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Abstract

In this paper we introduce a new type of graph labeling for a graph
G(V,E) called an (a, d)-vertex-antimagic total labeling. In this la-
beling we assign to the vertices and edges the consecutive integers
from 1 to |V | + |E| and calculate the sum of labels at each vertex,
i.e., the vertex label added to the labels on its incident edges. These
sums form an arithmetical progression with initial term a and common
difference d.

We investigate basic properties of these labelings, show their re-
lationships with several other previously studied graph labelings, and
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show how to construct labelings for certain families of graphs. We
conclude with several open problems suitable for further research.

Keywords: super-magic labeling, (a, d)-vertex-antimagic total label-
ing, (a, d)-antimagic labeling.
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1. Introduction

All graphs considered here are finite, simple, and undirected. The graph G
has vertex set V = V (G) and edge set E = E(G) and we let |V | = v and
|E| = e. For a general reference for graph theoretic notions, see [15].

A labeling (or valuation) of a graph is any mapping that sends some
set of graph elements to a set of numbers (usually positive or non-negative
integers). If the domain is the vertex-set or the edge-set, the labelings are
called respectively vertex-labelings or edge-labelings. In this paper we deal
with the case where the domain is V ∪ E, and these are called total label-
ings. A general survey of graph labelings is found in [5]. Various authors,
beginning with Sedláček [12] have introduced labelings that generalize the
idea of a magic square. Magic labelings are one-to-one maps onto the ap-
propriate set of consecutive integers starting from 1, satisfying some kind
of ”constant-sum” property. A vertex-magic labeling is one in which the
sum of all labels associated with a vertex is a constant independent of the
choice of vertex. Edge-magic labelings are defined similarly. Vertex-magic
total labelings were first introduced in [10]. Such a labeling is a one-to-one
mapping λ : E ∪ V → {1, 2, . . . , v + e} with the property that there is a
constant k such that at any vertex x

λ(x) +
∑

λ(xy) = k

where the sum is over all vertices y adjacent to x. For any labeling we
call the sum of the appropriate labels at a vertex the weight of the vertex,
denoted wt(x); so for vertex-magic total labelings we require that the weight
of all vertices be the same, namely k and this number is called the magic
constant for the labeling.

Edge-magic total labelings have been studied recently in [14] and readers
are referred to [14] and [10] for more background on these subjects and a
standardization of the terminology.
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Hartsfield and Ringel [6] introduced the concept of an antimagic graph. In
their terminology, an antimagic labeling is an edge-labeling of the graph
with the integers 1, 2, . . . , e so that the weight at each vertex is different
from the weight at any other vertex. It is an easy exercise to write down
many antimagic labelings for most graphs, so some further restriction on the
vertex-sums is usually introduced. Thus Bodendiek and Walther [3] defined
the concept of an (a, d)-antimagic labeling as an edge-labeling in which the
vertex weights form an arithmetic progression starting from a and having
common difference d.

In this paper we introduce the notions of the vertex-antimagic total
labeling and the (a, d)-vertex-antimagic total labeling. For a vertex-antimagic
total labeling we label all vertices and edges with the numbers from 1 to v+e
and require that the weights of the vertices be all distinct. For an (a, d)-
vertex-antimagic total labeling we impose the restriction that the vertex
weights form an arithmetic progression. More formally, we have:

Definition 1. A bijection λ : V ∪ E → {1, 2, . . . , v + e} is called a vertex-
antimagic total labeling of G = G(V, E) if the weights of vertices wt(x),
x ∈ V are distinct.

Definition 2. A bijection λ : V ∪ E → {1, 2, . . . , v + e} is called an (a, d)-
vertex-antimagic total labeling (VATL) of G if the set of vertex weights is
W = {wt(x)|x ∈ V } = {a, a+d, . . . , a+(v− 1)d} for some integers a and d.

Figure 1 gives an example of (10, 4)-VATL of K4 − e.
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Figure 1. (10, 4)-VATL of K4 − e

Unless some further restriction is imposed, VATLs are too plentiful to be of
much interest. Consequently, in this paper we investigate the basic proper-
ties of (a, d)-VATLs. We point out connections with some other previously
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studied types of graph labelings, and construct (a, d)-VATLs for certain fam-
ilies of graphs. The paper concludes with several open problems which bear
further investigation.

2. General Properties

2.1. Basic Counting

Set M = e + v and let Sv be the sum of the vertex labels and Se the sum
of the edge labels. Since the labels are the numbers 1, 2, . . . , M , we have as
the sum of all labels:

Sv + Se =
M∑

1

i =

(
M + 1

2

)
.

If we let wt(xi) = a + id, then summing the weights over all vertices adds
each vertex label once and each edge label twice, so we get:

Sv + 2Se =
v

2
(2a + (v − 1)d).

Combining these two equations gives us

Se +

(
M + 1

2

)
= va +

(
v

2

)
d.

The edge labels could conceivably receive the e smallest labels or, at the
other extreme, the e largest labels, or anything between. Consequently, we
have

e∑

1

i ≤ Se ≤
M∑

v+1

i.

A corresponding result holds for Sv. Combining these last two equations
results in the inequalities

(
M + 1

2

)
+

(
e + 1

2

)
≤ va +

(
v

2

)
d ≤ 2

(
M + 1

2

)
−

(
v + 1

2

)

which restrict the feasible values for a and d. For particular graphs, however,
we can often exploit the structure to get considerably stronger restrictions.
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We note that if δ is the smallest degree in G, then the minimum possible
weight on a vertex is at least 1 + 2 + . . . + (δ + 1), consequently

a ≥ (δ + 1)(δ + 2)
2

.

Similarly, if ∆ is the largest degree, then the maximum vertex weight is no
more than the sum of the ∆ + 1 largest labels. Thus

a + (v − 1)d ≤
M∑

i=M−∆

i

=
(2M −∆)(∆ + 1)

2
.

Combining these two inequalities gives the following upper bound on values
of d:

d ≤ (2M −∆)(∆ + 1)− (δ + 1)(δ + 2)
2(v − 1)

.(1)

2.2. New Labelings from Old

Given one VATL on a graph, it may be possible to construct other VATLs
from it. Let λ : V ∪ E → {1, 2, . . . , e + v} be a one-to-one map. We define
the map λ′ on V ∪ E by

λ′(x) = M + 1− λ(x), x ∈ V,

λ′(xy) = M + 1− λ(xy), xy ∈ E.

Clearly, λ′ is also a one-to-one map from the set V ∪ E to {1, 2, . . . , e + v};
we say λ′ is the dual of λ.

Theorem 1. The dual of an (a, d)-vertex-antimagic total labeling for a graph
G is an (a′, d)-vertex-antimagic total labeling for some a′ if and only if G is
regular.

Proof. Suppose λ is an (a, d)-VATL for G and let wλ(x) be the weight of
vertex x under the labeling λ. Then W = {wλ(x)|x ∈ V } = {a, a+d, . . . , a+
(v − 1)d} is the set of vertex weights of G. For any vertex x ∈ V we have
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wλ′(x) = λ′(x) +
∑

xy∈E

λ′(xy)

= M + 1− λ(x) +
∑

xy∈E

[M + 1− λ(xy)]

= (rx + 1)(M + 1)− wλ(x),

where rx is the number of edges incident to the given vertex x. Clearly,
the set W ′ = {wλ′(x)|x ∈ V } consists of an arithmetic progression with
difference d′ = d if and only if rx is constant for every x, that is, if and only
if G is regular.

Corollary 1.1. Let G be a regular graph of degree r. Then G has an (a, d)-
vertex-antimagic total labeling if and only if G has an (a′, d)-vertex-antimagic
total labeling where a′ = (r + 1)(M + 1)− a− (v − 1)d.

Proof. Let G be a regular graph of degree r and λ be an (a, d)-VATL for G.
If λ′ is the dual labeling of λ then for every vertex x ∈ V we have wλ′(x) =
(r + 1)(e + v + 1)−wλ(x), where wλ(x) is the weight of the vertex x under
the labeling λ. We have wλ(x) = a+(v−1)d as the maximum vertex weight
under the labeling λ if and only if wλ′(x) = (r + 1)(e + v + 1)− a− (v− 1)d
is the minimum vertex weight under the labeling λ′.

Can one use a VATL on a graph G to derive a VATL for a subgraph of G?
This seems to be a difficult question in general. The following theorem
provides one case in which it is possible.

Theorem 2. Let G be a regular graph of degree r labeled in such a way that
some edge z receives the label 1. Then G has an (a, d)-vertex-antimagic total
labeling if and only if G− {z} has an (a′, d)-vertex- antimagic total labeling
with a′ = a− r − 1.

Proof. Assume that G is an r-regular graph and λ is the (a, d)-VATL on
G. Define a new mapping µ by

µ(x) = λ(x)− 1, x ∈ V,

µ(xy) = λ(xy)− 1, xy ∈ E.
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Clearly, the map µ is a one-to-one and the label 0 is assigned to edge z by
µ. Then we have

wµ(x) = µ(x) +
∑

xy∈E

µ(xy)

= λ(x)− 1 +
∑

xy∈E

[λ(xy)− 1]

= λ(x) +
∑

xy∈E

λ(xy)− r − 1

= wλ(x)− r − 1,

(where the above summations are taken over all vertices adjacent to x).
Clearly, the minimum value of wµ(x) occurs when wλ(x) = a.

If we delete the edge z from G, we obtain a graph G − {z} and the
restriction of the mapping µ to G− {z} is an (a− r − 1, d)-VATL.

The proof of the converse is as follows. Let λ be the VATL for G−{z}.
Define a new mapping µ in G by

µ(z) = 1,

µ(x) = λ(x) + 1 for all x ∈ V ,

µ(xy) = λ(xy) + 1 for all xy 6= z ∈ E.

Then it is easy to check that µ is the appropriate VATL for G.

3. Relations with other Labelings

As described in the introduction, other related types of labelings have been
studied previously. In this section, we show that it is possible in some cases
to derive a VATL from some other appropriate labeling of the graph. In
particular, much work has been done on various kinds of edge labelings.
Unfortunately, the terminology used by the various authors is not standard,
so we repeat here the relevant definitions.

Some of the earlier work on edge labeling permitted the labels to belong
to any set of positive integers. The following definition has been used:

Definition 3. If there exists a one-to-one map f : E → Z+ such that all
vertices have the same weight w(x), then the graph G is called magic and
the map f is called a magic labeling of G.
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In our terminology, this is a vertex-magic edge labeling. A characterization
of regular magic graphs is given in [4]. Several necessary and sufficient
conditions for the existence of magic graphs can be found in [7] and [8].

Stewart apparently was the first to impose the restriction on the magic
labeling that the labels belong to the set {1, . . . , e}. He made the following
definition which appeared in [13]:

Definition 4 (Stewart [13]). If there exists a bijection f : E → {1, 2, . . . , e}
such that all vertices have the same weight w(x), then the graph G is called
super-magic and the map f is called a super-magic labeling of G.

Stewart [13] showed that the complete graph Kn is super-magic when n = 2
or n > 5 and n 6≡ 0 (mod 4). For Kn we have v = n and e = n(n−1)

2 . Let
f : E(Kn) → {1, 2, . . . , e} be the super-magic labeling of Kn. Thus the sum
of all edge labels is equal to

(n2 − n + 2)(n2 − n)
8

and, since each label is used by two vertices, the magic constant (the constant
sum at each vertex) is

k =
(n2 − n + 2)(n− 1)

4
.

If we now label the vertices in G with {e + 1, e + 2, . . . , v + e} then these
labels together with the edge labels from f combine to give an (a, d)-vertex
antimagic total labeling where

a = k + e + 1 =
n3 + n + 2

4
and d = 1.

A similar argument applies for any graph G that has a super-magic labeling
and so, more generally, we have

Theorem 3. Every super-magic graph G has an (a, 1)-vertex-antimagic to-
tal labeling.

From [13] we know that both Kn and Kn,n have super-magic labelings;
consequently, we have the following two corollaries:
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Corollary 3.1. If n = 2 or n > 5 and n 6≡ 0 (mod 4) then the complete
graph Kn has an (a, 1)-vertex-antimagic total labeling.

Corollary 3.2. There is an (a, 1)-vertex-antimagic total labeling for Kn,n

for all n ≥ 3.

Super-magic labelings have been described by Bača [1] for a family of quartic
graphs Rn when n = 4k or n = 4k + 2, k ≥ 1. Therefore the next corollary
also follows from the Theorem 3.

Corollary 3.3. If n = 4k or n = 4k + 2, k ≥ 1, then the quartic graphs Rn

have an (a, 1)-vertex-antimagic total labeling.

As noted in the introduction, Bodendiek and Walther [3] introduced the
notion of the (a, d)-antimagic labeling, an edge labeling in which the vertex
weights form an arithmetic progression. They made the following definition:

Definition 5. A graph G = (V,E) is said to be an (a, d)-antimagic graph if
there exist positive integers a, d and a bijection f : E → {1, 2, . . . , e} such
that the set of vertex weights is W = {w(v)|v ∈ V } = {a, a + d, . . . , a+
(v − 1)d}. The map f is called an (a, d)-antimagic labeling of G.

These labelings have been investigated by Bača and others; see, for example,
[2] and [11].

Theorem 4. (i) If d > 1 then every (a, d)-antimagic graph G has an (a +
v + e, d− 1)-vertex-antimagic total labeling.
(ii) Every (a, d)-antimagic graph G has an (a+e+1, d+1)-vertex-antimagic
total labeling.

Proof. We assume that graph G is (a, d)-antimagic with d > 1 and let
f : E → {1, 2, . . . , e} be an (a, d)-antimagic labeling of G. Then W =
{wf (x)|x ∈ V } = {a, a + d, . . . , a + (v − 1)d} is the set of vertex weights of
G. For i = 0, . . . , (v − 1), let xi be the vertex with weight wf (xi) = a + id.
Define two sets of labels on the vertices

f ′, f ′′ : V → {e + 1, e + 2, . . . , e + v}
as follows:

f ′(xi) = e + i + 1,

f ′′(xi) = v + 2e + 1− f ′(xi).
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Then the labelings f and f ′ combine to give an (a + e + 1, d + 1)-VATL for
G and f and f ′′ to give an (a + v + e, d− 1)-VATL for G.

Readers should note that the term magic labeling of a graph G has been used
by Kotzig and Rosa [9] and others to mean a total labeling, specifically,
a bijection f from V ∪ E to {1, 2, . . . , v + e} such that for all edges xy,
f(x) + f(y) + f(xy) is constant. In our terminology, this is an edge-magic
total labeling of G.

The notion of vertex-magic total labeling has recently been introduced
[10]; the total labeling in which the vertex weights are constant. In fact
that may be considered a special case of the (a, d)-vertex-antimagic total
labeling in which d = 0. In subsequent papers we hope to explore the
relationship between these two types of graph labelings. The next theorem
gives an example of how one may construct a VATL from a vertex-magic
total labeling.

Theorem 5. Let G be a graph with a total labeling whose vertex labels consti-
tute an arithmetic progression with difference d. Then G has a vertex-magic
total labeling with magic constant k if and only if G has an (a′, 2d)-vertex-
antimagic total labeling where a′ = k + (1− v)d.

Proof. Let λ be a vertex-magic total labeling of G and k the magic constant
for λ. Suppose that, under the labeling λ, the vertex labels of G constitute
an arithmetic progression with difference d; in other words,

{λ(xi) | xi ∈ V } = {p + (i− 1) d | i = 1, 2, . . . , v}
= {p, p + d, . . . , p + (v − 1) d}, p ∈ Z+.

Then, under the edge labeling λE induced by λ, the weights of vertices
constitute an arithmetic progression; specifically

{wλE
(xi) | xi ∈ V } = {wλ(xi)− λ(xi) | xi ∈ V }

= {k − p− (i− 1) d | i = 1, 2, . . . , v}
= {k − p, k − p− d, . . . , k − p− (v − 1)d}.

Define a new mapping µ by

µ(z) = λ(z) for z ∈ E, and
µ(xi) = p + (v − i)d for xi ∈ V.
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It can be seen that the weights of vertices, under the new mapping µ, con-
stitute the set

W = {wµ(xi) | xi ∈ V }
= {k + (v + 1− 2i) d | i = 1, 2, . . . , v}
= {k + (v − 1) d, k + (v − 3) d, . . . , k + (1− v) d},

i.e., the weights of vertices constitute an arithmetic progression with differ-
ence 2d and the minimum value of weight is k+(1−v)d. Hence µ is a VATL
on G.

The proof of the converse is similar and is omitted.

4. Paths and Cycles

Among the graphs for which it is easiest to find VATLs are the cycles and
paths. In this section we provide labelings for both families of graphs. For
the n-cycle Cn we have v = e = n, so that the label set is {1, . . . , 2n}.

Applying inequality 1 with ∆ = δ = 2 calculate the maximum feasible
value for d. We get a + (n− 1) ≤ 6n− 3 where 6 ≤ a. Consequently we find

d ≤ 6n− 9
n− 1

= 6− 3
n− 1

.

Thus d ≤ 5 for all n ≥ 4 and d ≤ 4 for n = 3. In Figure 2, we give examples
of C3 for each feasible value of d.
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Figure 2. VATLs of C3 for all feasible d

We proved in Theorem 2 that every VATL for a graph of the form G−{z},
where G is regular and in which an edge z has the label 1, is obtained from
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a VATL of G. Since a path Pn is the cycle Cn with an edge removed, then
every VATL for the path Pn is obtained from a corresponding VATL for Cn

(note that the converse is not necessarily true).

Theorem 6. Every odd cycle Cn, n ≥ 3, has a (3n+5
2 , 2)-vertex-antimagic

total labeling and (5n+5
2 , 2)-vertex-antimagic total labeling.

Proof. Wallis et al. [14] proved that every odd cycle has an edge-magic
total labeling with magic constant k = 5n+3

2 . For cycles (and only for cycles),
an edge-magic total labeling is equivalent to a vertex-magic total labeling
(see [10]) and, moreover, the vertex labels of the considered vertex-magic
total labeling constitute an arithmetic progression with difference d = 1.
Thus, by Theorem 5, the odd cycle Cn has a (3n+5

2 , 2)-VATL.
To prove that Cn has (5n+5

2 , 2)-VATL, we make use of Corollary 1.1 and the
fact that Cn is a 2-regular graph. It is simple to verify that the minimal
vertex weight is 5n+5

2 .

The following is an easy consequence of the Theorem 2.

Corollary 6.1. For n odd and n ≥ 3, the path Pn has a (3n−1
2 , 2)-vertex-

antimagic total labeling.

Proof. The cycle Cn is a 2-regular graph and by Theorem 6 admits a
(3n+5

2 , 2)-VATL in which the label 1 is assigned to an edge z. Theorem 2
now guarantees that the path Pn has a (3n−1

2 , 2)-VATL.

In the following theorems we provide examples of VATLs with various values
of d for the cycles Cn and the paths Pn.

Theorem 7. Every cycle Cn, n ≥ 3 has a (3n+2, 1)-vertex-antimagic total
labeling and a (2n + 2, 1)-vertex-antimagic total labeling.

Proof. Let the cycle Cn be (x1, . . . , xn). If we label the vertices and edges
in Cn by

λ(xi) = i for i = 1, . . . , n,

λ(xixi+1) = 2n− i for i = 1, . . . , n− 1,

λ(xnx1) = 2n,

then the vertex weights will be

wλ(xi) =

{
4n + 1− i for i = 1, . . . , n− 1,

4n + 1 for i = n,
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and these clearly form the arithmetic progression 3n + 2, 3n + 3, . . . , 4n + 1.
Thus Cn has a (3n + 2, 1)-VATL.

Combining this with Corollary 1.1, it is easy to see that Cn also has a
(2n + 2, 1)-VATL.

Since the cycle Cn has a (2n + 2, 1)-VATL in which the label 1 is assigned
to an edge, by Theorem 2 we have

Corollary 7.1. Every path Pn, n ≥ 3, has a (2n − 1, 1)-vertex-antimagic
total labeling.

Theorem 8. Every cycle Cn, n ≥ 3 has a (2n+3, 2)-vertex-antimagic total
labeling and a (2n + 2, 2)-vertex-antimagic total labeling.

Proof. Let the cycle Cn be (x1, . . . , xn). If we label the vertices and edges
in Cn by

λ(xi) = 2i− 1 for i = 1, . . . , n,

λ(xixi+1) = 2(n + 1− i) for i = 1, . . . , n− 1,

λ(xnx1) = 2,

then the vertex weights are

wλ(xi) =

{
4n + 5− 2i for i = 2, . . . , n,
2n + 3 for i = 1,

and these form the arithmetic progression 2n + 3, 2n + 5, . . . , 4n + 1. Thus
Cn has a (2n + 3, 2)-VATL.

Combining this with Corollary 1.1, it is easy to see that Cn also has a
(2n + 2, 2)-VATL.

Since the cycle Cn has a (2n + 2, 2)-VATL in which the label 1 is assigned
to an edge, by Theorem 2 we have

Corollary 8.1. Every path Pn, n ≥ 3, has a (2n − 1, 2)-vertex-antimagic
total labeling.

Theorem 9. Every cycle Cn, n ≥ 3 has a (2n+2, 3)-vertex-antimagic total
labeling and an (n + 4, 3)-vertex-antimagic total labeling.
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Proof. As before, the cycle Cn is (x1, . . . , xn). Label the vertices and edges
in Cn as follows:

λ(xi) = i for i = 1, . . . , n− 1,

λ(xn) = 2n,

λ(xixi+1) = n + i for i = 1, . . . , n− 1,

λ(xnx1) = n,

then the vertex weights are

wλ(xi) = 2n− 1 + 3i, 1 ≤ i ≤ n,

clearly making a (2n + 2, 3)-VATL.
Combining this with Corollary 1.1, it is easy to see that Cn also has a

(n + 4, 3)-VATL.

Theorem 10. Every odd cycle Cn, n ≥ 3 has an (n+4, 4)-vertex-antimagic
total labeling and a (n + 3, 4)-vertex-antimagic total labeling.

Proof. Letting Cn be (x1, . . . , xn), we label the vertices and edges as fol-
lows:

λ(xi) = 2i− 1 for i = 1, . . . , n,

λ(xixi+1) = i + 1 for i odd, i 6= n,

λ(xixi+1) = n + i + 1 for i even,

λ(xnx1) = n + 1,

then the vertex weights are

wλ(xi) = n + 4i, 1 ≤ i ≤ n,

which clearly constitutes an (n + 4, 4)-VATL for Cn.
Combining this with Corollary 1.1, it is easy to see that Cn also has a

(n + 3, 4)-VATL.

Since the cycle Cn has an (n + 3, 4)-VATL in which the label 1 is assigned
to an edge, by Theorem 2 we have

Corollary 10.1. Every odd path Pn, n ≥ 3, has an (n, 4)-vertex-antimagic
total labeling.
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Theorem 11. The path Pn has a (2n− 1, 1)-vertex-antimagic total labeling
for any n ≥ 2.

Proof. Name the vertices in Pn as x1, . . . , xn and the set of edges is
E(Pn) = {xixi+1|i = 1, . . . , n − 1}. Then attach labels to all the vertices
and edges as follows:

λ(xi) =





n for i = 2,
2n− i for i = 3, . . . , n− 1,
2n− 2 for i = n,
2n− 1 for i = 1,

λ(xixi+1) =





1 for i = n− 1,
i for i = 2, . . . , n− 2,
n− 1 for i = 1.

Under this labeling we have the vertex weights:

wλ(xi) =





3n− 1− i for i = n− 1, n,
2n− 1 + i for i = 2, . . . , n− 2,
3n− 2 for i = 1.

These form the arithmetic progression 2n− 1, 2n, . . . , 3n− 2 and so, λ is a
(2n− 1, 1)-VATL.

As mentioned at the beginning of this section, a VATL for the path Pn, for
n ≥ 3, provides a corresponding VATL for the cycle Cn. Therefore we have
the following corollary.

Corollary 11.1. Every cycle Cn, n ≥ 3 has a (2n + 2, 1)-vertex-antimagic
total labeling and an (3n + 2, 1)-vertex-antimagic total labeling.

Interestingly, this labeling and the labeling produced by Theorem 7 are both
(2n + 2, 1)-VATL, but they are different. Here is an example of different
VATLs on the same graph achieving the same values of a and d.

5. Open Questions

In a subsequent paper, we will provide constructions for VATLs for a variety
of families of graphs. But there are many graphs we have not studied, and
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Figure 3. Two different (12,1)-VATLs for C5

several families of graphs that we have studied for which we have not found
VATLs. We list here several problems for further investigation.

Open problem 1. For the paths Pn and the cycles Cn, determine if there
is a vertex-antimagic total labeling for every feasible pair (a, d).

Open problem 2. Apart from duality, how can a vertex-antimagic total
labeling for a graph be used to construct another vertex-antimagic total
labeling for the same graph, preferably with different a and d?

Open problem 3. In Theorem 5, we found a way to construct VATL for
a graph G from a vertex-magic total labeling of G. Are there other ways to
do this?

Open problem 4. Find, if possible, some structural characteristics of a
graph which make a vertex-antimagic total labeling impossible.
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[2] M. Bača and I. Holländer, On (a, d)-antimagic prisms, Ars. Combin. 48 (1998)
297–306.



Vertex-Antimagic Total Labelings of Graphs 83

[3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: K.
Wagner and R. Bodendiek, Graphentheorie III, (BI-Wiss. Verl., Mannheim-
Leipzig-Wien-Zürich, 1993).
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