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Abstract

A graph G is a difference graph iff there exists S ⊂ IN+ such that
G is isomorphic to the graph DG(S) = (V,E), where V = S and
E = {{i, j} : i, j ∈ V ∧ |i− j| ∈ V }.

It is known that trees, cycles, complete graphs, the complete bi-
partite graphs Kn,n and Kn,n−1, pyramids and n-sided prisms (n ≥ 4)
are difference graphs (cf. [4]). Giving a special labelling algorithm, we
prove that cacti with a girth of at least 6 are difference graphs, too.
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1. Introduction and Basic Definitions

Harary [10] introduced the notion of sum graphs in 1988. In recent years, a
lot of authors published papers dealing with sum graphs, e.g. [1, 2, 6, 8, 9],
[11] – [19].

Moreover, in [10] Harary mentioned the concept of difference graphs.
Some classes of difference graphs (paths, trees, cycles, special wheels, com-
plete graphs, complete bipartite graphs etc.) were investigated by Bloom,
Burr, Eggleton, Gervacio, Hell and Taylor in the undirected (cf. [3, 4, 7])
as well as in the directed case (cf. [5]). In the papers [3, 4, 7] undirected
difference graphs were called autographs or monographs.

In the following, we will present an algorithm for the difference labelling
of cacti with a girth of at least 6.
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All graphs considered in this article are supposed to be nonempty and finite
without loops and multiple edges.

Let S ⊂ IN+ be finite. DG(S) = (V, E) is the difference graph of S iff
V = S and E = {{i, j} : i, j ∈ V ∧ | i− j | ∈ V }.

Furthermore, a given graph G is a difference graph iff there exists S ⊂
IN+ such that G is isomorphic to DG(S).

Let DGIN+ be the class of all difference graphs. As an example, consider
the wheel W4 ∈ DGIN+ in Figure 1.

W4 :
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Figure 1

A mapping r : V −→ IN+ is called a difference labelling of the difference
graph G = (V, E) iff G is isomorphic to DG(S), where S := {r(v)|v ∈ V }.
Obviously, every difference labelling is injective.

In [3] and [4] several modifications of the notion of difference graphs
were investigated. In analogy with the notation DGIN+ the classes of all
(generalized) difference graphs with vertex labels in IN , ZZ, IR+ and IR are
denoted by DGIN , DGZZ, DGIR+ and DGIR, respectively.

Bloom and Burr [3] proved DGIR = DGZZ and DGIR+ = DGIN+ . On
the other hand, it is known that DGIN ⊂ DGZZ and DGIN+ ⊂ DGIN (cf.
Figure 2).

Another modification is to use non-injective difference labellings, i.e.,
we allow to give the same label to different vertices. E.g., Km,n for m ≥ 4,
1 < n < m − 1 can be given such a non-injective difference labelling, but
Km,n /∈ DGIN+ .

It is known that trees, cycles, complete graphs, the complete bipartite
graphs Kn,n and Kn,n−1, pyramids and n-sided prisms (n ≥ 4) are difference
graphs (cf. [4]). Gervacio [7] proved that W3, W4 and W6 are the only wheels
which are difference graphs.

In the following, we generalize the result of Bloom, Hell and Taylor that
trees are difference graphs to the class of cacti with a girth of at least 6.
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2. Cacti

A nonempty, finite and connected graph G = (V, E) is called a cactus iff
every edge e ∈ E is contained in at most one cycle. In [4] Bloom et al.
introduced an irreducibility concept for trees which is useful for cacti, too.

An end edge e ∈ E is called a prickle of the cactus G = (V, E). G is
irreducible iff no vertex v ∈ V is incident with more than one prickle.

Bloom, Hell and Taylor developed the following procedure to reduce the
construction of difference labellings of (reducible) trees to irreducible trees.
(We will apply this procedure to cacti.) Let G = (V, E) be a reducible
tree/cactus.

Remove prickles in pairs at each vertex v ∈ V (with at least two prickles;
e.g., {v, v′} and {v, v′′}) until G is irreducible (see Figure 4).
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Figure 4

reduction

Construct a difference labelling r of the resulting graph.
Reinsert the prickles (e.g., {v, v′} and {v, v′′}) in pairs; if r(v) = α then

put r(v′) := 1
p and r(v′′) := α − 1

p for a prime p not previously used in G
(cf. Figure 5).

α reinsertion

labelling
.....................- α

1
p

α− 1
p

Figure 5

After reinserting and labelling all pairs of prickles, multiply the labels of all
vertices of G by

∏
i∈I pi, where {pi|i ∈ I} is the set of all prime values used

to label end vertices of pairs of prickles as described above. This yields a
difference labelling of the graph G.

Consequently, we can restrict on irreducible cacti.

2.1. Caterpillars and hedgehogs

A tree T = (V, E) is called a caterpillar iff deleting all end vertices (and
prickles) of T results in a path. A k-caterpillar is a caterpillar with a longest
path of a length of k−1. A k-caterpillar can be considered as a path Pk (the
backbone of the caterpillar) with additional prickles at some inner vertices.
Note that the backbone of a caterpillar is possibly not unique. In this case
let us choose one longest path of T as “the” backbone of T and call one
of its end vertices the initial and the other one the terminal vertex of the
caterpillar.
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With regard to the labelling algorithm in Section 2.2, the initial and the
terminal edge of a caterpillar (i.e., the edges incident to the initial and the
terminal vertex, respectively) are not considered as prickles per definition.

A k-hedgehog is a k-cycle Ck with additional prickles at some vertices.
Consequently, a k-hedgehog can be defined as a graph with the property
that deleting all end vertices and prickles results in a Ck.

In a certain sense, a cactus has a tree-like structure, and it is possible
to decompose it into hedgehogs and caterpillars. (In general, this decompo-
sition is not unique.)

To construct a difference labelling of an irreducible cactus we choose
such a decomposition. Then, step by step we construct special labellings
(so-called (x, t)-labellings) of the hedgehogs and caterpillars and combine
these labellings to obtain a difference labelling of the cactus.

To avoid undesired edges (between different hedgehogs or caterpillars)
induced by vertex labels, we construct the labelling in a way that guarantees
large differences between vertex labels of different hedgehogs and caterpil-
lars, respectively.

Definition. r is an (x, t)-labelling of G = (V, E) with initial vertex v iff
x, t ∈ IN+, t > 2x, v ∈ V and r : V −→ {x} ∪ {n|n ∈ IN+ ∧ n ≥ t}
is a difference labelling of G with r(v) = x and ∀a, b ∈ V : a 6= b −→
|r(a)− r(b)| = x ∨ |r(a)− r(b)| > t−1

2 .

(x, t)-Lemma.

(C) Let k ≥ 3, G = (V,E) an (irreducible) k-caterpillar and v ∈ V the
initial vertex of G,
or

(H) let k ≥ 6, G = (V, E) an (irreducible) k-hedgehog, v ∈ V an end vertex
or a cycle vertex without prickle.

Then, for arbitrary x ∈ IN+ and t > 2x, there exists an (x, t)-labelling r of
G with initial vertex v.

Proof. For simplification, in most cases we identify vertices u ∈ V with
their label r(u).

Case (C). We start at the initial vertex v with r(v) := x and label
the caterpillar along its backbone. Depending on the local structure of
the caterpillar (i.e., whether or not there are prickles at the vertices of the
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backbone) we have to use different labelling principles, which we sketch in
Figures 6–8. In these sketches we label from the left to the right; dotted
lines and hollow dots will be used for prickles which need not — but may
— exist.

.................
v = x x + t t

2t

or

v = x x + t

t

initial part of the caterpillar

Figure 6
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Figure 7
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Figure 8
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Note that the numbers y′ must be sufficiently large, i.e., if w ∈ V is the next
vertex to be labelled with such a “sufficiently large” number y′, we can use
y′ := 2 ·max{r(a)|a ∈ V ∧ a is a labelled vertex} + 1; only in the last case
(cf. the right picture in Figure 8), when there exists the prickle {y′, y′

2 }, we
need the larger label y′ := 4 ·max{r(a)|a ∈ V ∧ a is a labelled vertex}+ 2.

Case (H). Let v be a cycle vertex (Figure 9.1) or an end vertex (Figure
9.2).

v = x = a
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Figure 9.1
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Figure 9.2
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In order to label the hedgehog, we follow the direction sketched in the figures
starting at v. Let a be the first cycle vertex which we reach (i.e., a = v or —
if v is an end vertex — a is incident with the prickle with end vertex v) and
q be the predecessor of the last cycle vertex p (which is the predecessor of
a). At first, consider the caterpillar which we obtain by deleting p (and its
prickle, if exists). This caterpillar has the initial vertex v and the terminal
vertex q or q′ (if there is a prickle {q, q′} at q). Using the labelling method
described in Case (C), we construct an (x, t)-labelling of this caterpillar
starting with r(v) = x.

Now the labels of a and q are determined, and for the vertex p we choose
the label p = a + q. If there exists a prickle {p, p′} the label p′ = 2 · p can
be used (cf. Figure 10).
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Figure 10
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This completes our proof.

2.2. Main Theorem

Following the idea described at the beginning of Section 2 (decompose an
irreducible cactus into hedgehogs and caterpillars, construct (x, t)-labellings
of them and combine these labellings to obtain a difference labelling of the
cactus), we are able to prove our main theorem.

Theorem. Cacti with a girth of at least 6 are difference graphs.

Proof. Without loss of generality, we can restrict our investigations on
irreducible cacti G = (V, E) (with a girth of at least 6).

Using an algorithm we will construct a difference labelling of a given cac-
tus G = (V,E). This algorithm makes use of the (x, t)-Lemma for the con-
struction of (x, t)-labellings of certain hedgehogs and caterpillars (in steps
4 and 5). To describe the decomposition of G into these hedgehogs and
caterpillars we need the following notation:

Consider a vertex v ∈ V which is contained in a path w [a cycle c]
of the irreducible cactus G = (V, E). v is called a branch vertex iff after
the construction of an (x, t)-labelling (with suitable x, t ∈ IN+) of w [of c]
(including the prickles of w [of c]) v is incident with at least two [at least
one] unlabelled edges [edge]. Of course, these edges cannot be prickles but
if v lies on a path w, two of them can be in a common cycle.

Algorithm
1. L := ∅.
2. Let v ∈ V be an end vertex, if G contains one, or a cycle vertex,

otherwise; r(v) := 1.
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3. x := r(v), t := 2 ·max{r(u) |u ∈ V ∧ u is labelled}+ 1.

4. If the distance of v to any unlabelled cycle is greater than 1,
then, starting at v, construct an (x, t)-labelling along an (unlabelled)

path w = (v = v0, v1, . . . , vk) of maximum length, where w must
not contain edges of cycles, and
set L := L ∪ {u |u ∈ V (w) ∧ u is a branch vertex}.

5. If the distance of v to an unlabelled cycle c is at most 1,
then, starting at v, construct an (x, t)-labelling along c and

set L := L ∪ {u |u ∈ V (c) ∧ u is a branch vertex}.
6. If L = ∅, then stop.

7. Let v ∈ L.

8. If v is incident with exactly one unlabelled edge
or with exactly two unlabelled edges contained in a common cycle,
then L := L \ {v}.

9. Go to 3.

Of course, if we construct (x, t)-labellings along paths and cycles in steps
4 and 5, we mean that we construct such labellings of the corresponding
caterpillars and hedgehogs, respectively.

Because G is connected, every vertex has got a label after applying the
algorithm: In the algorithm the set L picks up every branch vertex v of
G, and (immediately after the removal of v from L) all unlabelled vertices,
which are adjacent to v or contained in the caterpillar w/hedgehog c (see
steps 4/5), get their label. This way, all caterpillars and hedgehogs get their
(x, t)-labelling step by step.

Considering a single caterpillar and hedgehog G′ labelled in step 4 and 5,
respectively, the (x, t)-Lemma ensures that we obtain a difference labelling
of G′. During this labelling procedure it is important that at the beginning
of step 4 and 5, respectively, only the “initial vertex” v of G′ has already a
label; because G is a cactus, all vertices of V (G′) \ {v} must be unlabelled.

Furthermore, for choosing t “sufficiently large” in step 3 we obtain the
fact that the labels of the caterpillar/hedgehog G′ being constructed in the
following steps 4/5 generate no “undesired” edges in the difference graph.

Hence the algorithm provides a difference labelling of the cactus G =
(V, E).

Simple examples show that it is impossible to use the concept of (x, t)-
labelling in the same way for cacti with short cycles (i.e., with k-hedgehogs
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with k ∈ {3, 4, 5}) in many cases. E.g., the only difference labelling of a
cycle of a length of 3, 4 and 5 uses the label set {x, 2x, 3x}, {x, 2x, 4x, 5x}
and {x, 2x, 4x, 8x, 9x} (with arbitrary x ∈ IN+), respectively. On the other
hand, it seems to be difficult to label such short hedgehogs immediately
when they are reached in the labelling procedure (“in passing”). Trying this
a vast number of cases has to be considered.

But no example is known in which a cactus (with short cycles) is not a
difference graph. Thus the question arises whether or not all cacti have a
difference labelling.

Conjecture. Cacti are difference graphs.
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