THE SIZE OF MINIMUM 3-TREES:
 CASES 0 AND 1 MOD 12

Jorge L. Arocha
Instituto de Matemáticas, UNAM
Ciudad Universitaria, Circuito exterior
México 04510
e-mail: arocha@math.unam.mx

AND
Joaquín Tey
Departamento de Matemáticas, UAM-Iztapalapa
Ave. Sn. Rafael Atlixco \#186, Col. Vicentina
México 09340
e-mail: jtey@xanum.uam.mx

Abstract

A 3-uniform hypergraph is called a minimum 3-tree, if for any 3coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is $\left\lceil\frac{n(n-2)}{3}\right\rceil$ for any number of vertices n. Here we give a proof of this conjecture for any $n \equiv 0,1 \bmod 12$.

Keywords: tight hypergraphs, triple systems.
2000 Mathematics Subject Classification: 05B07, 05C65, 05D10.

1. Introduction

A 3-graph is an ordered pair of sets $G=(V, \Delta)$. The elements of V are called vertices. The elements of Δ are subsets of vertices of cardinality 3 and are called triples. Given a 3 -graph $G=(V, \Delta)$ and a vertex v the trace
$\operatorname{Tr}_{G}(v)$ of v in G is the graph with vertex set $V \backslash\{v\}$, and a pair $\{x, y\}$ is an edge of $\operatorname{Tr}_{G}(v)$ if and only if $\{v, x, y\}$ is a triple of G.

A 3-coloring of a 3 -graph is a surjective map from the vertex set onto a set of three elements. A 3 -graph is said to be tight (see [1]) if any 3coloring has a heterochromatic triple i.e., a triple whose vertices are colored differently. A tight 3 -graph is called a 3 -tree if whenever we delete a triple from it we obtain an untight 3 -graph. Different 3 -trees on n vertices may have a different number of triples. From the results of [4], we know that the maximum number of triples in any 3 -tree is $\binom{n-1}{2}$. It is not difficult to show that the minimum number of triples in such a 3 -tree is not less than $\left\lceil\frac{n(n-2)}{3}\right\rceil$. In [1] it was proved that this bound is sharp for any n of the form $\frac{p-1}{2}$ where p is a prime number, and it was conjectured that the bound is sharp for any n. In [2] the case when $n \equiv 3,4 \bmod 6$ was solved and in [3] a full proof for the case $n \equiv 2 \bmod 3$ is given.

Here we give the proof of the cases $n \equiv 0,1 \bmod 12$. The case $1 \bmod 12$ is solved via a generalization of a construction from [2].

2. The Case $0 \bmod 12$

In order to prove the conjecture for any n it is sufficient to construct a 3 -tree with $\left\lceil\frac{n(n-2)}{3}\right\rceil$ triples. In this section we deal only with the case $n \equiv 0 \bmod 12$.

Let us consider the cyclic group $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$, its elements are the vertices of the 3-graph H_{n} defined below.

Of course, we know how to add vertices. If $e=\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triple and y is a vertex, then $e+y=\left\{x_{1}+y, x_{2}+y, x_{3}+y\right\}$. If F is any set of triples and S any set of vertices then $F+S=\{f+s \mid f \in F, s \in S\}$. It is important to observe that all operations must be interpreted in the appropriate cyclic group.

Denote by $\mathbb{A}_{n}=\left\{1, \ldots, \frac{n}{6}\right\} \subset \mathbb{Z}_{n}$ and $\mathbb{B}_{n}=\left\{1, \ldots, \frac{n}{12}\right\} \subset \mathbb{A}_{n}$. For $a \in \mathbb{A}_{n}$ and $b \in \mathbb{B}_{n}$, let us consider the following triples:

$$
\begin{aligned}
\varepsilon_{a} & =\left\{0,2 \frac{n}{3}, 2 a\right\} \\
\zeta_{b} & =\{0,2,3-4 b\} \\
\eta_{b} & =\left\{0,2 \frac{n}{3}+2 b, 4 b-1\right\}
\end{aligned}
$$

Those triples generate the set of triples of the 3 -graph H_{n} i.e., any triple will be of the form $\varepsilon_{a}+y$ or $\zeta_{b}+y$ or $\eta_{b}+y$ where $y \in \mathbb{Z}_{n}$. Formally, denote

$$
H_{n}=\left(\mathbb{Z}_{n},\left(\left\{\varepsilon_{a} \mid a \in \mathbb{A}_{n}\right\} \cup\left\{\zeta_{b}, \eta_{b} \mid b \in \mathbb{B}_{n}\right\}\right)+\mathbb{Z}_{n}\right) .
$$

Our purpose is to show that H_{n} is a 3 -tree with $\frac{n(n-2)}{3}$ triples.
Proposition 1. H_{n} has $\frac{n(n-2)}{3}$ triples.
Proof. There are $n\left(\frac{n}{6}-1\right)+\frac{n}{3}$ triples generated by ε_{a}. The number of triples generated by ζ_{b} and η_{b} is $\frac{n^{2}}{6}$. Those triples are all different and a straightforward calculation gives the result.

Let us construct an auxiliary hypergraph. For this, let $m \equiv 0 \bmod 3$ and denote $\alpha_{a}=\left\{0,2 \frac{m}{3}, a\right\}$.

The hypergraph G_{m} is by definition $\left(\mathbb{Z}_{m},\left\{\alpha_{a} \left\lvert\, a \in\left\{1, \ldots, \frac{m}{3}\right\}\right.\right\}+\mathbb{Z}_{m}\right)$.
Observe that the hypergraph generated by the set of even vertices in H_{n} contains a copy of $G_{n / 2}$ and also the hypergraph generated by the set of odd ones by the automorphism $x \mapsto x+1$ of H_{n}.

Lemma 2. Let f be a non heterochromatic 3-coloring of G_{m}. Then, all the cosets of \mathbb{Z}_{m} by the subgroup $\left\langle\frac{m}{3}\right\rangle \cong \mathbb{Z}_{3}$ are monochromatic.

Proof. Denote $t=\frac{m}{3}$. Let f be a red-blue-yellow 3 -coloring for which the lemma is false. Let $y \in \mathbb{Z}_{m}$, observe that for the 3-coloring $f+y: a \mapsto$ $f(a+y)$ the lemma is also false. So we can suppose that $\left|f\left(\alpha_{t}\right)\right|=2$, and $f(0)=f(-t)=R$ and $f(t)=B$. So for any $a \in\{1, \ldots, t\}$ we have

$$
\begin{gathered}
\alpha_{a}+t=\{t, 0, a+t\} \in G_{m} \\
\text { and } f(0)=R, f(t)=B . \\
\left.\begin{array}{c}
\alpha_{a}-t=\{-t, t, a-t\} \in G_{m} \\
\text { and } f(-t)=R, f(t)=B
\end{array}\right\} \Rightarrow f(a+t) \neq Y, \\
\end{gathered}
$$

Therefore, since any 3 -coloring is a surjective map there must be an $x \in$ $\{1, \ldots, t-1\}$ such that $f(x)=Y$. In this case we have

$$
\left.\begin{array}{c}
\alpha_{t-x}+x=\{x, x-t, t\}, \alpha_{x}-t=\{-t, t, x-t\} \in G_{m} \\
\text { and } f(-t)=R, f(t)=B, f(x)=Y .
\end{array}\right\} \Rightarrow f(x-t)=B
$$

$\left.\begin{array}{c}\alpha_{t-x}+x+t=\{x+t, x,-t\}, \alpha_{x}+t=\{t, 0, x+t\} \in G_{m} \\ \text { and } f(-t)=f(0)=R, f(t)=B, f(x)=Y .\end{array}\right\} \Rightarrow f(x+t)=R$
and this is a contradiction because $\alpha_{t}+x=\{x, x-t, x+t\} \in G_{m}$.
Of course, the lemma is equivalent to the fact that any non heterochromatic 3 -coloring of G_{m} factorizes through a 3 -coloring of the quotient hypergraph $G_{m} /\left\langle\frac{m}{3}\right\rangle$, i.e., the 3 -graph whose vertices are the cosets modulo $\left\langle\frac{m}{3}\right\rangle$ and the triples are the images of the triples in G_{m} by the natural map (see [1] for a more formal definition).

Let us prove a key property of the hypergraph H_{n}.
Lemma 3. If f is a non heterochromatic 3 -coloring of H_{n}, then f is surjective in the set of odd vertices or is surjective in the set of even vertices.

Proof. For two vertices $x, y \in \mathbb{Z}_{n}$ define the distance between them as the minimal natural number d such that $(d \bmod n)+x=y$ or $(d \bmod n)+y=x$.

Let f be a non heterochromatic 3 -coloring of H_{n}. Both cosets, $\langle 2\rangle$ and $\langle 2\rangle+1$ can not be monochromatic.

Suppose that $f(\langle 2\rangle+1)=Y$, then $f(\langle 2\rangle)=\{R, B\}$ and since $x \mapsto x+2$ is an automorphism of H_{n} we also may assume that $f(0)=R$ and $f(2)=$ B. Therefore the triple $\zeta_{1}=\{0,2,-1\}$ contradicts the fact that f is non heterochromatic. So, both cosets are bichromatic.

Let Y be the common color to both cosets. Let x and y be vertices such that $f(\{x, y\})=\{R, B\}$ and the distance between x and y is minimal. Since $x \mapsto x+1$ is an automorphism of H_{n} we may assume that $y=0$, $f(0)=R$ and $f(x)=B$. Therefore, $f(\langle 2\rangle)=\{R, Y\}, f(\langle 2\rangle+1)=\{B, Y\}$ and $x \in\left\{\frac{n}{2}+1, \frac{n}{2}+3, \ldots,-1\right\}$. Of course, by the minimality of the distance between x and y, for all $z \in\{x+1, x+2, \ldots,-1\}$ we have $f(z)=Y$.

For $x \in\left\{\frac{n}{2}+1, \frac{n}{2}+3, \ldots, 2 \frac{n}{3}-1\right\}$, let d be the solution in \mathbb{B}_{n} of $2 \frac{n}{3}-$ $2 d+1=x$. In this case the triple $\eta_{d}+1-4 d=\{1-4 d, 0, x\} \in H_{n}$ is heterochromatic and this is a contradiction.

On the other hand, let $x \in\left\{2 \frac{n}{3}+1,2 \frac{n}{3}+3, \ldots,-1\right\}$.
If $x \equiv 1 \bmod 4$ then let us consider the solution d in \mathbb{B}_{n} of $1-4 d=x$. In this case, the triple $\zeta_{d}-2=\{-2,0, x\} \in H_{n}$ gives a contradiction.

If $x \equiv 3 \bmod 4$ then let d be the solution in \mathbb{B}_{n} of $3-4 d=x$. In this case we have

$$
\left.\begin{array}{c}
\eta_{d}+x=\left\{x, x+2 \frac{n}{3}+2 d, 2\right\} \in H_{n}, \\
f(x)=B, f\left(x+2 \frac{n}{3}+2 d\right)=Y, f(2) \neq B .
\end{array}\right\} \Rightarrow f(2)=Y
$$

and the triple $\zeta_{d}=\{0,2, x\} \in H_{n}$ is heterochromatic, which is impossible.
Lemma 4. If f is a non heterochromatic 3 -coloring of H_{n}, then f is surjective in the set of odd vertices and is also surjective in the set of even vertices.

Proof. Let f be a non heterochromatic 3 -coloring of H_{n} then by the preceding lemma we may suppose that $f(\langle 2\rangle)=\{R, B, Y\}$ and $R \notin f(\langle 2\rangle+1)$.

Since the hypergraph generated by $\langle 2\rangle$ is isomorphic to $G_{n / 2}$, hence by Lemma 2, for all $\alpha \in\langle 2\rangle$ the coset $\left\langle\frac{n}{3}\right\rangle+\alpha$ must be monochromatic. So, we can suppose that $f\left(\left\langle\frac{n}{3}\right\rangle\right)=R$ and $f\left(\left\langle\frac{n}{3}\right\rangle+2\right)=B$.

For a better understanding, we urge the reader to remember (see the beginning of Section 2) that we can add a set of vertices to a triple thus obtaining in this way a set of triples.

For all $b \in \mathbb{B}_{n}$ we have that

$$
\left.\begin{array}{c}
\zeta_{b}+\left\langle\frac{n}{3}\right\rangle=\{0,2,3-4 b\}+\left\langle\frac{n}{3}\right\rangle, \\
f\left(\left\langle\frac{n}{3}\right\rangle\right)=R, f\left(\left\langle\frac{n}{3}\right\rangle+2\right)=B \\
\text { and } R \notin f\left(\left\langle\frac{n}{3}\right\rangle+3-4 b\right) .
\end{array}\right\} \Rightarrow f\left(\left\langle\frac{n}{3}\right\rangle+3-4 b\right)=B .
$$

Observe that

$$
\bigcup_{b \in \mathbb{B}_{n}}\left(\left\langle\frac{n}{3}\right\rangle+3-4 b\right)=\bigcup_{b \in \mathbb{B}_{n}}\left(\left\langle\frac{n}{3}\right\rangle+4 b-1\right)
$$

and therefore for any $b \in \mathbb{B}_{n}, f\left(\left\langle\frac{n}{3}\right\rangle+4 b-1\right)=B$ holds.
On the other hand

$$
\left.\begin{array}{c}
\zeta_{b}+4 b-3+\left\langle\frac{n}{3}\right\rangle=\{4 b-3,4 b-1,0\}+\left\langle\frac{n}{3}\right\rangle, \\
f\left(\left\langle\frac{n}{3}\right\rangle\right)=R, f\left(\left\langle\frac{n}{3}\right\rangle+4 b-1\right)=B \\
\text { and } R \notin f\left(\left\langle\frac{n}{3}\right\rangle+4 b-3\right) .
\end{array}\right\} \Rightarrow f\left(\left\langle\left\langle\frac{n}{3}\right\rangle+4 b-3\right)=B .\right.
$$

Since every odd vertex is either in some coset of the form $\left\langle\frac{n}{3}\right\rangle+4 b-1$ or in some coset of the form $\left\langle\frac{n}{3}\right\rangle+4 b-3$, hence $f(\langle 2\rangle+1)=B$.

Let $x \in\langle 2\rangle$ a vertex colored yellow. Recall that $f\left(\left\langle\frac{n}{3}\right\rangle+x\right)=Y$ so we can suppose that $x \in\left\{2,4, \ldots, \frac{n}{3}-2\right\}=2 \mathbb{B}_{n} \cup\left(\frac{n}{3}-2 \mathbb{B}_{n}\right)$. If $x=2 b, b \in \mathbb{B}_{n}$ we have the heterochromatic triple $\eta_{b}=\left\{0, x-\frac{n}{3}, 4 b-1\right\} \in H_{n}$. In any other case, $x=\frac{n}{3}-2 b, b \in \mathbb{B}_{n}$ and the triple $\eta_{b}+x=\left\{x, 0, \frac{n}{3}+2 b-1\right\} \in H_{n}$ is heterochromatic and this is a contradiction.

Lemma 5. If f is a non heterochromatic 3-coloring of H_{n}, then all the cosets of \mathbb{Z}_{n} by the subgroup $\left\langle\frac{n}{3}\right\rangle \cong \mathbb{Z}_{3}$ are monochromatic.

Proof. Let f be a non heterochromatic 3-coloring of H_{n}, then by Lemma 4 f is surjective in the set of odd vertices and in the set of even vertices. Both sets of vertices induce hypergraphs that are isomorphic to $G_{n / 2}$. By Lemma 2 the cosets $\bmod (n / 6)$ in $G_{n / 2}$ are monochromatic but these cosets are precisely the cosets $\bmod (n / 3)$ in \mathbb{Z}_{n} (by the two isomorphisms).

Lemma 6. H_{n} is tight if and only if $H_{n} /\left\langle\frac{n}{3}\right\rangle$ is tight.
Proof. Any non heterochromatic 3-coloring f^{\prime} of $H_{n} /\left\langle\frac{n}{3}\right\rangle$ lifts to a non heterochromatic 3-coloring f of H_{n}. On the other hand (by the preceding lemma) any non heterochromatic 3 -coloring f of H_{n} factorizes (i.e., $f=$ $f^{\prime} \circ$ nat) through a non heterochromatic 3-coloring f^{\prime} of $H_{n} /\left\langle\frac{n}{3}\right\rangle$.

Theorem 7. H_{n} is tight.
Proof. Denote $\widehat{H}_{n}=H_{n} /\left\langle\frac{n}{3}\right\rangle$. Let f^{\prime} be a non heterochromatic 3-coloring of H_{n}. As in the preceding lemma the map f^{\prime} factorizes through a non heterochromatic 3-coloring f of \widehat{H}_{n}, moreover by Lemma $4 f^{\prime}$ (and so f) is surjective in the set of odd and in the set of even vertices. Denote by $t=\frac{n}{3}$ and recall that $f: \mathbb{Z}_{n} /\left\langle\frac{n}{3}\right\rangle \cong \mathbb{Z}_{t} \rightarrow\{R, B, Y\}$ is a non heterochromatic red-blue-yellow 3 -coloring of \widehat{H}_{n}.

First we shall prove that there is an x such that $f(x)=f(x+1)$. Suppose not. If there is no y such that $f(y)=f(y+2)$ then, $t \equiv 0 \bmod 3$, the cosets $\langle 3\rangle,\langle 3\rangle+1$ and $\langle 3\rangle+2$ are monochromatic and the triple $\zeta_{\frac{t}{4}-1} \bmod t=$ $\{0,2,7\} \in \widehat{H}_{n}$ gives a contradiction. So, there exists $y \in \mathbb{Z}_{t}$ such that $f(y)=f(y+2)=R$. If $f(y+1)=R$ or $f(y+3)=R$ then we are done. Let $f(y+1)=B$. The triple $\left(\zeta_{1} \bmod t\right)+y+1=\{y+1, y+3, y\} \in \widehat{H}_{n}$ shows that $f(y+3)=B$. Taking as a new y the vertex $y+1$ and repeating
this argument the needed number of times we conclude that there is not a yellow vertex which is a contradiction.

Therefore we can suppose that $f(0)=R, f(1)=f(2)=B$.
For all $b \in \mathbb{B}_{n}=\left\{1, \ldots, \frac{n}{12}\right\} \subset \mathbb{Z}_{n}$ denote $b^{\prime}=-4 b \bmod t \in \mathbb{Z}_{t}$. We have that

$$
\left.\begin{array}{c}
\zeta_{b} \bmod t=\left\{0,2, b^{\prime}+3\right\} \in \widehat{H}_{n}, \\
f(0)=R, f(2)=B
\end{array}\right\} \Rightarrow f\left(b^{\prime}+3\right) \neq Y .
$$

Observe that $\left\{b^{\prime}: b \in \mathbb{B}_{n}\right\}=\langle 4\rangle \subset \mathbb{Z}_{t}$. Since f is surjective in the set of odd vertices there must be a vertex $c^{\prime} \in\langle 4\rangle$ such that $f\left(c^{\prime}+1\right)=Y$ and $c^{\prime} \neq 0$. Let c be the element in \mathbb{B}_{n} such that $c^{\prime}=-4 c \bmod t$. We have that

$$
\left.\begin{array}{c}
\left(\zeta_{\frac{n}{12}} \bmod t\right)-2=\{-2,0,1\} \in \widehat{H}_{n}, \\
\left(\zeta_{c} \bmod t\right)-2=\left\{-2,0, c^{\prime}+1\right\} \in \widehat{H}_{n} \\
\text { and } f(0)=R, f(1)=B, f\left(c^{\prime}+1\right)=Y .
\end{array}\right\} \Rightarrow f(-2)=R .
$$

Now, let d be the element in \mathbb{B}_{n} such that $c^{\prime}+4=4 d \bmod t$. We have that

$$
\left.\begin{array}{c}
\left(\zeta_{d} \bmod t\right)+c^{\prime}+1=\left\{c^{\prime}+1, c^{\prime}+3,0\right\} \in \widehat{H}_{n}, \\
\zeta_{c} \bmod t=\left\{0,2, c^{\prime}+3\right\} \in \widehat{H}_{n} \\
\text { and } f(0)=R, f(2)=B, f\left(c^{\prime}+1\right)=Y .
\end{array}\right\} \Rightarrow f\left(c^{\prime}+3\right)=R .
$$

Since f is surjective in the set of even vertices there must be a vertex $x \in\langle 2\rangle$ such that $f(x)=B$. If $x \in\langle 4\rangle$ then $b^{\prime}=x-c^{\prime}-4 \in\langle 4\rangle$. In this case the triple

$$
\left(\zeta_{b} \bmod t\right)+c^{\prime}+1=\left\{c^{\prime}+1, c^{\prime}+3, x\right\} \in \widehat{H}_{n}
$$

gives a contradiction. If $x \notin\langle 4\rangle$ then, $b^{\prime}=x-c^{\prime}-2 \in\langle 4\rangle$ and we have

$$
\left.\begin{array}{c}
\left(\zeta_{b} \bmod t\right)+c^{\prime}-1=\left\{c^{\prime}-1, c^{\prime}+1, x\right\} \in \widehat{H}_{n} \\
f\left(c^{\prime}-1\right) \neq Y, f\left(c^{\prime}+1\right)=Y, f(x)=B .
\end{array}\right\} \Rightarrow f\left(c^{\prime}-1\right)=B
$$

Therefore, the triple $\left(\zeta_{d} \bmod t\right)+c^{\prime}-1=\left\{c^{\prime}-1, c^{\prime}+1,-2\right\} \in \widehat{H}_{n}$ is heterochromatic, which is impossible.

3. The Case $1 \bmod 12$

When $n \equiv 1 \bmod 3$ the bound for the number of triples in a tight 3 -graph is $\frac{n(n-2)+1}{3}$. This bound can be reached in a 3 -graph in which the trace of one
vertex is a cycle and the trace of any other vertex is a tree. Such 3-graph will be called an almost 3 -tree.

Let M be a 3 -tree with n vertices with $n \equiv 0 \bmod 3$ and suppose that M has a set T of $\frac{n}{3}$ disjoint triples. Let C be a cycle passing through every vertex of M. Define the 3 -graph \widetilde{M} obtained from M by the following procedure:

- add a new vertex $*$,
- add the triples $\{*, v, w\}$ where $\{v, w\}$ is an edge of C,
- delete all the triples of T.

It is easy to see, that if all the traces of vertices in \widetilde{M} are connected then \widetilde{M} is an almost 3 -tree. In particular, if we can prove that \widetilde{M} is tight then we have a proof of the conjecture on the minimum size of tight 3-graph for the case $n+1$.

In this section we construct a 3 -graph $\widetilde{H_{n}}$ which is an almost 3 -tree and prove that it is tight.

Recall our definition of H_{n} from Section 1

$$
H_{n}=\left(\mathbb{Z}_{n},\left(\left\{\varepsilon_{a} \mid a \in \mathbb{A}_{n}\right\} \cup\left\{\zeta_{b}, \eta_{b} \mid b \in \mathbb{B}_{n}\right\}\right)+\mathbb{Z}_{n}\right)
$$

where

$$
\begin{aligned}
\varepsilon_{a} & =\left\{0,2 \frac{n}{3}, 2 a\right\}, \zeta_{b}=\{0,2,3-4 b\}, \eta_{b}=\left\{0,2 \frac{n}{3}+2 b, 4 b-1\right\} \\
\mathbb{A}_{n} & =\left\{1, \ldots, \frac{n}{6}\right\} \subset \mathbb{Z}_{n}, \mathbb{B}_{n}=\left\{1, \ldots, \frac{n}{12}\right\} \subset \mathbb{A}_{n}
\end{aligned}
$$

and $n \equiv 0 \bmod 12$.
Let T be the set of triples $\left\{\varepsilon_{n / 6}+\mathbb{Z}_{n}\right\}$ and C be the cycle $\left\{\{x, x+1\} \mid x \in \mathbb{Z}_{n}\right\}$. Let \widetilde{H}_{n} be the 3 -graph obtained as above, i.e.,

$$
\widetilde{H}_{n}=\left(\mathbb{Z}_{n} \cup\{*\},\left(\left\{\varepsilon_{a} \left\lvert\, a \in \mathbb{A}_{n} \backslash\left\{\frac{n}{6}\right\}\right.\right\} \cup\left\{\zeta_{b}, \eta_{b} \mid b \in \mathbb{B}_{n}\right\} \cup\{*, 0,1\}\right)+\mathbb{Z}_{n}\right)
$$

where, by definition, $*+x=*$ for all $x \in \mathbb{Z}_{n}$.
Theorem 8. \widetilde{H}_{n} is tight.
Proof. The proof bellow is not valid for the case $n=12$. However, for that case we can prove that \widetilde{H}_{12} is tight checking all possible colorings (the number of colorings can be reduced using the symmetries of \widetilde{H}_{12} and the fact that H_{12} is tight).

So, let $s=n / 12, s \geq 2$ and let f be a non heterochromatic 3-coloring of \widetilde{H}_{n}.

There must be a vertex x in \mathbb{Z}_{n} such that $f(x)=f(*)$ for if this is not the case, then there are two consecutive vertices $y, y+1$ such that $f(y) \neq f(y+1)$ and therefore the triple $\{*, y, y+1\}$ gives a contradiction.

Then f is surjective in \mathbb{Z}_{n}. By Theorem 7 there must be an heterochromatic triple $\varepsilon_{2 s}+x \in H_{n}$. Since $x \mapsto x+1$ is an automorphism of H_{n} and \widetilde{H}_{n}, we can suppose that $x=0$. Let $f(0)=R, f(4 s)=B$ and $f(8 s)=Y$.

We divide the proof in two cases when $f(0)=f(2)$ and otherwise. If $f(0)=f(2)=R$ then

$$
\left.\left.\begin{array}{c}
\varepsilon_{1}+8 s=\{8 s, 4 s, 8 s+2\}, \\
\varepsilon_{2 s-1}+2=\{2,8 s+2,4 s\}, \\
f(2)=R, f(4 s)=B, f(8 s)=Y .
\end{array}\right\} \Rightarrow f(8 s+2)=B,, ~ \begin{array}{c}
\varepsilon_{s}=\{0,8 s, 2 s\}, \varepsilon_{s-1}+2=\{2,8 s+2,2 s\}, \\
f(0)=R, f(2)=R, f(8 s)=Y, f(8 s+2)=B .
\end{array}\right\} \Rightarrow f(2 s)=R,
$$

and

$$
\left.\begin{array}{c}
\eta_{1}+8 s=\{8 s, 8 s+3,4 s+2\} \\
\eta_{2}+8 s-4=\{8 s-4,8 s+3,4 s\} \\
f(4 s)=B, f(4 s+2)=R, f(8 s-4)=R, f(8 s)=Y .
\end{array}\right\} \Rightarrow f(8 s+3)=R .
$$

Moreover, if $f(8 s+1)=R$ then no matter the color of $*$ is, some of the triples $\{*, 8 s-1,8 s\},\{*, 8 s, 8 s+1\}$ or $\{*, 8 s+1,8 s+2\}$ gives a contradiction. Hence

$$
\left.\begin{array}{c}
\zeta_{s}+8 s-1=\{8 s-1,8 s+1,4 s+2\} \in \widetilde{H}_{n} \\
f(4 s+2)=R, f(8 s-1)=B, f(8 s+1) \neq R .
\end{array}\right\} \Rightarrow f(8 s+1)=B
$$

and the triple $\zeta_{1}+8 s+1=\{8 s+1,8 s+3,8 s\}$ gives a contradiction.
Now, suppose that $f(0) \neq f(2)$. If $f(4 s)=f(4 s+2)$ then using the automorphism $x \mapsto x-4 s$ we reduce the proof to the first case. By the same argument $f(8 s) \neq f(8 s+2)$. Moreover,

$$
\left.\begin{array}{c}
\varepsilon_{1}=\{0,8 s, 2\} \in \widetilde{H}_{n}, \\
f(0)=R, f(8 s)=Y, f(2) \neq R .
\end{array}\right\} \Rightarrow f(2)=Y,
$$

and

$$
\left.\begin{array}{c}
\varepsilon_{1}+2=\{2,8 s+2,4\}, \varepsilon_{2}=\{0,8 s, 4\} \in \widetilde{H}_{n} \\
f(0)=R, f(2)=Y, f(8 s)=Y, f(8 s+2)=B
\end{array}\right\} \Rightarrow f(4)=Y
$$

Again, using the automorphism $x \mapsto x-2$ we reduce the proof to the first case.

References

[1] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326.
[2] J.L. Arocha and J. Tey, The size of minimum 3 -trees: Cases 3 and $4 \bmod 6$, J. Graph Theory 30 (1999) 157-166.
[3] J.L. Arocha and J. Tey, The size of minimum 3-trees: Case $2 \bmod 3$, Bol. Soc. Mat. Mexicana (3) 8 no. 1 (2002) 1-4.
[4] L. Lovász, Topological and algebraic methods in graph theory, in: Graph Theory and Related Topics, Proceedings of Conference in Honour of W.T. Tutte, Waterloo, Ontario 1977, (Academic Press, New York, 1979) 1-14.

Received 26 November 2001
Revised 6 May 2002

