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Abstract

An embedding of a simple graph G into its complement G is a
permutation σ on V (G) such that if an edge xy belongs to E(G),
then σ(x)σ(y) does not belong to E(G). In this note we consider
the embeddable (n, n)-graphs. We prove that with few exceptions the
corresponding permutation may be chosen as cyclic one.
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1. Introduction

We shall use standard graph theory notation. We consider only finite, undi-
rected graphs G of order n = |V (G)| and size |E(G)|. All graphs will be
assumed to have neither loops nor multiple edges. If a graph G has order n
and size m, we say that G is an (n,m)-graph.

Assume now that G1 and G2 are two graphs with disjoint vertex sets.
The union G = G1 ∪G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2). If a graph is the union of k (≥ 2) disjoint copies of a graph H, then
we write G = kH.

∗The research partly supported by KBN grant 2 P03A 016 18.
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An embedding of G (in its complement G) is a permutation σ on V (G) such
that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G).
In other words, an embedding is an (edge-disjoint) placement (or packing) of
two copies of G (of order n) into a complete graph Kn. If, additionally, an
embedding of G is a cyclic permutation we say that G is cyclically embeddable
(CE for short).

In the paper we continue the study of families of CE graphs of [10] and
[11]. It will be helpful to formulate some results proved in [10, 11] as a
theorem.

Theorem 1. The following graphs are cyclically embeddable:
1. (n, n− 2)-graphs,
2. non-star trees,
3. cycles Ci for i ≥ 6,
4. unicyclic graphs (connected (n, n)-graphs) except for graphs that are not

embeddable at all (see Figure 1), and five graphs given in Figure 2.
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Figure 1. Non-embeddable unicyclical graphs
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Figure 2. Five embeddable unicyclical graphs which are not CE

Consider now the family of (n, n− 1)-graphs. The following theorem, origi-
nally proved in [4] and independently in [7], completely characterizes those
graphs with n vertices and n− 1 edges that are embeddable.
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Theorem 2. Let G be a graph of order n. If |E(G)| ≤ n − 1 then either
G is embeddable or G is isomorphic to one of the following graphs: K1,n−1,
K1,n−4∪K3 with n ≥ 8, K1∪K3, K2∪K3, K1∪2K3, K1∪C4 (see Figure 3).
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Figure 3. Non-embeddable (n, n− 1) graphs

Note that the graphs K1,2 ∪K3 and K1,3 ∪K3 are embeddable but cannot
be embedded without fixed vertices. It is interesting to note that all other
(n, n − 1)-graphs that are contained in their complements can be embed-
ded without fixed vertices. More precisely, we have the following theorem
mentioned first in [8].

Theorem 3. Let G be a graph of order n with |E(G)| ≤ n−1 and such that
a) G is not an exceptional graph of Theorem 2,
b) G 6= K1,2 ∪K3 and G 6= K1,3 ∪K3.

Then there exists a fixed-point-free embedding of G.

Somewhat unexpectedly, with only one exceptional graph more we have
considerably stronger result proved in [11].
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Theorem 4. Let G be a graph of order n with |E(G)| ≤ n−1 and such that
a) G is not an exceptional graph of Theorem 2,
b) G 6= K1,2 ∪K3 and G 6= K1,3 ∪K3,
c) G 6= K1 ∪ C5.

Then there exists a cyclic embedding of G.
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Figure 4. Embeddable (n, n− 1) graphs which are not CE

In this paper we shall consider the case where G is a graph on n vertices with
n edges. The more general result known on embeddings of (n, n)-graphs is
the following theorem proved in [5].

Theorem 5. Let G be a graph of order n. If |E(G)| = n then either G is
embeddable or G is isomorphic to one of the graphs of Figure 5.

We shall consider the cyclic embedding of (n, n)-graphs. First, we notice
that for n ≤ 4 the number of edges in the complete graph Kn is less then
2n. In Section 3 in Lemma 15 we notice that neither (5, 5)-graph is CE too.
Therefore we consider all (n, n)-graphs for n ≥ 6. We prove that only five
embeddable graphs are not CE.

Theorem 6. Let G = (V, E) be an embeddable (n, n)-graph (n ≥ 6). Then
either G is cyclically embeddable or G is isomorphic to:
A) one of the unicyclic graphs U2, U3, U5 given in Figure 2;
B) one of five graphs F1, F2, F3, F4, F5 of Figure 6.

The general references for these and other packing problems are in the papers
of B. Bollobás, H.P. Yap and M. Woźniak (see [1], [12] and [13], and [9]
respectively).
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Figure 5. Non-embeddable (n, n) graphs

The rest of the paper is organized as follows: in Section 2 we recall some
results and we prove some lemmas, which will be helpful in the proof of
Theorem 6. In Section 3 we show that the graphs Fi, i ∈ {1, 2, 3, 4, 5} are
not cyclically embeddable and in Section 4 we given the proof of Theorem 6.
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Figure 6. Embeddable (n, n) graphs which are not CE

2. Some Lemmas

We shall need some additional definitions in order to formulate the results.
Let G and H be two rooted graphs at u and x, respectively. The graph of
order |V (G)|+ |V (H)| − 1 obtained from G and H by identifying u with x
will be called the touch of G and H and will be denoted by G ·H. A similar
operation consisting in the identification of a couple of vertices of G, say
(u1, u2) with a couple of vertices of H, say (x1, x2) will be called the 2-touch
of G and H and will be denoted by G : H. The graph G : H is of order
|V (G)|+ |V (H)| − 2. By definition, the edge say u1u2 belongs to E(G : H)
if u1u2 ∈ E(G) or x1x2 ∈ E(H).

Let σ be a cyclic permutation defined on V (G). Let assume the vertices
of G define a polygon. σ is defined as a clockwise rotation of these vertices.
For u ∈ V (G), we denote the vertex σ(u) by u+ and σ−1(u) by u−. Let u, v
are the vertices of G and σ is its cyclic permutation. If between u and v are
k− 1 and n− 1− k vertices (for k > 1) and k− 1 ≤ n− k− 1, then the edge
uv is said to be of length k (with respect to σ).

The easy proofs of the following lemmas can be found in [10].

Lemma 7. Let G be a graph obtained from the graph H by removing a
pendent vertex. If G is CE then H is CE.
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Lemma 8. Let H be a graph with at least one isolated vertex v and let
G = H − {v, x} be a graph obtained from the graph H by removing v and
another vertex x. If G has an isolated vertex and is CE then H is CE.

Lemma 9. Let G and H be two CE graphs. Then G ∪H is CE.

Lemma 10. Let G and H be two CE graphs rooted at u and x, respectively.
Then the graph G ·H is CE.

Remark. A similar result holds also if “cyclically embeddable” is replaced
by “embeddable” (see [6]).

Lemma 11. Let G and H be two CE graphs such that the vertices v, u of G
and x, y of H are consecutive with respect to the cyclic embeddings of G and
H, respectively. Suppose that: the edges uu+ and xx− as well as the edges
yy+ and vv− are not simultaneously present.

Then the graph G : H obtained by identifying u with x and v with y
is CE.

We shall need also some new lemmas.

Lemma 12. Let G be a CE graph and σ its cyclic packing. Let x ∈ V (G)
be a vertex of degree two and let y, y′ ∈ V (G) be the neighbours of x. Let G′

be a graph obtained from G by inserting new vertex u on the edge xy, i.e.,
V ′ = V ∪ {u}, E′ = E \ {xy} ∪ {ux, uy}.

Then the graph G′ is CE.

Proof. We distinguish two cases. Without loss of generality we may
assume that x is between y′ and y with respect to the orientation given
by σ.

Case 1. Let y 6= x+ and y′ 6= x− with respect to σ. We define σ′ as
follows: σ′(x) = u, σ′(u) = x+, and σ′(a) = σ(a) for other vertices of G′. It
is easy to see that σ′ is a cyclic embedding of G′.

Case 2. Let y = x+ with respect to σ. Then, we define σ′ as follows:
σ′(x−) = u, σ′(u) = x, and σ′(a) = σ(a) for remaining vertices of G′. As
above, it is easy to see that σ′ is a cyclic embedding of G′ except for the
case where y′ = x++ with respect to σ. In this case we define σ′ as follows:
σ′(y) = u, σ′(u) = y′, and σ′(a) = σ(a) for all remaining vertices of G′.

The same reasoning is true if y = x−.
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Lemma 13. If G = (V, E) is a CE graph and has an isolated vertex then
the graph G ∪K3 is CE.

Proof. We obtain a cyclic packing of the graph G ∪K3 by 2-touch of G
and the graph 2K1 ∪K3. The result follows from Lemma 11.

Lemma 14. Let G = (V, E) be a CE graph and σ its cyclic packing. If there
exists a vertex x ∈ V such that d(x) + d(x+) ≤ n− 2 then the graph G∪K3

is CE.

Proof. First, note that we can choose y and y+ such that neither y /∈
{x, x+} nor y+ /∈ {x, x+} and neither the edge xy nor x+y+ is in E. For,
each edge xz ∈ E effects y 6= z and each edge x+z ∈ E effects y 6= z−, so
these vertices z are blocked by x or x+. If edges of x, x+ together block at
least n−1 vertices of G then we cannot find any y and y+ such that an edge
xy does not exist neither an edge x+y+. This situation is not possibility by
our assumption of d(x) + d(x+) ≤ n− 2.

Now, we can define σ′ by adding two vertices v and w of K3 between
y and y+ and a vertex u of K3 between x and x+. Let σ′ be a packing of
G ∪K3 then σ′(x) = u, σ′(u) = x+, σ′(y) = v, σ′(v) = w, σ′(w) = y+ and
it is easy to see that σ′ is cyclically embeddable.

3. Exceptional Graphs

In this section we prepare for the proof of Theorem 6. We start with case
n = 5.

Lemma 15. Let G = (V, E) be an embeddable graph and |V | = |E| = 5.
Then the graph G is not CE.

Proof. Let σ be a cyclic embedding of G. If G is CE then it has at most
four edges: two of length one and two of length two.

Now, we are going to prove that the graphs Fi from Theorem 6 are not
cyclically embeddable.

Consider first the graph F1. Let u be the vertex of degree four and v
the isolated vertex of F1. It is easy to see that each packing permutation of
the graph F1 contains the transposition (u, v), so any packing permutation
is not cyclic.
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Suppose that σ is a cycling embedding for the graph F2. Denote by u the
vertex of degree four and by a, b the vertices of degree one. It is easy to
see that u cannot be sent on a vertex of degree two. This implies that
u cannot be an image (by σ) of a vertex of degree two (since σ−1 is also
an embedding). Without loss of generality, we suppose that σ(u) = a. If
σ(a) = u then σ would contain a transposition. Thus we have σ(b) = u.
Note that ua+ ∈ E, since u is adjacent to all other vertices. But then,
σ(ba) = ua+ which contradicts the fact that σ is an embedding.

Let σ be an embedding of the graph F3. The set of the images of the
vertices of K4 have to contain: an isolated vertex, two vertices of degree one
and one vertex of V (K4). It is easy to see that in this case, the vertex of
degree two has to be mapped on itself. Thus σ has a fixed point and is not
cyclic.

We know from Theorem 4 there does not exist a cyclic embedding for
the graph C5 ∪K1 i.e., S3, which has one edge less than the graph F4. So
there does not exist a cyclic embedding of F4.

Now, we shall show that the graph F5 is not cyclically embeddable. Let
the vertices of F5 be as in the Figure 7. First we consider a packing of a
graph C4∪3K1. There exist four cyclic embedding of this graph (see Figure
8), so we distinguish four cases. Let σ be an embedding of F5.
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Figure 7. A graph F5

Case A. Without loss a generality we may suppose that the vertices
are such as in Figure 8. Notice σ(a) cannot be neither a vertex c, because
σ(cx) = σ(xb), nor a vertex d, because σ(yd) = σ(ax). So σ(a) = u. It is
not possibility σ−1(y) = d, because then σ(dy) = σ(ya). Therefore σ(b) = d
and σ(d) = c, but σ(xc) = σ(by), so there does not exist cyclic packing of
F5 in this case.

Analogously we can consider the remaining cases.
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Figure 8. Four different cyclical embeddings of the graphs C4 ∪ 3K1

4. Proof of Theorem 6

We use induction on order of graphs and we show that the graphs Fi are
the only exceptions. First, we consider G = (V, E) a (6, 6)-graph, which is
embeddable and is not unicyclic exception. Let σ be a cyclic packing of G.
If graph G is CE, it has at most three edges of length one, three edges of
length two and one edge of length three. It is easy to see that each graph
G is either a cycle C6, thus is cyclically embeddable by Theorem 1 or G is
a subgraph of graph from Figure 9, which is CE.
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Figure 9. Cyclically embeddable graph

Now, let n ≥ 7 and assume that our result is true for all n′ < n. Consider
a graph G of order and size equal to n, which is embeddable and is not
an exceptional graph (neither one of the graphs U2, U3, U5 nor one of the
graphs F1, F2, F3, F4, F5). We distinguish four main cases.
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Case 1. G has a pendent vertex x.
Let G′ = G \ {x}. Then G′ is an (n − 1, n − 1)-graph. If G′ is CE then by
Lemma 7 G is CE. If G′ is not embeddable then it is either one of graphs
Bi, i ∈ {1, . . . , 14} (B15, B16 are (n, n)-graphs with n < 5) or G′ is one of
exceptions Fi, i ∈ {1, . . . , 5}. Let y be a vertex of G′. Now G = G′ ∪ {x} is
a graph obtained from Bi or Fi by adding a vertex x with an edge xy.

Note, if G is a graph obtained from Bi, i ∈ {1, 2, 3, 4} then G is CE,
because it is an unicyclic graph and is not an exceptional graph of Theorem 1.

If G is obtained from B5 then, by assumption, the vertex y can be only
the vertex a, b or c. All these graphs are CE (see Figure 10).
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Figure 10. Cyclical embedding of graphs obtained from B5

In the next constructions we repeat following reasoning. If the vertex y of
the graph G is degree four and G has isolated vertex u, we get a (n, n− 2)-
graph G′′ = G \ {y, u}, which has an isolated vertex x. Then by Theorem 1
and Lemma 8 G is CE. If the vertex y of the graph G is degree three and
isolated vertex u, we get a (n, n − 1)-graph G′′ = G \ {y, u}, which has an
isolated vertex x. Then if G′′ is not an exceptional graph of Theorem 4, by
Lemma 8 G is CE. So we consider only this cases of graph G, in which it is
not possible this reasoning.
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We consider the graph G obtained from B6. If y is the vertex of K4 or K3,
we use reasoning like above. If y is an isolated vertex then we obtain a graph
K4 ∪K3 ∪K2 ∪K1, which has a cyclic packing (see Figure 11).
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Figure 11. Cyclical embedding of the graphs K4 ∪K3 ∪K2 ∪K1 and K4 ∪P3 ∪K2

Let G be obtained from B7. If y is the vertex of K4, we get a graph G′′ from
G by removing two pendent vertices different from x. We get an (n, n− 2)-
graph G′′′ from G′′ by removing an isolated vertex and a vertex y. Then by
Lemma 7 and Lemma 8 G is CE. If y is a pendent vertex of B7 then we
obtain the graph G isomorphic to K4 ∪ P3 ∪K2, which has a cyclic packing
(see Figure 11).

Let G be obtained from B8. If y is a pendent vertex of B8 then we
obtain the graph F5, which is not CE. If y is an isolated vertex of B8 then
we obtain the graph B7, which is not embeddable.

We consider the case of G obtained from B9. If y is an isolated vertex
of B9 then we obtain the graph L1, which is CE (see Figure 12).
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Figure 12. Graph L1 and its cyclical embedding

If G is obtained from B10 then G is the graph B5 and is not embeddable.
Let us consider the case where G is obtained from B11. If y is a vertex

of B11 of degree two then we obtain the graph L2, which is CE and if y is
an isolated vertex of B11 then we obtain the graph L3, which is CE, too
(see Figure 13).
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Figure 13. Graphs L2 and L3 and their cyclical embeddings

Let G be obtained from B12. If y is an isolated vertex of B12 then we obtain
a graph B8, which is not embeddable.

Let G be a graph obtained from B13 and y be a vertex of degree three
of B13. We get a graph G′′ from G by removing a pendent vertex different
from x and we get a (n, n− 2)-graph G′′′ from G′′ by removing an isolated
vertex and a vertex y of degree four. Then by Lemma 7 and Lemma 8 G is
CE. If y is a pendent vertex of B13 then we obtain the graph L4 and if y is
a vertex of valency two then we obtain a graph L5. The graphs L4 and L5
are CE as it is showed in Figure 14.

If G is obtained from B14 by adding a pendent vertex x then G is a
(6, 6)-graph. Then G is either the subgraph of Figure 9, which is CE or the
graph B13, which is not embeddable.

Now, let G be a graph obtained from Fi, i ∈ {1, . . . , 5} by adding a new
vertex x with an edge xy. As above, if y is a vertex of degree three or four
we apply reasoning like by the graphs Bi.

We consider the case of G obtained from F1. If y is an isolated vertex
of F1 then we obtain the graph F2, which is not CE. If y is an other vertex
F1 then we repeat reasoning as above.
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Figure 14. Graphs L4 and L5 and their cyclical embeddings

We consider the case of G obtained from F2. If y is a vertex of degree two
F2, then by removing a pendent vertex different from x we get the graph
L6 which is CE (see Figure 15). The same reasoning can by applied if y is
a vertex of degree one F2. Then we obtain the graph L7, which is CE (see
Figure 15).
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Figure 15. Cyclical embeddings of graphs L6, L7, L8

We consider the case of G obtained from F3. If y is an isolated vertex F3
then we obtain the graph K4 ∪ P3 ∪K2, which is CE, (see Figure 15). And
if y is a vertex of degree one F3 then the graph L8, which is CE, too (see
Figure 15).

We consider the case of G obtained from F4. If y is a vertex of degree
two F4, which has two neighbours of degree three, we obtain the graph L9,
which is CE (see Figure 16). If y is an isolated vertex F4 then we obtain
the graph L10, which is CE (see Figure 16).
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Figure 16. Cyclical embeddings of the graphs L9, L10

We consider the case of G obtained from F5. If y is a vertex of degree two
F5, which has two neighbours of degree three, we obtain the graph L11,
which is CE (see Figure 17). If y is an isolated vertex F5 then we obtain
the graph L12, which is CE (see Figure 17).
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Figure 17. Cyclical embeddings of the graphs L11, L12

Case 2. G has exactly one isolated vertex and it does not have any
pendent vertex.
It is easy to see that either G has one vertex of valency four or two vertices
of valency three. So, we consider two subcases.

Subcase a. Let x be a vertex of degree four in G and G has two connected
components. We can say that x is a joint vertex of two cycles in G.

The graph F1 is this smallest (6, 6)-graph, which obtained from two
K3 by join in a vertex x and it is not CE. Next graph is Z1 and it is CE
(see Figure 18). Every larger graphs with two connected components can
be obtained by a construction of Lemma 12.
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Figure 18. Graph Z1 and its cyclic embedding

Other graphs with one vertex of valency four, one isolated vertex and with-
out any pendent vertices are obtained by adding one or more cycle compo-
nents to F1 or to graph obtained from F1 by a construction of Lemma 12.
Thereby we obtain a cyclic embedding of the graph W1 (see Figure 19).
Each larger graph with three connected components we can obtained by a
construction of Lemma 12 and every graph, which has more connected com-
ponents we can obtained by Lemma 13 and Lemma 12. The assumptions of
this lemmas are satisfy in our case.
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Figure 19. Graph W1 and its cyclical embedding

Subcase b. Let G have two vertices x and y of valency three. Observe
that x and y are joined by exactly three or one paths, so we consider two
subcases: b1 and b2.

According to subcase b1 we consider only embeddable graphs, therefore
F5, Z2 and Z3 are the smallest graphs satisfying our conditions. We consider
additionally (8, 8)-graphs Z4 and Z5 (see Figure 20), because F5 is not CE.
All graphs Zi, i ∈ {2, 3, 4, 5} are CE as it is showed in Figure 20. Using a
construction of Lemma 12 we can obtain all graphs satisfying our conditions
and having two connected components.
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Figure 20. Graphs Z2, Z3, Z4, Z5 and their cyclical embeddings

W2 and W3 are the smallest graphs, which have three connected compo-
nents. There are constructed by adding C3 to B14 and B11, and they are
CE (see Figure 21). Each larger graph with three connected components
can be obtained by a construction of Lemma 12 and each graph, which has
more connected components can be obtained by Lemma 13 and Lemma 12.

In subcase b2 the graphs Z6 and Z7 are the smallest, which satisfy our
conditions and have two connected components. They are CE (see Figure
22). The addition of C3 to B9, i.e., a graph W4 satisfies our conditions
too, but has three connected components and is CE (see Figure 22). Now
similarly to the previous cases, Lemma 13 and Lemma 12 we can used to
obtain every larger graph and its are CE.
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Figure 21. Cyclical embeddings of graphs W2, W3
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Figure 22. Graphs Z6, Z7,W4 and their cyclical embeddings

Case 3. G has at least two isolated vertices, say u and v and it does not
have any pendent vertex.

It is easy to see that either G has at least one vertex of valency greater
or equal to four or at least two vertices of valency three. We consider two
subcases.
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Subcase a. Let G have at least one vertex of valency at least four, say
x. Consider a graph G′ obtained from the graph G by removing the vertices
u and x. Then G′ has n− 2 vertices and at most n− 4 edges. Therefore G′

is CE and by Lemma 8 G is CE, too.

Subcase b. Let G have at least two vertices x and y of valency three.
Consider a graph G′ = G \ {x, v}. Then G′ has n − 2 vertices and n − 3
edges. By induction, either G′ is cyclically embeddable and then G is CE
by Lemma 7 or graph G′ is not embeddable, i.e., is one of the graphs of
Figure 3, or it is one of exceptions of Figure 4. Graph G is embeddable by
assumption, therefore it is obtained from A5, A6 or S3 by adding a vertex
x of degree three and an isolated vertex v.

If G is constructed from A5 then new edges join the vertex x with two
vertices of first C3 and with one vertex of second C3. If G is obtained from
A6 then new edges join the vertex x with three vertices of C4. In the C5 we
can select three vertices by two ways, either all three are adjacent or only
two are adjacent. So from S3 (see Figure 4) we can obtain two graphs G.
All these four graphs G are CE by Lemma 8, because another choice of the
vertex of degree three, for example y, leads to a CE (n− 2, n− 3)-graph.

Case 4. G has only vertices of valency two.
If graph G is a cycle then by Theorem 1 (recall that n ≥ 6) it is CE. Let
G be the union of cycles. C3 ∪ C4 is the smallest graph, which has two
connected components and 3C3 is the smallest graph, which has three con-
nected components and both are CE as it is showed in Figure 23. Every
larger graph with two connected components can be obtained by construc-
tion of Lemma 12 and every graph, which has more connected components
can be obtained by Lemma 14 and Lemma 12.
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Figure 23. Cyclical embedding of graphs C3 ∪ C4 and 3C3

Thus, by induction, the proof is complete.
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