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Abstract

Bondy and Erdös [2] have conjectured that the Ramsey number for
three cycles Ck of odd length has value r(Ck, Ck, Ck) = 4k−3. We give
a proof that r(C7, C7, C7) = 25 without using any computer support.
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1. Introduction and Main Theorem

Let G = (V (G), E(G)) be an undirected finite graph without any loops or
multiple edges, where V (G) denotes its vertex set and E(G) its edge set.
In the following we will often consider the complete graph Kp on p vertices
and the cycle Cp on p vertices. A k-coloring (F1, F2, . . . , Fk) of a graph G is
a coloring of the edges of G with at most k different colors F1, . . . , Fk.
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The graph 〈Fi〉 = (V (G), E(Fi)) denotes the subgraph of G which consists
of all vertices of G and all edges which are colored with color Fi. We say
that Kp −→ (G1, G2, . . . , Gk), if in each k-coloring of Kp the subgraph 〈Fi〉
contains a graph isomorphic to Gi for at least one i with 1 ≤ i ≤ k. Now the
Ramsey Number of k graphs G1, G2, . . . , Gk is defined as the minimal integer
p such that Kp −→ (G1, . . . , Gk), that is r(G1, . . . , Gk) := min{p |Kp −→
(G1, . . . , Gk)}.

In the sequal we consider the case k = 3 and use the colors red, green
and black. For short we say that the set X, X ⊆ V (G), spans or contains
a red (green, black) graph H if the red (green, black) edges between the
vertices in X contain a subgraph which is isomorphic to H. This subgraph
does not have to be an induced one.

A good and detailed overview about known estimations and exact values
is given in Radziszowski’s survey ’Small Ramsey Numbers’, [11]. Most of
the known results hold for the case k = 2. In the case k = 3 it becomes
even more complicated to find general results or to determine exact Ramsey
Numbers. Up to now there is only one known exact value for the so called
multicolored (k ≥ 3) classical Ramsey Numbers, namely r(K3,K3,K3) =
r(C3, C3, C3) = 17 [9]. Considering cycles instead of complete graphs the
following Ramsey Numbers are proved:
r(C4, C4, C4) = 11 [11], [6], r(C5, C5, C5) = 17 [13] and r(C6, C6, C6) = 12
[14]. These last two numbers are determined by using computer support.

Example 1. Let the complete graph on 4 · (l − 1) vertices be colored as
follows: There are 4 subgraphs K1,K2,K3 and K4, each of order l − 1
and completely colored with color F1. All edges between K1 and K2 and
all edges between K3 and K4 are colored by F2. Further all the remaining
edges are colored with a third color. If l is odd, this coloring contains no
monochromatic Cl. Hence we conclude r(Cl, Cl, Cl) ≥ 4 · (l−1)+1 for odd l.
The above quoted result shows that this bound is sharp for l = 5. Bondy and
Erdös conjectured in 1973 that this is true for all odd natural numbers m.

Conjecture 1 (Bondy, Erdös [2], [7]). For all odd natural numbers m ≥ 5,

r(Cm, Cm, Cm) = 4m− 3.

Recently ÃLuczak [10] has shown that this holds asymptotically.

Theorem 1 (ÃLuczak [10]). For all natural numbers m ≥ 5,

r(Cm, Cm, Cm) = (4 + o(1))m.
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In this paper we will proof the following Main Theorem:

Theorem 2.
r(C7, C7, C7) = 25 = 4 · (7− 1) + 1.

Hence the Ramsey Numbers r(Cl, Cl, Cl) are completely determined for all
l ≤ 7. Our method works without any computer support and using analogous
arguments we confirm that r(C5, C5, C5) = 17. Also there is some hope that
it helps to determine an upper bound for larger odd l.

2. Idea of the Proof

In this part we motivate and sketch the idea of the proof of Theorem 2. Our
example gives for l = 7 a 3-colored complete graph on 24 vertices, which
contains no monochromatic cycle C7. Hence it remains to prove that there
is no 3-coloring of K25, which avoids a monochromatic cycle of length 7.
We consider any 3-coloring of K25. Altogether there are

(
25
2

)
= 300 edges.

Therefore one of the color classes contains at least 100 edges.

Definition 1. By ext(H,n) (ext for extremal) we denote the maximal num-
ber of edges a graph of order n may contain, if it does not contain a subgraph
isomorphic to H.

Showing ext(C7, n) ≤ 99 would prove our Theorem. But any graph which
contains a bipartite part K10,10 already has 100 edges and not necessarily a
cycle of length 7.

Hence we will extend this definition and prove that any graph on 100
edges which avoids some special graph structures (for instance not being
bipartite) contains a cycle of length 7. This forbidden graph classes will be
considered separately and we prove that either the graph itself or one color
class of its 3-colored complement contains a monochromatic C7.

These reflections motivate the following definitions and lemmas.

Definition 2. By K∗
12 we denote any graph of order 12 missing at most four

edges.

In the following we sometimes ask that K∗
12 6⊆ G. This means that any subset

of 12 vertices contains at least five edges.
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Definition 3. A B7,7 is a bipartite graph with partite sets X and Y with
|X| = 7 = |Y |, such that
• any two vertices in different partite sets are connected by a path of

length 5 and by a path of length 3,
• any two vertices in the same partite set are connected by a path of

length 4.

Later we will prove the following lemmas.

Lemma 1. Any 3-coloring of K25 which contains a 2-colored K∗
12 also con-

tains a mono-chromatic C7.

Lemma 2. Any 3-colored K25, which contains a monochromatic B7,7, also
contains a monochromatic cycle of length 7.

Last we need an extended definition of ext(C7, n).

Definition 4.

ext′(C7, n) := max{|E(G)| | |V (G)| = n,C7 6⊆ G, B7,7 6⊆ G,

K∗
12 6⊆ G,G is not bipartite}.

We say that any graph with n vertices and m edges, which is not bipartite,
contains no B7,7 and the complement of which does not contain a K∗

12, is an
[n,m]-graph.

To prove Theorem 2 it would suffice to show that ext′(C7, 25) < 100. But
we will prove this recursively; that means to determine an upper bound for
ext′(C7, n) we always need the upper bound for ext′(C7, n− 1). In additon
we need the exact value for ext′(C7, 12) and ext′(C7, 13) for proving Lemma
1 and Lemma 2. The following lemmas give the exact values ext′(C7, n) for
n = 7, . . . , 13 and upper bounds for n = 14, . . . , 25.

For the presentation of Lemma 4 we need one more notation.

Definition 5.
(a) By Kp1 ∗ Kp2 ∗ . . . ∗ Kpi we denote a blockgraph, which consists of i

complete blocks Kp1 , . . . , Kpi such that exactly one vertex is contained
in any of these complete subgraphs. Using this notation, for three
graphs G,H and I, the graph G ∗ (H ∗ I) consists of two graphs G and
H ∗ I, which have exactly one common vertex.
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(b) G1
⊗

G2 denotes the graph, which consists of the two subgraphs G1

and G2 such that all vertices in G1 are adjacent to all vertices in G2.

Lemma 3. If n = 7, 8, 9, 10 and 11 we have the following exact values for
ext′(C7, n) :

n 7 8 9 10 11
ext′(C7, n) = 16 18 21 25 30

Lemma 4. ext′(C7, 12) = 31, and there are exactly three C7-free [12, 31]-
graphs, namely K6 ∗K6 ∗K2, K6 ∗ (K6 ∗K2) and the graph, which consists
of two K6, connected by one edge.

Lemma 5. ext′(C7, 13) = 33.

Lemma 6. For n ∈ {14, 15, 16, . . . , 25} the following upper bounds hold:

n 14 15 16 17 18 19 20 21 22 23 24 25
ext′(C7, n) ≤ 41 46 51 56 61 66 71 76 81 87 93 99

Using these lemmas the proof of Theorem 2 reduces as follows:

Proof of Theorem 2. We assume that the complete graph K25 is 3-
colored with the colors red, green and black. Because of

(
25
2

)
= 300 at least

one of the color classes contains at least 100 edges.
1. One of the induced color classes is bipartite. Without loss of generality

assume this is 〈R〉. One of the partite sets has at least d25
2 e = 13

vertices and because of r(C7, C7) = 2 · 7 − 1 = 13 ([8]) it contains a
monochromatic (green or black) C7.

2. If K∗
12 ⊆ K25, we get a monochromatic C7 by Lemma 1.

3. If B7,7 ⊆ K25, we get the monochromatic C7 by Lemma 2.

Lemma 6 gives ext′(C7, 25) ≤ 99 < 100 and hence we get a contradiction or
a monochromatic C7.

3. Proof of the Lemmas

To give detailed proofs of these lemmas would significantly expand the paper.
Hence we only outline the ideas of the proofs and demonstrate some cases.
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All the missing parts can be found in the PhD-thesis of the second author
[12]. The proofs of Lemma 1 and Lemma 2 use the numbers ext′(C7, n) for
some n. Hence we will first proof Lemma 3 – Lemma 6.

Lemma 3. If n = 7, 8, 9, 10 and 11 we have the following exact values for
ext′(C7, n) :

n 7 8 9 10 11
ext′(C7, n) = 16 18 21 25 30

To prove this Lemma we need some more definitions and theorems about
pancyclicity and hamiltonicity. We say that a graph G is Hamiltonian if
it contains a spanning cycle and pancyclic if it contains all cycles Ck for
k = 3, 4, . . . , n. The graph G is called weakly pancyclic if it contains cycles
of each length between the length of a shortest and a longest cycle. The
circumference of a graph G is the length of its longest cycle. To construct the
p-closure of a graph G we add successively all edges vw where d(v)+d(w) ≥ p
holds.

The property ”G has circumference k” is n-stable [4] means that, if the
n-closure of a graph of order n has circumference k, then so does the graph
itself. S. Brandt proved that a graph on n vertices and more than (n−1)2

4 +1
edges is weakly pancyclic and contains a triangle (that means it contains all
cycles of length between 3 and the length of the longest cycle) [3]. Hence
we conclude, that a graph contains a cycle of length 7, if it has n vertices,
at least m ≥ (n−1)2

4 + 2 edges and an n-closure that has cicumference k for
k ≥ 7.

Proof. First, we have to show that any graph G with m ≥ ext′(C7, n) + 1
contains a cycle of length 7. Second, we have to find a graph G with m =
ext′(C7, n) edges that contains no C7.

• ext′(C7, 7) = 16 : Assume m ≥ 17. Since G is simple, any set of 6 vertices
contains at most 15 edges. Hence we conclude δ(G) ≥ 2. For δ(G) ≥ 4 the
n-closure is complete and G contains a C7. For 2 ≤ δ(G) ≤ 3 we either have
a complete closure or there are vertices v1, v2 with d(v1) + d(v2) ≤ 6 and
v1v2 6∈ E(G). But then the fact that there are at most 10 edges between
the remaining 5 vertices contradicts m = 17 (17 − 2 · 3 = 11 > 10). Using
the same arguments we find exactly one [7, 16]-graph which contains no C7,
namely the K6 ∗K2.



The Ramsey Number r(C7, C7, C7) 147

• ext′(C7, 8) = 18 : Assume m ≥ 19. If there is a vertex v1 with d(v1) ≤ 2 the
graph G− v1 has 7 vertices and 19− 2 = 17 edges and hence contains a C7.
For δ(G) = d(v1) = 3 the graph G− v1 already contains a C7 or is equal to
K6 ∗K2. But then there is a C7 in G itself. Therefore we may assume δ ≥ 4,

which directly implies a complete n-closure, and with 19 ≥ (8−1)2

4 + 1 = 14
we obtain a C7. For m = 18 there are two counterexamples: the K3

⊗
K5

and the K6 ∗K3.

• ext′(C7, 9) = 21 : Let m ≥ 22. For δ(G) = d(v1) ≤ 3 there is already a C7

in G− v1 and for δ(G) ≥ 5 the complete n-closure and 22 ≥ (9−1)2

4 + 1 = 17
lead to a cycle of length 7. The case that remains is G is not hamiltonian
and δ(G) = 4. For this case we assume m = 21 and prove in addition, that
there is no [9, 21]-graph containing no C7.

Chvátal [5] proved that any graph with vertex degrees d(v1) ≤ d(v2) ≤ . . . ≤
d(vn), such that i < n/2 implies d(vi) > i or d(vn−i) ≥ n− i, is hamiltonian.
This gives d(v1) = d(v2) = d(v3) = d(v4) = d(v5) = 4. Because 42−5 ·4 = 22
and 22/4 > 5 we have d(v9) ≥ 5, which implies that d(v9) = 8 in the n-
closure of G. From 22−8

3 > 4 the same follows for d(v8). It is easy to see that
each closure has circumference k, k ≥ 7, if 2 vertices have degree 8 and the
remaining 7 vertices have at least degree 4.

This time we find two [9, 21]-graphs without any C7. Obviously both have
minimum degree at most 3: Those are the K3

⊗
K6 and the K6 ∗K4.

• ext′(C7, 10) = 25 : Analogously we conclude that there is an unique [10, 25]-
graph with no C7, namely the K6 ∗K5, and none [10, 26]-graph.

• ext′(C7, 11) = 30 : This time we find K6 ∗K6 as the unique [11, 30]-graph
containing no C7.

Lemma 4. There are exactly three C7-free [12, 31]-graphs, namely K6 ∗K6 ∗
K2, K6 ∗ (K6 ∗K2) and the graph, which consists of two K6, connected by
one edge, and ext′(C7, 12) = 31.

Sketch of the proof. Considering not 2-connected graphs — which
means blocks — it is easy to see, that the given 3 graphs (the K6 ∗K6 ∗K2,
the K6 ∗ (K6 ∗K2) and the graph, which consists of two K6, connected by
one edge) are the only [12, 31]-graphs which are C7-free.

Now we prove that any 2-connected [12, 31]-graph contains a cycle of
length 7. Let G be any 2-connected non-bipartite graph. Also let B7,7 6⊆ G
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and K∗
12 6⊆ G. If G is in addition C7-free, then we will prove that there are

at most 30 edges.
Since G is not bipartite, there is a longest odd cycle Cp. We denote

this length by p. In each case we consider such a cycle Cp. Knowing that
Cp is a longest odd cycle we first examine how many edges are possibly
between V (C) and the remaining vertices and in the set of the remaining
vertices. Then we find out how many further neighbors on the cycle any
vertex v ∈ V (Cp) may have. Last we always get a cycle C7, a longer odd
cycle or a contradiction to the number of edges. We demonstrate the case
p = 11. The remainig cases are similar, but not identical.

p = 11. Let C = (v1, v2, . . . , v11, v1) be a cycle of length 11. Since there
is no cycle of length 7, the remaining vertex v12 has at most 5 neighbors
on the cycle. Now we consider how many additional edges are possibly
within the cycle. A vertex vi has at most 3 other neighbors (except vi−1 and
vi+1). Having 31 edges in G there is one vertex, say v1, with exactly 3 other
neighbors. We distinguish between the different possibilities and check how
that influence the possible neighbors of v7.

– v1v3, v1v4, v1v5 ∈ E(G): In this case there is either a C7 or v7 has no
further neighbor on the cycle.

– v1v3, v1v4, v1v10 ∈ E(G): In this case we again find either a cycle C7 or
v7 has no further neighbor on the cycle.

– v1v3, v1v5, v1v9 ∈ E(G): This time the vertex v7 has at most 1 further
neighbor, namely v4 or v10 or we get a cycle of length 7.

– v1v4, v1v5, v1v8 ∈ E(G): Now v7 has at most 2 neighbors in addition.

Altogether this means: If a vertex vi has 3 further neighbors in V (C), then
the vertex on the opposite side, vi+6, has at most 2 further neighbors on
the cycle. Hence either G contains a cycle C7 or there are at most (11

2 · 3 +
11
2 · 2)/2 < 14 further edges between the vertices V (C). Hence the graph G
itself consists of at most 5 + 11 + 14 = 30 < 31 edges.

Lemma 5. ext′(C7, 13) = 33.

Sketch of the proof. For example the graphs K6∗K6∗K3, K6∗(K6∗K3)
and K3

⊗
K10 consist of 13 vertices, 33 edges, are not bipartite, contain no

B7,7 no cycle of length 7 and also no K∗
12 in their complement. Hence

ext′(C7, 13) ≥ 33.
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Now we have to prove that for any [13,m]-graph, which contains no C7 it is
m ≤ 33.

Because lack of space we also skip this proof. You can verify the result
by using methods similar to those of the proof of Lemma 4. Also here we
distinguish between the lengths of the longest odd cycle and consider all
possibilities.

To prove the following Lemma 6 we need one corollary.

Corollary 1. Let G be a bipartite graph with partite sets X and Y with
|X| = |Y | = 7. If the graph G contains at least m = 35 edges and has
minimum degree δ(G) ≥ 2, then any pair of vertices in different partite sets
is connected by a path of length 5.

Sketch of the proof. We show that there is a path of length 5 between
x1 ∈ X and y1 ∈ Y. Therefore we let x1y2 ∈ E(G). To distinguish after the
degree of y1 and y2 gives the desired result.

Lemma 6. For n ∈ {14, 15, 16, . . . , 25} the following upper bounds hold:

n 14 15 16 17 18 19 20 21 22 23 24 25
ext′(C7, n) ≤ 41 46 51 56 61 66 71 76 81 87 93 99

Proof. To prove this Lemma we will use completely different techniques
than those used in the proofs of Lemma 3, Lemma 4 or Lemma 5. First we
find the lower bound for the minimum degree of any graph G on n vertices
and ext′(C7, n) edges, which is not bipartite and contains neither a C7, a
B7,7, or a K∗

12. Then we consider the following cases: The graph G contains
a K4, a K4 − e, but no K4, a K3, but no K4 − e, or last G is trianglefree.

Again we have not enough place for the whole proof. We demonstrate
the ideas by considering the case that G contains a K4 step by step. The
remaining cases are very long, but mainly use similar ideas.

If G is not 2-connected we consider the different possible blocks and
in each case we get one of the forbidden graphs or a contradiction to the
number of edges. Hence we may assume that G is 2-connected.

1. The minimum degrees
We determine the minimum degree of G for all n with n = 14, 15, . . . , 25
simultaneously. Hence we always assume — when considering the graph on
n vertices — that the upper bound for ext′(C7, n− 1) is already known.
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Let n = 14 and m = 42: Assume δ(G) ≤ 5. We consider the graph G∗ which
results from G by removing a vertex v with minimum degree. Because of
ext′(C7, 13) = 33 we conclude that G∗ either contains a C7, a B7,7, a K∗

12

or is bipartite. In the first three cases so does the graph G itself which is
a contradiction to the definition of ext′(C7, n). Thus we assume that G∗ is
bipartite. Since G is not bipartite the vertex v has at least one neighbor
in each partite set of G∗, which implies that v has at most four neighbors
in one partite set. Now we consider the different possibilities of the order
of the partite sets. Let Gp,q denote any bipartite graph with partite sets X
and Y where |X| = p and |Y | = q. If G∗ is isomorphic to a G1,12, a G2,11,
a G3,10 or a G4,9, it consists of less than 4 · 9 = 36 = 37 = 42 − 5 edges or
G contains a C7. In each case this is a contradiction. If δ(G∗) ≥ 2 then in
any G5,8 and any G6,7 on 37 edges each pair of vertices in different partite
sets is connected by a path of length 5. Hence we again find a C7 in G and
conclude δ(G) ≥ 6.

In Corollary 1 we have proved that in a graph G7,7 with δ(G) ≥ 2 and
35 edges any pair of vertices in different partite sets is connected by a path
of length 5. Because of δ(G) ≥ 2 then either this also holds for Gp,q with
p, q ≥ 7 or the graph Gp,q contains at most 34+4(p−7)+4(q−7)+(p−7)(q−7)
edges.

Hence, since G contains a K∗
12 if the graph G∗ is isomorphic to a Gp,q

with q ≥ 11 (p ≥ 11 respectively) we have δ(G) ≥ 6 for n ≥ 15.

2. G contains a K4

Let a, b, c, d span the K4. Since G is 2-connected, there are two vertices
x1 and x2 with ax1, bx2 ∈ E(G). Either these two vertices are connected
by another path P in V (G) \ K4, or all vertices of V (G) \ K4 have only
neighbors in K4. But this already contradicts δ(G) ≥ 6. We consider all
possible lengths of such a path P.

(a) P = P2: Let X := K4 ∪ {x1, x2} and Y := V (G) \X. Now the following
hold:

(i) It is not possible that a vertex y ∈ Y has more than two neighbors in
X and there are only three possibilities such that a vertex y has two
neighbors in X, namely yx1, yb ∈ E(G), yx2, ya ∈ E(G) or ya, yb ∈
E(G).

(ii) If there are two vertices y1 and y2 ∈ Y each of which having two
neighbors in X, then there are the following possibilities:
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– y1a, y1b, y2x1, y2b ∈ E(G), where y1 and y2 are not adjacent and not
connected by a path of length 2 or 3.

– y1a, y1b, y2x2, y2a ∈ E(G), where y1 and y2 are not adjacent and not
connected by a path of length 2 or 3.

– y1a, y1b, y2a, y2b ∈ E(G), where y1 and y2 are not connected by any
path of length 2 or 3.

– y1x1, y1b, y2x1, y2b ∈ E(G), where y1 and y2 are not adjacent and
not connected by any path of length 2 or 3.

– y1x2, y1a, y2x2, y2a ∈ E(G), where y1 and y2 are not adjacent and
not connected by any path of length 2 or 3.

(iii) If there are two vertices y1 and y2 with y1y2 ∈ E(G) and both have
at least one neighbor in X, then they either have the same neighbor or
y1c, y2d ∈ E(G) or y1a, y2b ∈ E(G).

Since δ(G) ≥ 6 each of the vertices x1, x2, c and d has a neighbor in Y.
Because of i. these four neighbors are distinct. Let x1y1, x2y2, cy3 and
dy4 ∈ E(G). The vertices y3 and y4 must not have another neighbor in X,
but possibly we have y3y4 ∈ E(G). Hence both have four neighbors in Y. To
avoid a C7 we have y5, y6, y7, y8 ∈ N(y3) and y9, y10, y11, y12 ∈ N(y4). One of
the vertices y1 and y2 may have a second neighbor in X. Nevertheless both
have at least four neighbors in Y and again we either find a C7 or there are
eight additional vertices. But then we would have at least 6+10+5+5 = 26
vertices, a contradiction to n ≤ 25.

(b) P = P3, P = P4, P = P5: This directly gives a C7.

(c) P = P6: Let x1x3x4x5x6x2 be the path between x1 and x2 and X :=
{a, b, c, d, x1, . . . , x6}. Avoiding a C7 and a contradiction to one of the previ-
ous cases both, x6 and x3, have no other neighbor in X and also no common
neighbor in Y. Hence y1, y2, y3, y4 ∈ N(x3) and y5, y6, y7, y8 ∈ N(x6). Now
we consider the vertices c and d. Both are connected to at most one of x1

and x2 and must not be connected to any vertex of {x3, x4, x5, x6, y1 . . . , y8}.
Hence there are two further vertices y9 and y10. Let cy9, cy10 ∈ E(G). Then
only a, b and d might be additional neighbors of y9 and y10 in X. Now we
distinguish between y9, y10 ∈ N(d) and y9, y10 6∈ N(d).
• dy9, dy10 ∈ E(G): This implies y9y10 6∈ E(G). If y9a ∈ E(G) then

y10b 6∈ E(G) and vice versa. Otherwise we would find the case that
P ∼= P2. This also implies that y9 (y10) has at most one neighbor in
{a, b}. Hence both y9 and y10 have at least three further neighbors and
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in addition these have to be distinct. But this implies that we need at
least 10 + 10 + 6 = 26 vertices, a contradiction to n ≤ 25.

• dy9 ∈ E(G), dy10 6∈ E(G): This gives the existence of a further vertex
y11 which is adjacent to d. Avoiding a C7 the vertices y10 and y11

have no common neighbor and also avoiding the case P ∼= P2 they
are not adjacent to y9. Thus we need six further vertices, which again
contradicts n ≤ 25.

• dy9, dy10 6∈ E(G): As above we need at least six additional vertices and
hence get a contradiction.

(d) P = Pk, k ≥ 7: Analogously to the previous case we need more than 25
vertices because of δ ≥ 6.

Lemma 1. Any 3-coloring of K25 which contains a 2-colored K∗
12 also

contains a monochromatic C7.

Proof. Assume that the edges of the complete graph on 25 vertices are
colored with the three colors red, green and black, and that there is a subset
of 12 vertices which contains at most four green edges. Since ext′(C7, 12) =
31 and 31+31+4 = 66 =

(
12
2

)
we conculde that one of the color classes (red

or black) of this set is bipartite, or that both color classes consist of exactly
31 edges.

In the first case let the red graph be the bipartite one. If one of the
partite sets has seven or more vertices we directly find a monochromatic
black C7. Hence both partite sets are of order 6. We may partition the
vertex set V (G) into three sets A,B and X, such that |A| = |B| = 6 and
|X| = 13. All red edges are between A and B, and within the sets A and B
there are only black and green edges (remember that altogether there are at
most four green edges).

In the second case we consider the three different possible [12, 31]-graphs
and conclude, that also then there is either a monochromatic C7 or a bi-
partite color class. Again we have three vertex sets A,B and X with
|A| = |B| = 6 and |X| = 13. Also this time almost all (except at most
four) edges in A and B are black and all red edges are between A and B.

Case 1. First we assume that each of the sets A and B contains at most
two green edges. Now the following hold:

(a) We consider the black subgraph. Any two adjacent vertices within A (B
resp.) are connected by a black path of any length up to P6 within A (B),
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and between any two non adjacent (in black) vertices only the P2 is missing:
We consider the subgraph H which consists of the vertex set A and all black
edges between these vertices.

We know that the property of Hamiltonian-connected is (n + 1)-stable.
This means that a graph G is Hamiltonian-connected if its (n+1)-closure is
Hamiltonian-connected. Since H misses at most two edges, we have dH(ai)+
dH(aj) ≥ 5 + 5 − 3 = 7 for all non adjacent vertices ai and aj . We get a
complete 7-closure, and hence H is Hamiltonian-connected.

Similar we prove the existence of the paths of length 4: Let a1 and a2 be
any two vertices in H. We consider the graph H ′ := H−{ak}, where k 6= 1, 2
and dH′(ak) is minimum. Hence, dH′(ai)+dH′(aj) ≥ 4+4−2 = 6 = n(H ′)+1
for all non adjacent pairs of vertices. Also H ′ is Hamiltonian-connected and
there is a P5 between a1 and a2. In a direct way the existence of the remaining
paths P3 and P4 between any two vertices in H can be proved.

(b) Any two vertices in A (B resp.) are connected by a red P3 and a red P5

within A ∪B.

Because of (a) there is at most one black edge between A and B. Hence
there are at most five non red edges between A and B. Considering the
different possibilities for the vertex degrees we conclude (b) and also (c).

(c) Any two vertices a ∈ A and b ∈ B are connected by a red P4 and a
red P6, except for the case that a (b respectively) has exactly four green
and one black neighbor in B (A respectively). We will consider this case
(∗) separately at the end of the proof. Hence we may assume now that any
a ∈ A and b ∈ B are connected by a red P4 and a red P6.

These previous remarks imply the following coloring:

– Each vertex in X has either no red neighbor in A or no red neighbor
in B. Hence let X = C ∪ D and we may assume that there are no red
edges between A and C and no red edges between B and D (but maybe
between A and D and between B and C). Without loss of generality let
|C| ≥ 7.

– Because of (a) there are at most |C| (|D| resp.) black edges between A
and C (B and D). In particular each vertex in C (D) has at most one
black neighbor in A (B).

– Hence most of the edges (at least 6 · 7 − 7 = 35) between A and C are
green and also most of the edges (except |D|) between B and D.
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– Any two vertices in C have at least four common green neighbors in A,
and with a third (fourth) vertex they still have three (two) in common.
Hence any green edge in C would give a green C7. We consider the set
C∪B \{b}, where b is the vertex in B that has the most green neighbors
in B. That implies that B \ {b} contains at most one green edge. Since
|C ∪ B \ {b}| ≥ 12, ext′(C7, 12) = 31, 2 · 31 = 62 and 11·12

2 = 66 there
are at least three green edges between C and B.

We now distinguish the cardinality of D. Since there are only red and black
edges in C the case |D| ≤ 1 contradicts ext′(C7, 12) = 31. Hence let |D| ≥ 2.
In the case |D| ≥ 4 the set D — and also C — must not contain a green
edge. Otherwise we would find a monochromatic C7, constructed with one
green edge in D and six further edges between B and D. But again because
of ext′(C7, 12) = 31, 2 · 31 = 62 and 11·12

2 = 66 there is a green edge c1d1

between C and D. If D = {d1, d2} (D = {d1, d2, d3} resp.) we consider
the sets C ∪ {d1} (C ∪ {d1, d2} resp.), and it follows that there is a green
edge c1d1.

Now we focus on the set C \ {c1} ∪B. The set B contains at most two
green edges. Since ext′(C7, 12) = 31 and C \ {c1} ∪ B ≥ 12 there is also a
green edge c2b1 between B and C. The vertices c1 and c2 have a common
green neighbor in A, let this be a1. In addition there is a green edge d1b2,
and the vertices b1 and b2 also have a green neighbor in D\{d1} in common.
But now we have a green cycle C7, namely (a1c1d1b2d2b1c2a1).

Now we consider the case (∗). We assume that a ∈ A (without loss
of generality) has exactly four green and one black neighbor in B. If nev-
ertheless there is no vertex in C ∪ D having a red neighbor in A and B,
everything works as above. Hence let us assume that there are five vertex
sets A,B, C ′, D and C ′′, such that A and B are as before, C ′ contains all
vertices without any red neighbor in A, D contains all vertices with no red
neighbor in B, and C ′′ contains all vertices having red neighbors in A and
B. Avoiding a monochromatic C7 all vertices c ∈ C ′′ have exactly one red
neighbor in A, namely a, and exactly one in B, namely the red neighbor
of a. Let C := C ′ ∪ C ′′. If |D| ≥ 7 there is again no green edge in D, and
with D instead of C we find a green C7. Now let |C| ≥ 7. If we could prove
that also in this case there is no green edge in C, then the existence of a
monochromatic C7 follows as above. Thus let the edge c1c2 be green. Obvi-
ously the vertices c1 and c2 have three green neighbors in common in A\{a},
say a1, a2 and a3. Of course this also holds for the vertices c3 and c4, where
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at least one of these neighbors is in {a1, a2, a3}. Now these vertices span a
green C7, a contradiction.

Case 2. Last we consider the case that one of the sets A or B contains
three or four green edges. Without loss of genenerality we assume this is
the set A. Again we denote by H the subgraph which consists of the vertex
set A and all black edges between these vertices. Hence, H consists of the
vertex set A and all green edges between these vertices. As above we can
prove that any two vertices in H are connected by a path P3, P4 and a path
P5. In addition we know that the 7-closure of H is either complete (and
hence H is Hamiltonian-connected), or H contains a triangle or a K1,3. We
now consider these last possibilities in the appendix.

Lemma 2. Any 3-colored K25, which contains a monochromatic B7,7, also
contains a monochromatic cycle of length 7.

Proof. Again we will use the three colors red, green and black and denote
them by R, G and B. With no loss of generality we will assume that the
B7,7 is in 〈R〉 and that the parts of the B7,7 will be denoted by U and V . We
will assume that there is no monochromatic C7, and show that this leads to
a contradiction.

No vertex outside of B7,7 can have a red adjacency in both U and V ,
because this would imply a C7 in 〈R〉. Therefore, the vertices of V (K25) \
V (B7,7) can be partitioned into two sets X and Y, such that the vertices of X
have no red neighbor in V and the vertices of Y have no red neighbor in U as
well. We have |X|+ |Y | = 11, and with no loss of generality we can assume
that |X| ≥ |Y |, and that X will be chosen as large as possible. This implies
that each vertex of Y must have a red neighbor in V , for otherwise it could
be moved to X. The general structure of the proof will be to appropriately
select a set Z of 13 vertices that has no more than 11 red edges. Then, since
ext′(13, C7) = 33 and 2 · 33 + 11 = 77 <

(
13
2

)
, either 〈B〉 or 〈G〉 must be

bipartite to avoid a monochromatic C7. If, say 〈B〉 is bipartite, then there
is a set of 7 vertices that has only green and black edges. If the red edges
of Z have the additional property that the graph induced by any set of 7
vertices has a C7 in its complement, then there is a monochromatic C7 in
G and this gives a contradiction that completes the proof. The set of 13
vertices will normaly consist of six vertices from U , four vertices from X,
and three vertices from Y , but this will vary in some cases. The remainder
of the proof will be broken into 6 cases, depending on |X|. We here only
consider the case |X| = 6.
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|X| = 6 : We first claim that there cannot be a red C6 in X. Therefore we
assume this were true. If there are two vertices in X without a red neighbor
in U, then these two vertices could be moved to Y , which contradicts the
maximality of |X|. If a pair of consecutive vertices on the C6 have a red
neighbor in U , then there is a red C7.

In V and between V and X there are no red edges. Because of Lemma
1 any 2-colored K12 − 4e gives a monochromatic cycle C7. Hence any five
vertices in X are connected by at least five red edges. By 〈R〉X we denote
the red subgraph which is induced by all vertices in X. The set X consists
of six vertices. If there is a vertex with m red neighbors, then 〈R〉X contains
at least m + 5 edges. If m ≤ 2 for all vertices x ∈ X we may find a set of
five vertices with less than five red edges. Hence we can conclude that there
are at least 3 + 5 = 8 edges in 〈R〉X . In addition 〈R〉X is either connected
or we have 〈R〉X ∼= K1 ∪ (K5 − e) or 〈R〉X ∼= K1 ∪K5.

First let 〈R〉X be connected. As before at least 5 of the 6 vertices in X
have a red neighbor in U. In addition adjacent vertices must not have distinct
red neighbors in U. In both cases failur would imply a monochromatic C7.

If 〈R〉X is 2-connected, then there is only one vertex u ∈ U with red
neighbors in X. Let U ′ := U\{u}. In addition there is no red edge between X
and Y, since otherwise we could find a red path P5 starting in u through two
vertices in X and one vertex in Y to some v ∈ V. This would imply a red cycle
of length 7. Since 〈R〉X is not complete, there is a subset on four vertices
in X which does not form a K4. We will denote such a subset by X ′. Also
we assume that Y ′ consists of three vertices in Y. The set Z := X ′ ∪Y ′ ∪U ′

contains |Z| = 6 + 4 + 3 = 13 vertices and has at most 5 + 3 = 8 red edges.
In addition a subgraph which is induced by seven vertices, contains a cycle
C7 that avoids any red edges. These required properties are fulfilled by Z
and we get a contradiction.

Using the same arguments we find a contradiction if there is a subset of
X on four vertices which are at most in red adjacent to one vertex u ∈ U
and are not completely connected by red edges.

If 〈R〉X is not 2-connected, then there is only the possibility that 〈R〉X ∼=
K5 ∗K2, where the cutvertex xs has no red neighbor in U. By x we denote
the second vertex of the K2 (the vertices x and xs form this K2). As before
all vertices in the K5 — except the cutvertex — have the same vertex u ∈ U
as a red neighbor. Also there is no red edge between these five vertices and
Y. Because of the maximality of X we conclude that the vertex x has at least
one red neighbor in U \ {u} and possibly it is red adjacent to all vertices
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in U \ {u}. In additon there may be red edges to Y. We will consider these
possibilities.

First we assume that x has no red neighbor in Y. Let UR(x) := NR(x)∩U.
If |UR(x)| ≤ 4, then we may choose the set X ′ as x and three further vertices
in V (K5)\{xs} and get a contradiction. If |UR(x)| ≥ 5, then we conclude by
the definition of B7,7 that NR(u)∩NR(u′)∩V 6= ∅ for at least one neighbor
u′ of x. Thus we find a red C7, that uses four vertices in X, two vertices in
U and one vertex in V.

If there is a set of four vertices in Y that does not build a red K4 then
we choose this set as Y ′. The set X ′ consists of three vertices in X \ {x},
and again we get a contradiction with Z = X ′ ∪ Y ′ ∪ U ′.

Hence the vertices in Y span a complete red graph K5 and all have the
same vertex v ∈ V as unique red neighbor in V. If x has a neighbor in Y,
then there is a red path of length 4 starting in U \ {u} through X ∪ Y to
v ∈ V and thus there also is a cycle of length 7.

If 〈R〉X is not connected, that means 〈R〉X ∼= K1 ∪K5 − e or 〈R〉X ∼=
K1 ∪K5, then we get a last contradiction — analogously to the case where
〈R〉X = K5 ∗K2.
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