 1) = B. The triple (ζ1 mod t) + y + 1 = {y + 1, y + 3, y} ∈ Ĥn

shows that f(y + 3) = B. Taking as a new y the vertex y + 1 and repeating
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this argument the needed number of times we conclude that there is not a
yellow vertex which is a contradiction.

Therefore we can suppose that f(0) = R, f(1) = f(2) = B.
For all b ∈ Bn = {1, . . . , n

12} ⊂ Zn denote b′ = −4b mod t ∈ Zt. We have that

ζb mod t = {0, 2, b′ + 3} ∈ Ĥn,

f(0) = R, f(2) = B.

}
⇒ f(b′ + 3) 6= Y.

Observe that {b′ : b ∈ Bn} = 〈4〉 ⊂ Zt. Since f is surjective in the set of odd
vertices there must be a vertex c′ ∈ 〈4〉 such that f(c′ + 1) = Y and c′ 6= 0.
Let c be the element in Bn such that c′ = −4cmod t. We have that

(
ζ n

12
mod t

)
− 2 = {−2, 0, 1} ∈ Ĥn,

(ζc mod t)− 2 = {−2, 0, c′ + 1} ∈ Ĥn

and f(0) = R, f(1) = B, f(c′ + 1) = Y.




⇒ f(−2) = R.

Now, let d be the element in Bn such that c′ + 4 = 4dmod t. We have that

(ζd mod t) + c′ + 1 = {c′ + 1, c′ + 3, 0} ∈ Ĥn,

ζc mod t = {0, 2, c′ + 3} ∈ Ĥn

and f(0) = R, f(2) = B, f(c′ + 1) = Y.




⇒ f(c′ + 3) = R.

Since f is surjective in the set of even vertices there must be a vertex x ∈ 〈2〉
such that f(x) = B. If x ∈ 〈4〉 then b′ = x − c′ − 4 ∈ 〈4〉. In this case the
triple

(ζb mod t) + c′ + 1 =
{
c′ + 1, c′ + 3, x

} ∈ Ĥn

gives a contradiction. If x /∈ 〈4〉 then, b′ = x− c′ − 2 ∈ 〈4〉 and we have

(ζb mod t) + c′ − 1 = {c′ − 1, c′ + 1, x} ∈ Ĥn,

f(c′ − 1) 6= Y , f(c′ + 1) = Y , f(x) = B.

}
⇒ f(c′ − 1) = B.

Therefore, the triple (ζd mod t) + c′ − 1 = {c′ − 1, c′ + 1,−2} ∈ Ĥn is hete-
rochromatic, which is impossible.

3. The Case 1mod 12

When n ≡ 1mod 3 the bound for the number of triples in a tight 3-graph is
n(n−2)+1

3 . This bound can be reached in a 3-graph in which the trace of one
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vertex is a cycle and the trace of any other vertex is a tree. Such 3-graph
will be called an almost 3-tree.

Let M be a 3-tree with n vertices with n ≡ 0 mod 3 and suppose that
M has a set T of n

3 disjoint triples. Let C be a cycle passing through
every vertex of M. Define the 3-graph M̃ obtained from M by the following
procedure:
• add a new vertex ∗,
• add the triples {∗, v, w} where {v, w} is an edge of C,
• delete all the triples of T.

It is easy to see, that if all the traces of vertices in M̃ are connected then
M̃ is an almost 3-tree. In particular, if we can prove that M̃ is tight then
we have a proof of the conjecture on the minimum size of tight 3-graph for
the case n + 1.

In this section we construct a 3-graph H̃n which is an almost 3-tree and
prove that it is tight.

Recall our definition of Hn from Section 1

Hn = (Zn, ({εa | a ∈ An} ∪ {ζb, ηb | b ∈ Bn}) + Zn) ,

where
εa = {0, 2n

3 , 2a}, ζb = {0, 2, 3− 4b} , ηb = {0, 2n
3 + 2b, 4b− 1},

An = {1, . . . , n
6 } ⊂ Zn, Bn = {1, . . . , n

12} ⊂ An

and n ≡ 0mod 12.
Let T be the set of triples {εn/6 + Zn} and C be the cycle

{{x, x + 1} | x ∈ Zn}. Let H̃n be the 3-graph obtained as above, i.e.,

H̃n =
(
Zn ∪ {∗},

({
εa | a ∈ An\{n

6 }
} ∪ {ζb, ηb | b ∈ Bn} ∪ {∗, 0, 1}) + Zn

)

where, by definition, ∗+ x = ∗ for all x ∈ Zn.

Theorem 8. H̃n is tight.

Proof. The proof bellow is not valid for the case n = 12. However, for
that case we can prove that H̃12 is tight checking all possible colorings (the
number of colorings can be reduced using the symmetries of H̃12 and the
fact that H12 is tight).

So, let s = n/12, s ≥ 2 and let f be a non heterochromatic 3-coloring
of H̃n.
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There must be a vertex x in Zn such that f(x) = f(∗) for if this is
not the case, then there are two consecutive vertices y, y + 1 such that
f(y) 6= f(y + 1) and therefore the triple {∗, y, y + 1} gives a contradiction.

Then f is surjective in Zn. By Theorem 7 there must be an heterochro-
matic triple ε2s + x ∈ Hn. Since x 7→ x + 1 is an automorphism of Hn and
H̃n, we can suppose that x = 0. Let f(0) = R, f(4s) = B and f(8s) = Y.

We divide the proof in two cases when f(0) = f(2) and otherwise.
If f(0) = f(2) = R then

ε1 + 8s = {8s, 4s, 8s + 2} ,

ε2s−1 + 2 = {2, 8s + 2, 4s} ,

f(2) = R, f(4s) = B, f(8s) = Y.




⇒ f(8s + 2) = B,

εs = {0, 8s, 2s} , εs−1 + 2 = {2, 8s + 2, 2s} ,

f(0) = R, f(2) = R, f(8s) = Y, f(8s + 2) = B.

}
⇒ f(2s) = R,

ζ1 + 8s = {8s, 8s + 2, 8s− 1} ,

ηs + 4s = {4s, 8s− 1, 2s} ,

f(2s) = R, f(4s) = B, f(8s) = Y, f(8s + 2) = B.




⇒ f(8s− 1) = B,

ε1 + 4s = {4s, 0, 4s + 2} ,

ε2s−1 + 4s + 2 = {4s + 2, 2, 8s} ,

f(0) = R, f(2) = R, f(4s) = B, f(8s) = Y.




⇒ f(4s + 2) = R,

ε2s−2 = {0, 8s, 4s− 4} ,

ε2s−3 + 2 = {2, 8s + 2, 4s− 4} ,

f(0) = R, f(2) = R, f(8s) = Y, f(8s + 2) = B.




⇒ f(4s− 4) = R,

ε2s−2 + 4s = {4s, 0, 8s− 4} ,

ε2 + 8s− 4 = {8s− 4, 4s− 4, 8s} ,

f(0) = R, f(4s− 4) = R, f(4s) = B, f(8s) = Y.




⇒ f(8s− 4) = R
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and

η1 + 8s = {8s, 8s + 3, 4s + 2} ,

η2 + 8s− 4 = {8s− 4, 8s + 3, 4s} ,

f(4s) = B, f(4s + 2) = R, f(8s− 4) = R, f(8s) = Y.




⇒ f(8s + 3) = R.

Moreover, if f(8s + 1) = R then no matter the color of ∗ is, some of the
triples {∗, 8s−1, 8s}, {∗, 8s, 8s+1} or {∗, 8s+1, 8s+2} gives a contradiction.
Hence

ζs + 8s− 1 = {8s− 1, 8s + 1, 4s + 2} ∈ H̃n,

f(4s + 2) = R, f(8s− 1) = B, f(8s + 1) 6= R.

}
⇒ f(8s + 1) = B

and the triple ζ1 + 8s + 1 = {8s + 1, 8s + 3, 8s} gives a contradiction.
Now, suppose that f(0) 6= f(2). If f(4s) = f(4s + 2) then using the

automorphism x 7→ x − 4s we reduce the proof to the first case. By the
same argument f(8s) 6= f(8s + 2). Moreover,

ε1 = {0, 8s, 2} ∈ H̃n,

f(0) = R, f(8s) = Y, f(2) 6= R.

}
⇒ f(2) = Y,

ε1 + 4s = {4s, 0, 4s + 2} ∈ H̃n,

f(0) = R, f(4s) = B, f(4s + 2) 6= B.

}
⇒ f(4s + 2) = R,

ε1 + 8s = {8s, 4s, 8s + 2} ∈ H̃n,

f(4s) = B, f(8s) = Y, f(8s + 2) 6= Y.

}
⇒ f(8s + 2) = B

and

ε1 + 2 = {2, 8s + 2, 4} , ε2 = {0, 8s, 4} ∈ H̃n,

f(0) = R, f(2) = Y, f(8s) = Y, f(8s + 2) = B.

}
⇒ f(4) = Y.

Again, using the automorphism x 7→ x − 2 we reduce the proof to the first
case.
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