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Abstract

An additive induced-hereditary property of graphs is any class of fi-
nite simple graphs which is closed under isomorphisms, disjoint unions
and induced subgraphs. The set of all additive induced-hereditary
properties of graphs, partially ordered by set inclusion, forms a com-
pletely distributive lattice. We introduce the notion of the join-decom-
posability number of a property and then we prove that the prime
ideals of the lattice of all additive induced-hereditary properties are
divided into two groups, determined either by a set of excluded join-
irreducible properties or determined by a set of excluded properties
with infinite join-decomposability number. We provide non-trivial ex-
amples of each type.
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1. Introduction

An additive induced-hereditary property of graphs is any class of finite simple
graphs (undirected graphs without loops and multiple edges) which is closed
under isomorphisms, disjoint unions and induced subgraphs. The set of all
additive induced-hereditary properties of graphs, partially ordered by set
inclusion, is a completely distributive algebraic lattice. The investigation of
the structure of this lattice is motivated by generalized colourings of graphs
(see [3, 2, 7]). We use the notation Ma to denote this lattice of properties.
Ma is a bounded lattice, bounded above by I, the class of all graphs, and
bounded below by the empty class of graphs. In general, we follow the
notation of [5] and [2].

The lattice Ma is closed under arbitrary intersections, so the meet of
any two properties P and Q is P ∩ Q. If S is any set of graphs, we denote
the smallest additive induced-hereditary property containing every graph
in S by [S], and call this property the property generated by S. [S] is the
intersection of all the properties which contain every graph in S and it
consists of all graphs whose connected components are either in S or are
induced subgraphs of graphs in S. The join of two properties P and Q in
Ma, written P ∨ Q, is then [P ∪ Q]. In [6] Jakub́ık proved that the lattice
Ma is completely distributive.

For any property P in Ma, the set C(P) of minimal forbidden induced
subgraphs of P is defined by C(P) = {G : G 6∈ P but every proper induced
subgraph of G is in P}. It is easy to see that, for an additive property
of graphs, the set C(P) contains only connected graphs. The set C(P)
characterizes P in the sense that a graph is in P if and only if it contains
no graph from C(P) as an induced subgraph.

A proper non-empty subset I of a lattice L is called an ideal of L if I is
closed under the meet and join operations of L (i.e., I is a sublattice of L),
and if for any i ∈ I and any j ∈ L, the lattice element i ∧ j is again in I.
An ideal I is called a prime ideal if whenever j, k ∈ L with j ∧ k ∈ I, then
j ∈ I or k ∈ I. The complement of a prime ideal I, the set L− I, is a prime
dual ideal, a sublattice of L satisfying that j ∨ k ∈ L− I for every j ∈ L− I
and every k ∈ L, and if j ∨ k ∈ L − I, then j or k must be in L − I. A
chain in (X,≤) is a subset of X in which every pair of elements a and b are
comparable, that is, a ≤ b or b ≤ a.

A partially ordered set (X,≤) is called up-directed if any two elements of
X have a common upper bound in X, and down-directed if any two elements
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have a common lower bound in X.
Our aim in this paper is to characterize the prime ideals in the lattice

Ma. In Theorem 3.3 we divide the prime ideals into two types and then in
Section 4 we give non-trivial examples of both types.

2. Meet- and Join-Irreducibility

As in the theory of lattices, a property P ∈ Ma is called join-irreducible in
Ma if and only if P cannot be written as the join of two properties properly
contained in P. Equivalently, P is join-irreducible if P = R∨S implies that
R = P or S = P. Analogously, property P is called meet-irreducible if and
only if P cannot be written as the meet of two properties which properly
contain P, i.e., if P = R∩ S, then P = R or P = S.

Following the notation of [5], if L is a lattice and p ∈ L we denote by
(p] the principal ideal consisting of all elements x of L satisfying x ≤ p and
the principal dual ideal consisting of all elements x of L satisfying x ≥ p by
[p). It is known (see e.g. [5]) that in any distributive lattice L, an element
p is join-irreducible if and only if the ideal L− [p) is prime, while p is meet-
irreducible if and only if the ideal (p] is prime. We will call an ideal of the
type L− [p) a co-principal ideal.

The meet- and join-irreducible elements in the lattice Ma have been
characterized in [1]. There the authors prove the following two results:

Theorem 2.1. Let P 6= ∅ be an additive induced-hereditary property of
graphs. Then the following are equivalent:

1. P is join-irreducible in Ma.
2. The connected graphs in P form an up-directed set (under the ordering

G ≤ H iff G is an induced subgraph of H).
3. There is a chain C (which may be finite or infinite) of connected graphs

in P such that P = [C].
4. Ma − [P) is a prime ideal of Ma.

Theorem 2.2. Let P 6= I be an additive induced-hereditary property of
graphs. Then the following are equivalent:

1. P is meet-irreducible in Ma.
2. There is a connected graph G such that C(P) = {G}.
3. (P] is a prime ideal of Ma.
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Let us remark that a characterization of intersection classes similar to The-
orem 2.1 has been given by Scheinerman (see [8, 9]). From Theorems 2.1
and 2.2 we can see that meet- and join- irreducible properties abound in Ma

and Ma therefore has many prime ideals of the form (P] and of the form
Ma − [P).

Since not all properties in Ma can be generated by chains of connected
graphs, not all properties are join-irreducible. Some properties, for example
the property generated by cycles C3 and C4,P = [C3, C4] = [C3] ∨ [C4],
are not join-irreducible but can be written as the join of finitely many join-
irreducible properties, while other properties, for example the property S2

of graphs having maximum degree at most 2, which is generated by all
cycles, are not join-irreducible and also cannot be written as the join of
finitely many join-irreducible properties. Let P ∈ Ma. Define the join-
decomposability number of P by ∨-dc(P) = min{m : P can be written as
the join of m join-irreducible properties}. Clearly ∨-dc(P) can be finite or
infinite, and ∨-dc(P) = 1 if and only if P is join-irreducible.

If P is a property with finite join-decomposability number m, then P
has a unique expression as the join of m join-irreducible properties, as the
following theorem shows.

Theorem 2.3. Let P ∈ Ma and let m be a positive integer. Then the
following are equivalent:

1. ∨-dc(P) = m.
2. m is the smallest integer so that P can be generated by union of m

chains of connected graphs.
3. m is the smallest integer such that: for any finite set of connected graphs

G1, G2, . . . Gn in P, there exist m connected graphs in P whose union
contains each of G1, G2, . . . Gn as induced subgraphs.

4. P has a unique expression as the supremum of m join-irreducible prop-
erties.

Proof. (1) if and only if (2) follows immediately from Theorem 2.1.
(1) implies (4): Suppose that ∨-dc(P) = m. Then there exist m join-

irreducible properties P1,P2, . . . ,Pm such that P = P1 ∨ P2 ∨ · · · Pm. Sup-
pose that R1,R2, . . . ,Rm are join-irreducible properties such that P =
P1 ∨P2 ∨ · · · Pm = R1 ∨R2 ∨ · · ·Rm. Then R1 = (P1 ∨P2 ∨ · · · Pm)∩R1 =
(P1∩R1)∨(P2∨R1)∨· · · (Pm∩R1). SinceR1 is join-irreducible we must have
R1 = Pi ∩ R1 for some i = 1, 2, . . . , m and so R1 ⊆ Pi. Similarly Pi ⊆ Rj
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for some j = 1, 2, . . . , m. But by the minimality of m, R1 ⊆ Pi ⊆ Rj implies
that j must equal 1 and R1 = Pi. Similarly, each of the other R’s must be
equal to one of the P’s.

(4) implies (3): Let P = P1 ∨ P2 ∨ · · · Pm be the unique expression for
P as a join of m join-irreducible properties, and let G1, G2, . . . , Gn be any
finite set of connected graphs in P. Since each Gi is connected, each Gi is
contained in one of the Pj . By Theorem 2.1, for each j = 1, 2, . . . , m we
can find one connected graph in Pj containing all of the Gi in Pj as induced
subgraphs, and so there exist m connected graphs in P whose union contains
each of G1, G2, . . . , Gn as an induced subgraph.

By the uniqueness of the expression P = P1 ∨ P2 ∨ · · · Pm, for each
j = 1, 2, . . . , m, Pj 6⊆ ∨{Pi : i = 1, 2, . . . ,m and i 6= j} and so for each
j = 1, 2, . . . , m there exists a connected graph Gj contained in Pj and not
contained in any of the other Pi. Clearly no set of fewer than m connected
graphs in P can contain each of G1, G2, . . . , Gn as an induced subgraph, and
so m is minimal.

(3) implies (2): Suppose that condition (3) holds. We can construct m
chains of connected graphs generating P as follows: Let {G1, G2, . . . , } be
a listing of all the connected graphs in P. By (3) there exists an integer n
such that the union of any set of fewer than m connected graphs in P does
not contain all of G1, G2, . . . , Gn as induced subgraphs. Let A1, A2, . . . , Am

be m connected graphs whose union contains each of G1, G2, . . . , Gn as in-
duced subgraphs. Now there exist connected graphs B1, B2, . . . , Bm such
that each of A1, A2, . . . , Am, Gn+1 is an induced subgraph of one of the
B’s. By the choice of n we cannot have two of the A’s contained in one
B. Suppose w.l.o.g. that A1 ⊆ B1, A2 ⊆ B2, . . . , Am ⊆ Bm. We can now
continue this process: There exist connected graphs C1, C2, . . . , Cm contain-
ing each of B1, B2, . . . , Bm, Gn+2 as induced subgraphs with B1 ⊆ C1, B2 ⊆
C2, . . . , Bm ⊆ Cm, etc.

Let P ∈ Ma and suppose that P = ∨i∈IPi where each Pi is a join-irreducible
property. This expression for P is called irredundant if for every j ∈ I, the
property Pj is not contained in ∨{Pi : i ∈ I and i 6= j}, i.e., for every j ∈ I,
∨{Pi : i ∈ I and i 6= j} 6= P. Otherwise the expression is called redundant.
From the previous theorem we can conclude that every property with finite
join-decomposability number m has a unique irredundant expression as the
supremum of m join-irreducible properties. A property with infinite join-
decomposability number may have no irredundant expression as a supremum
of join-irreducible properties, as the following example shows.
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Let P be the property generated by all graphs formed by first selecting an
arbitrary path and then attaching one cycle to each vertex of the path in such
a way that the resulting graph can be drawn with the cycles in increasing
order (not necessarily strictly increasing), when viewed in some order along
the vertices of the path.

Suppose now that P = ∨i∈IPi where each Pi is join-irreducible. Let G
be one of the generators of P, and suppose that the maximum order of a
cycle in G is k and that G has a base path of length r. Then there exists
j ∈ I such that G is in Pj . Let H be the graph formed from G by starting
with a path of length r+2, attaching all the cycles of G, and then attaching
a cycle of order k + 1 to the second-last vertex and a cycle of order k + 2
to the last vertex. Form graph H ′ by starting with a path of length r + 3,
attaching all the cycles of G, then attaching two cycles of order k + 1, one
to vertex r + 1 and one to vertex r + 2, and then attaching a cycle of order
k + 2 to the last vertex. Both H and H ′ cannot be in Pj since these two
graphs do not have a common supergraph, so there exists some k ∈ I with
k 6= j such that Pk contains exactly one of H or H ′. Since G is an induced
subgraph of both H and H ′, G is in Pk.

We have shown that every generator of P is contained in at least two
of the join-irreducible factors in the representation of P, and so every graph
in P is contained in at least two of these factors. Hence for every j ∈ I, we
have Pj ⊆ ∨{Pi : i ∈ I and i 6= j}. We conclude that P has no irredundant
expression as a supremum of join-irreducible properties.

We remark that, using Zorn’s Lemma it is easily proved that there are
maximal join-irreducible properties contained in any property P with infi-
nite join-decomposability number. For example the maximal join-irreducible
properties contained in the property S2 are [Cp], p ≥ 3 and the class LF of
all linear forests, but the expression S2 = ∨p≥3[Cp]∨LF is redundant since
the property LF is contained in ∨p≥3[Cp].

3. Prime Ideals

Our aim is to characterize all the prime ideals of Ma. So far we have seen
that Ma has many principal and co-principal prime ideals. The following
result shows that in Ma, every prime ideal of the form (P] for some (nec-
essarily meet-irreducible) property P is also of the form Ma − [Q) for some
(necessarily join-irreducible) property Q, i.e., every principal prime ideal is
a co-principal prime ideal.
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Theorem 3.1. Every principal prime ideal in Ma is also a co-principal
prime ideal.

Proof. Suppose that I is a prime ideal of the form (P]. Then P is meet-
irreducible. Suppose that C(P) = {G}. Define Q to be the property gen-
erated by graph G. Then (P] ⊆ Ma − [Q), since if R ⊆ P, then we cannot
have Q ⊆ R.

Conversely, if Q 6⊆ R, then G 6∈ R. Thus some induced subgraph of G is
in C(R). Since C(R) has an induced subgraph of G as one of its elements,
R ⊆ P, i.e., Ma − [Q) ⊆ (P].

Note that the converse of this result is not true: a prime ideal of the form
Ma−[Q) need not be of the form (P]. For example if Q is the join-irreducible
property generated by the chain of stars, then Ma − [Q) has no largest
element since if R is in Ma − [Q), and we choose any graph G which is not
in R, then P ⊂ P ∨ [G] ∈ Ma − [Q). Hence Q cannot be of the form (P].

If L is any lattice, then the set of all ideals of L, ordered under inclusion,
is again a lattice, the ideal lattice of L. The following lemma is not difficult
(see for example [4]).

Lemma 3.2. Let L be a distributive lattice. Then an ideal I of L is a prime
ideal if and only if I is meet-irreducible in the ideal lattice of L.

With the help of this result we can divide all prime ideals of Ma into two
types as follows:

Theorem 3.3. Let I be a prime ideal of Ma. Then either there exists a
set T1 of join-irreducible properties in the complement of I such that I =
∩{Ma−[P) : P ∈ T1}, or there exists a set T2 of properties with infinite join-
decomposability number in the complement of I, each of which contains no
join-irreducible property in the complement of I, such that I = ∩{Ma− [P) :
P ∈ T2}.

Proof. Let T1 = {P ∈ Ma : P 6∈ I and ∨-dc(P) = 1} and T2 = {P ∈
Ma : P 6∈ I,∨-dc(P) = ∞, and P does not contain any join-irreducible
property in Ma − I}. We will prove that J1 = ∩{Ma − [P) : P ∈ T1} and
J2 = ∩{Ma− [P) : P ∈ T2} are both ideals, and then that I = J1∩J2. Since
I is meet-irreducible in the ideal lattice of Ma by Lemma 3.2, the result will
then follow immediately.

J1 is an ideal since it is an intersection of ideals.
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If Q ∈ J2 then Q contains no element of T2 and hence if R is any property
in Ma, Q∩R can contain no element of T2 and hence is in J2.

Now suppose Q ∈ J2 and R ∈ J2. Suppose there is a property P with
infinite join-decomposability number coming from Ma−I and containing no
join-irreducible properties from Ma− I with P = ∨∞i=1Pi ⊆ Q∨R, and with
each Pi join-irreducible. Then each join-irreducible Pi must be in Q or in R.
Suppose ∨i∈XPi ⊆ Q and ∨i∈Y Pi ⊆ R, with (∨i∈XPi) ∨ (∨i∈Y Pi) = P 6∈ I.
Since Ma − I is a prime dual ideal, ∨i∈XPi 6∈ I or ∨i∈Y Pi 6∈ I. Say
∨i∈XPi 6∈ I. If this property has infinite join-decomposability number, we
contradict the fact that Q ∈ J2. Suppose then that ∨i∈XPi has finite join-
decomposability number m. Let Q1,Q2, . . . ,Qm be join-irreducible proper-
ties such that Q1∨Q2∨· · ·Qm = ∨i∈XPi 6∈ I. Again since Ma−I is a prime
dual ideal, one of the Qi must be in Ma− I. But now we have Qi ⊆ P ∈ T2,
a contradiction to the definition of T2. Hence Q ∨ R ∈ J2 and so J2 is an
ideal.

We now show that I = J1 ∩ J2. Clearly any property in I is contained
in both J1 and J2, since a property from I cannot contain a property which
is not in I, so I ⊆ J1 ∩ J2. Now suppose Q ∈ J1 ∩ J2 but Q 6∈ I. If Q has
finite join-decomposability number, then since Ma− I is a prime dual ideal,
one of the join-irreducible ’factors’ of Q must be in Ma − I, contradicting
the fact that Q is in J1. If Q has infinite join-decomposability number, Q
can contain no join-irreducible element from Ma − I (since Q ∈ J1). But
this contradicts the fact that Q ∈ J2. Hence we can conclude that Q ∈ I,
and so I = J1 ∩ J2.

Notice that the proof above did not make use of the particular lattice Ma.
Theorem 3.3 is valid for any distributive lattice. Every prime ideal I thus has
associated with it either a set of join-irreducible properties in the comple-
ment of I, T1, such that I is the set of all properties containing no element
of T1, or a set T2 of properties in the complement of I which contain no
join-irreducible properties in the complement of I and which have infinite
join-decomposability number, such that I is the set of all properties contain-
ing no element of T2. For convenience we will here say that a prime ideal is
of type one in the first case and of type two in the second case.

Every co-principal prime ideal (and every principal prime ideal, by The-
orem 3.1) is clearly of type one. Theorem 3.3 does not rule out the possibility
that Ma − I has only co-principal prime ideals. However we now give two
examples of a type one and a type two prime ideal that are not co-principal.
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4. Examples

4.1. A non-co-principal prime ideal of type one

Let Q ∈ Ma be any property such that C(Q) is an infinite set of graphs
with no degree one vertices. For each non-empty finite S ⊂ C(Q), define
the property QS by C(QS) = S. Note that each property QS defined in this
way is join-irreducible by Theorem 2.1 since if G and H are two connected
graphs in QS , then by joining any vertex from G to any vertex from H by
a long enough path, we construct a connected graph in QS which contains
both G and H.

Let I = {P ∈ Ma : for every finite S ⊂ C(Q), QS 6⊆ P}. Clearly I is
a proper non-empty subset of Ma. We will show that I is a prime ideal of
Ma, and that Ma − I has no smallest element and hence is not co-principal.

If P ∈ I, and R ∈ Ma, then clearly P ∩R is again in I.
Let P,R ∈ I. If P ∨ R 6∈ I, then there exists a QS with QS ⊆ P ∨ R.

Since QS is join-irreducible, this implies that QS is contained in P or R, a
contradiction. Hence P ∨R ∈ I. So I is an ideal.

I is prime: Suppose that P ∩ R ∈ I. If P 6∈ I and R 6∈ I, then there
exist finite S, S′ ⊂ C(Q) such that QS ⊆ P and QS′ ⊆ R. But then
QS ∩QS′ ⊆ P∩R, a contradiction, since QS ∩QS′ = QS′′ , where the graphs
in S′′ are the minimal elements of the set S ∪ S′, under inclusion as an
induced subgraph. (This result is straightfoward, and is proved for additive
hereditary properties in [3].) So we can conclude that P or R is in I, and
hence I is a prime ideal.

I is not co-principal since Ma − I has no smallest element: ∩QS = Q,
and Q ∈ I while all the properties QS are in the complement of I.

Clearly by letting the set T1 be any down-directed set of join-irreducible
properties with no smallest element we have a non-co-principal prime ideal
of type one. Indeed a prime ideal I is of type one if and only if there
exists a down-directed set T1 of join-irreducible properties such that I =
∩P∈T1M

a − [P).

4.2. A non-co-principal prime ideal of type two

Let B be the Boolean lattice of all subsets of the set {3, 4, 5, . . . , }, and let
K be a maximal ideal of B containing all finite subsets of {3, 4, 5, . . . , }.
The existence of K, which will be a prime ideal, is guaranteed by the prime
ideal theorem. (See for example [5]). Now let T2 be the set of all properties
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generated by a set of cycles indexed by an element in the prime dual ideal
B − K. Every property in T2 is generated by an infinite set of cycles and
hence has infinite join-decomposability number. Let I be the set I = {Q ∈
Ma : Q contains no element of T2} = ∩P∈T2M

a − [P).
Every property in T2 is generated by an infinite set of cycles and hence

has infinite join-decomposability number. Also, if Q ∈ T2 then the only
join-irreducible properties contained in Q are either generated by one cycle,
generated by one path or generated by all paths, and all these properties are
in I. Hence every property in T2 has infinite join-decomposability number
and contains no join-irreducible properties in Ma − I.

I as defined above is a prime ideal:
If Q ∈ I and R ∈ Ma, then clearly Q ∩R ∈ I, by the definition of I. Now
suppose that Q ∈ I and R ∈ I. If Q ∨ R 6∈ I then there exists a property
generated by all cycles indexed by an element of B−K contained in Q∨R.
Say [{Cz : z ∈ Z}] ⊆ Q ∨ R where Z ∈ B − K. Every cycle Cz is then
contained in Q or R. We can thus split Z into two sets, say X and Y such
that X ∪ Y = Z and [{Cz : z ∈ X}] ⊆ Q and [{Cz : z ∈ Y }] ⊆ R. But since
B −K is a prime dual ideal and X ∪ Y ∈ B −K, either X or Y must be in
B −K. Say X ∈ B −K. But this contradicts the fact that Q ∈ I, and we
conclude that Q∨R ∈ I.

To see that I is prime, suppose that Q ∩ R ∈ I. We must show that
Q or R is in I. Suppose that this is false and that [{Cz : z ∈ X}] ⊆ Q
and [{Cz : z ∈ Y }] ⊆ R, where X and Y are elements of B −K. But then
[{Cz : z ∈ X ∩ Y }] ⊆ Q ∩ R, and X ∩ Y ∈ B −K, contradicting the fact
that Q∩R ∈ I. Hence Q or R must be in I, and so I is a prime ideal.

I is clearly not co-principal, since the complement of a co-principal
prime ideal has a minimum element which is join-irreducible, and we know
that each of the properties in the set T2 contains no join-irreducible elements
in Ma − I.

We remark that an analogous result can be obtained for other types
of lattices, for example for the lattice of additive hereditary properties of
posets or hypergraphs.
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