PERFECT CONNECTED-DOMINANT GRAPHS

IGOR EDMUNDOVICH ZVEROVICH

RUTCOR, Rutgers University 640 Bartholomew Rd., Piscataway, NJ 08854 USA e-mail: igor@rutgers.rutcor.edu

Abstract

If D is a dominating set and the induced subgraph G(D) is connected, then D is a *connected* dominating set. The minimum size of a connected dominating set in G is called *connected domination number* $\gamma_c(G)$ of G. A graph G is called a *perfect connected-dominant* graph if $\gamma(H) = \gamma_c(H)$ for each connected induced subgraph H of G.

We prove that a graph is a perfect connected-dominant graph if and only if it contains no induced path P_5 and induced cycle C_5 .

 ${\bf Keywords:}\ {\bf Connected\ domination,\ perfect\ connected\ dominant\ graph.}$

2000 Mathematics Subject Classification: 05C69.

All graphs will be finite and undirected, without loops or multiple edges. Let G = (V, E) be a graph. As usual, N(u) denotes the neighborhood of a vertex $u \in V$; $N[u] = \{u\} \cup N(u)$. For a set $D \subseteq V$ we put $N[D] = \bigcup_{u \in D} N[u]$. We say that a set D dominates a set X if $X \subseteq N[D]$. If D dominates V then D is a dominating set of G. A minimum dominating set of G has the minimum cardinality among all dominating sets of G. The domination number $\gamma(G)$ of G is the cardinality of a minimum dominating set of G.

The subgraph of G induced by a set $X \subseteq V(G)$ is denoted by G(X). If D is a dominating set and G(D) is a connected subgraph, then D is called a *connected* dominating set. Accordingly, the minimum size of a connected

Supported by the Office of Naval Research (Grant N0001492F1375), NSF (Grant DMS-9806389), INTAS and the Belarus Government (Project INTAS-BELARUS 97-0093).

dominating set in G is called *connected domination number* $\gamma_c(G)$ of G. Clearly,

$$\gamma(G) \le \gamma_c(G)$$

for any connected graph G.

Definition 1. A graph G is called a *perfect connected-dominant* graph if $\gamma(H) = \gamma_c(H)$ for each connected induced subgraph H of G.

Theorem 1. A graph G is a perfect connected-dominant graph if and only if G contains no induced path P_5 and induced cycle C_5 .

Proof. Necessity is clear, since both P_5 and C_5 are connected, $\gamma(P_5) = \gamma(C_5) = 2$ and $\gamma_c(P_5) = \gamma_c(C_5) = 3$.

Sufficiency. Suppose that the statement is not true and let G be a minimal counterexample, i.e., G is a connected graph without induced P_5 and C_5 , but $\gamma(G) < \gamma_c(G)$.

We choose a minimum dominating set D of G such that H = G(D) has the minimal number of connected components among all minimum dominating sets of G. Since $\gamma(G) < \gamma_c(G)$, H is a disconnected subgraph. Let us fix two connected components K and L of H.

By connectivity of G, there is a shortest path $P = (u_1, u_2, \ldots, u_t)$ such that $u_1 \in K$ and $u_t \in L$.

Claim 1. t = 3.

Proof. Clearly, $t \ge 3$. Since P_5 is not an induced subgraph of $G, t \le 4$. Thus, $t \in \{3, 4\}$.

Suppose that t = 4. First we show that

$$D' = (D \setminus \{u_1, u_4\}) \cup \{u_2, u_3\}$$

is a dominating set of G. If it is not so, then there is a vertex v such that D' does not dominate v. But D is a dominating set of G. Hence v is adjacent to at least one of u_1, u_4 (since $D \setminus D' = \{u_1, u_4\}$). Then $\{u_1, u_2, u_3, u_4, v\}$ induces either P_5 or C_5 , a contradiction.

Thus, D' is a minimum dominating set of G. By the choice of D, the number of components in G(D') is not less than the number of components in G(D). It follows that the set $(K \setminus \{u_1\}) \cup (L \setminus \{u_4\}) \cup \{u_2, u_3\}$ induces a subgraph F with at least two components. Let M be a component of F

which does not contain u_2 and u_3 . We may assume that $M \subseteq K$. By connectivity of K, there is a vertex $w \in M$ such that u_1 and w are adjacent.

Then $\{w, u_1, u_2, u_3, u_4\}$ induces P_5 , a contradiction.

Let us denote $D_i = (D \setminus \{u_i\}) \cup \{u_2\}, i \in \{1, 3\}.$

Claim 2. At least one of D_1 , D_3 is a dominating set of G.

Proof. Suppose that both D_1 and D_3 are not dominating sets of G. Then there are vertices v_i $(i \in \{1,3\})$ such that D_i does not dominate v_i . Since D_i is a dominating set, v_i is adjacent to u_i , $i \in \{1,3\}$. We obtain that $\{v_1, u_1, u_2, u_3, v_3\}$ induces either P_5 or C_5 , a contradiction.

By Claim 2 and using symmetry, we may assume that D_1 is a dominating set of G. Since $|D_1| = |D|$, D_1 is a minimum dominating set of G. By the choice of D, there is a component $N \subseteq K$ of $G(D_1)$. By connectivity of K, there is a vertex $w \in N$ which is adjacent to u_1 .

Claim 3. The set $D' = (D_1 \setminus \{w\}) \cup \{u_1\}$ is a minimum dominating set of G.

Proof. If it is not true, there is a vertex y which is not dominated by D'. Clearly, y is adjacent to w. Then $\{y, w, u_1, u_2, u_3\}$ induces P_5 , a contradiction.

Claim 4. G(D') has less components than G(D).

Proof. Otherwise G(D') contains a component $P \subseteq K$ such that $u_1 \notin P$. By connectivity of K, there is a vertex $z \in P$ which is adjacent to w. Then $\{z, w, u_1, u_2, u_3\}$ induces P_5 , a contradiction.

Claim 3 and Claim 4 produce the final contradiction.

References

- S. Arumugam and J.J. Paulraj, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45–49.
- [2] K. Arvind and R.C. Pandu, Connected domination and Steiner set on weighted permutation graphs, Inform. Process. Lett. 41 (1992) 215–220.
- [3] H. Balakrishnan, A. Rajaram and R.C. Pandu, Connected domination and Steiner set on asteroidal triple-free graphs, Lecture Notes Math. 709 (1993) 131–141.

- [4] C. Bo and B. Liu, Some inequalities about connected domination number, Discrete Math. 159 (1996) 241-245.
- [5] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997) 261–269.
- [6] D.V. Korobitsyn, On the complexity of determining the domination number in monogenic classes of graphs, Discrete Math. 2 (1990) 90–96.
- [7] J.J. Paulrau and S. Arumugam, On connected cutfree domination in graphs, Indian J. Pure Appl. Math. 23 (1992) 643–647.
- [8] L. Sun, Some results on connected domination of graphs, Math. Appl. 5 (1992) 29-34.
- [9] E.S. Wolk, A note on 'The comparability graph of a tree', Proc. Amer. Math. Soc. 16 (1966) 17–20.
- [10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789–795.

Received 16 August 2001