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Abstract

We analyze a minimum number of vertices of a complete graph
that can be decomposed into one factor of diameter 2 and k factors of
diameter at most 3. We find exact values for k ≤ 4 and the asymptotic
value of the ratio of this number and k when k tends to infinity. We
also find the asymptotic value of the ratio of the number of vertices of
the smallest complete graph that can be decomposed into p factors of
diameter 2 and k factors of diameter 3 and number k when p is fixed.
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1. Introduction

Decompositions of graphs into factors with given diameters have been ex-
tensively studied for many years, cf. [3, 4, 5, 6, 8]. The problem of decom-
position of the factors of equal diameters d, d > 3, has been solved in [4].
Several papers are devoted to the decomposition of a complete graph into
factors of diameter 2 [6, 7, 8]. Denote by f(k) the smallest natural number
n such that a complete graph on n vertices can be decomposed into k factors
of diameter 2. In [6] it is proved that

f (k) ≤ 7k.

In [2] this is improved to
f (k) ≤ 6k.
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In [7], it is proved that this upper bound is quite close to the exact value of
f(k) since,

f (k) ≥ 6k − 7, k ≥ 664

and in [8] the correct value of f(k) is given for large values of k, namely

f (k) = 6k, k ≥ 1017.

In this paper we asymptotically solve the problem of decomposition of a
complete graph into factors of diameters two and three.

Also, decompositions into small number of factors have been extensively
studied. Specially, the case of decomposition of a complete graph into two
factors with given diameters is solved completely in [3] and for the case of
decomposition of a complete graph into three factors with given diameters
is partially solved in [5]. Therefore, we shall pay some more attention to
decompositions into small number of factors.

2. Definitions and Preliminaries

By a factor of graph G we mean a subgraph of G containing all the vertices
of G. Two or more factors are called disjoint if every edge of G belongs to
at most one of them. A set of pairwise disjoint factors such that their union
is a complete graph is called a decomposition. The symbol Kn denotes the
complete graph on n vertices, dG(x) — degree of a vertex x in G, the symbol
∆(G) — the maximum degree of G, the symbol δ(G) — the minimum degree
of G, e(G) — the number of the edges of G and V (G) — the set of vertices
of G. The distance of vertices x and y in a G is denoted by dG(x, y). We
define the function f : ∪k∈NNk→ N with

f(d1, . . . , dk) = min{n : there is a decomposition of Kn into k factors such
that the diameter of the i-th factor is di}.

The following theorem can be found in [1].

Theorem 1. If m ≥ f(d1, d2, . . . , dk) ≥ 2, then Km can be decomposed into
k factors such that the diameter of the i-th factor is di.



Decomposition of Complete Graphs into Factors of ... 39

We also define the function φ : N→ N with

φ(k) = min{n : there is a decomposition of Kn into k + 1 factors,
one of diameter 2 and others of diameter 3}.

The following simple lemma will be useful in the sequel.

Lemma 2. If in a decomposition of Kn, n ∈ N, at least one of the factors
has diameter 2, then all the factors of diameter 3 must have at least n edges.

Proof. Suppose to the contrary, that there is a factor F of diameter three
which is a tree and denote the factor of diameter two by F ′. Distinguish
two cases.

(1) Suppose that the length of the longest path in F is more than 3.
Then there are two vertices connected in F by two different paths. Since F
is a tree, this is impossible.

(2) Suppose that the longest path in F has length 3. Denote, the vertices
of arbitrary path of length three, in order of their appearance, by a, b, c, d.

Let us prove that each of the vertices V (Kn) is adjacent to either b or c.
Suppose oppositely that there is a vertex x ∈ V (Kn)\{a, b, c, d} which is not
adjacent to either of vertices b and c. Since the longest path in F has length
3 and F does not contain a cycle, it follows that b is the only neighbor of a
and that c is the only neighbor of d. It follows that there is a path of length
at most 2 from x to b and from x to c. Note that {b, c} is not an edge of any
of these two paths and that b and c have no common neighbors. But, then
this two paths together with the edge {b, c} form a cycle, a contradiction.

Therefore, each vertex from V (Kn) \ {a, b, c, d} is adjacent to either b
or c, but then b and c have no common neighbors in F ′ and they are not
adjacent in F ′. This is in contradiction with the fact that diam(F ′) = 2, so
our claim is proved.

3. Small Values of k

Though the value of φ(1) follows from [3], for the sake of completeness we
state

Proposition 3. φ(1) = 6.

Proof. First, we prove that φ(1) ≥ 6. Suppose φ(1) ≤ 5. Then we can
decompose K5 into two factors, one F1 of diameter two and the other F2 of
diameter three. Note that F2 has to have at least 5 edges, but then F1 can
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have at most 5 edges. Also, note that δ(F2) > 1, so δ(F1) ≤ 3. The only
graph with 5 vertices and at most 5 edges such that its maximum degree is
less then 4 and its diameter is 2 is a cycle, but then F2 is also a cycle with
5 vertices and is not of diameter 3.

The following sketch proves φ(1) ≤ 6.

diam(F0) = 2, diam(F1) = 3

So, the claim is proved.

Proposition 4. φ(2) = 8.

Proof. First, we prove that φ(2) ≥ 8. Suppose that φ(2) < 8. Than we
can decompose K7 into three factors, one F1 of diameter two and others of
diameter three. By Lemma 2, factors of diameter three have to have at least
7 edges, so e(F1) ≤ 21− 2 · 7 = 7. Each vertex has at least one incident edge
in each factor of diameter three, so ∆(F1) ≤ 4. We distinguish two cases.

(1) If each vertex has degree two in F1, then F1 is either disconnected
or is a cycle of length 7 which is a contradiction.

(2) If there is a vertex x, such that 3 ≤ dF1(x) ≤ 4, then denote by F ′
1

a graph obtained by deleting this vertex. Let y be an arbitrary vertex of
F1 which is not adjacent to x. Vertex y has to be connected in F ′

1 to each
vertex of F ′

1 by a path of length at most 2 (otherwise the diameter of F1

would be greater than 2), so F ′
1 is connected. But, this is in contradiction

to the fact that F ′
1 has 6 vertices and at most 4 edges.

The following sketch proves that φ(2) ≤ 8.
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diam(F0) = 2; diam(F1) = 3, diam(F2) = 3

So, φ(2) = 8.

Proposition 5. φ(3) = 10.

Proof. First, we prove that φ(3) ≥ 10. Analogously, as above, suppose that
we can decompose K9 into four factors, one F1 of diameter two and others
of diameter three. By Lemma 2, factors of diameter three have to have at
least 9 edges, so e(F1) ≤ 36−3 ·9 = 9. Each vertex has at least one incident
edge in each factor of diameter three, so ∆(F1) ≤ 5. We distinguish two
cases.

(1) If each vertex has degree two in F1, then F1 is either disconnected
or is a cycle of length 9, a contradiction.

(2) If there is a vertex x, such that 3 ≤ dF1(x) ≤ 5, then denote by F ′
1

a graph obtained by eliminating this vertex. Let y be an arbitrary vertex of
F1 which is not adjacent to x. Vertex y has to be connected in F ′

1 to each
vertex of F ′

1 by a path of length at most 2 (otherwise the diameter of F1
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would be greater than 2), so F ′
1 is connected. But, this is in contradiction

to the fact that F ′
1 has 8 vertices and at most 6 edges.

The following sketch proves that φ(3) ≤ 10.

diam(F0) = 2, diam(F1) = 3, diam(F2) = 3, diam(F3) = 3

So, the claim is proved.

4. The Main Results

First, we give an upper bound for the function φ.

Theorem 6. For any k ∈ N, we have φ(k) ≤ 2k +3d
√

ke+2t where t is the
least natural number such that

(
2t− 1
t− 1

)
≥ k.
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Proof. We will construct a decomposition of Kn, n = 2k + 3d
√

ke + 2t,
in factors F0, F1, F2, . . . , Fk such that diam(F0) = 2 and diam(Fi) = 3,
1 ≤ i ≤ k. Let

V (Kn) = L ∪D ∪W ∪ Z ∪ U ∪A ∪B,

where

L = {l1, . . . , lk} , D = {d1, . . . , dk} , W =
{

w0, . . . , wd√ke−1

}
,

Z =
{

z0, . . . , zd√ke−1

}
, U =

{
u1, . . . , ud√ke

}
, A = {a}, B = {b1, . . . , b2t−1}.

Let B be the set of all t− 1 element subsets of the set {1, 2, . . . , 2t− 1}. Let
f be any injection

f : {1, . . . , k} → B.

Let us notice that for each j ∈ {1, . . . , kt} there are unique numbers qj and
rj such that

j = qj ·
⌈√

k
⌉

+ rj , 0 ≤ qj ≤
⌈√

k
⌉
− 1, 1 ≤ rj ≤

⌈√
k
⌉

.

The edges of the factor Fi, 1 ≤ i ≤ k are

(1) lidi, (2) lilj , 1 ≤ j < i ≤ k,
(3) dilj , 1 ≤ j < j ≤ k, (4) didj , 1 ≤ j < i ≤ k,
(5) lidj , 1 ≤ i < j ≤ k, (6) lia,
(7) libj , j ∈ f(i), (8) dibj , j ∈ {1, 2, . . . , 2t− 1} \ f(i),

(9) liwj , 1 ≤ j ≤ d
√

ke − 1, (10) dizj , 1 ≤ j ≤ d
√

ke − 1,
(11) wqiuri , (12) zqiuri ,
(13) diuj , 1 ≤ j ≤ k, j 6= ri.

The other edges are edges of the factor F0. In each factor Fi, 1 ≤ i ≤ k
all vertices are adjacent to either li or di, except uri which is connected by
a path of length 2 to both, li and di, and also li and di are adjacent, so
we have diam(Fi) ≤ 3, 1 ≤ i ≤ k. Now, let us prove that diam(Fi) > 3,
1 ≤ i ≤ k. Let i be an arbitrary number such that 1 ≤ i ≤ k. Let j be an
element of the set {1, 2, . . . , 2t − 1} \ f(i). Note that dFi(a, bj) = 3, so the
claim is proved.
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It remains to prove that diam (F0) = 2. We have to prove that every two
vertices of F0 are adjacent or that they have a common neighbor. We dis-
tinguish five cases.

(1) x /∈ L, y /∈ L. Then a ∈ NF0(x) ∩NF0(y).
(2) x, y ∈ L. Since

|NF0 (x) ∩B|+ |NF0 (y) ∩B| = t + t > |B| ,

by pigeonhole principle we have b ∈ B such that b ∈ NF0(x) ∩NF0(y).

(3) x ∈ L, y ∈ D. We distinguish two subcases.
(3a) x = li, y = di, 1 ≤ i ≤ k. Then uri ∈ NF0(li) ∩NF0(di).
(3b) x = li, y = dj , 1 ≤ i, j ≤ k, i 6= j. We have

|NF0 (li) ∩B|+ |NF0 (dj) ∩B| = t− 1 + t = |B| ,

so either there is a vertex b ∈ NF0(li) ∩NF0(dj) or

NF0 (li) ∩B = B \NF0 (dj) = NF0 (lj) ∩B

which is impossible.
(4) x ∈ L, y ∈ U ∪ Z. Then x and y are adjacent.
(5) x ∈ L, y ∈ W ∪A ∪B. Then (∀z ∈ Z)(z ∈ NF0(x) ∩NF0(y)).

So, the claim is proved.

From the last theorem, it easily follows

Corollary 7. limk→∞
φ(k)

k = 2.

Proof. Let k ∈ N be sufficiently large. Let us find upper and lower bounds
for φ(k).

k · (φ (k)− 1) ≤
(

φ (k)
2

)
⇒ k ≤ φ (k)

2
⇒ φ (k) ≥ 2k.

Let us notice that, for sufficiently large k, we have

(
2d
√

ke − 1
d
√

ke − 1

)
≥ k,
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so

2k ≤ φ (k) ≤ 2k + 5
(√

k + 1
)
⇒ 2 ≤ φ (k)

k
≤ 2 +

5√
k

+
5
k
.

⇒ 2 ≤ lim
k→∞

(
φ (k)

k

)
≤ lim

k→∞

(
2 +

5√
k

+
5
k

)
.

which proves the claim.

Now, we give an auxiliary result.

Lemma 8. Let k ≥ 4. Then there is a decomposition of Kk into factors F ′
1

and F ′
2 such that δ(F ′

1) ≥ 1 and δ(F ′
2) ≥ 1.

Proof. We prove our claim by induction on k. We denote W (Kk) =
{1, . . . , k}. For k = 4, the claim is trivial. Suppose it is true for j and
let us prove it for j + 1. We decompose the graph induced by vertices
{1, . . . , j} as Kj and add to F ′

1 the edge {1, j + 1} and add to F ′
2 the edges

{i, j + 1}, 2 ≤ i ≤ k. This decomposition proves the lemma.

Theroem 9. Let k ≥ 4. Then we have φ(k) ≤ 3k + 1.

Proof. We shall construct the decomposition of Kn, n = 3k+1, into factors
F0, F1, F2, . . . , Fk such that diam(F0) = 2 and diam(Fi) = 3, 1 ≤ i ≤ k. We
denote

V (Kn) = {x, yij : 1 ≤ i ≤ k, 1 ≤ j ≤ 3} .

Let F ′
1 and F ′

2 be the factors of Kk described in previous Lemma. The edges
of the factor Fi, 1 ≤ i ≤ k are

(1) {vi3, xt},
(2) {vi1, vi2}, {vi2, vi3}, {vi3, vi1},
(3) {vi2, vj2},, {vi2, vj3}, {vi1, vj1}, 1 ≤ j < i, {i, j} ∈ F ′

1,
(4) {vi2, vj1}, {vi2, vj3}, {vi1, vj2}, i < j ≤ k, {i, j} ∈ F ′

1,
(5) {vi1,vj1}, {vi1, vj3}, {vi2, vj2}, 1 ≤ j < i, {i, j} ∈ F ′

2,
(6) {vi1, vj2}, {vi1, vj3}, {vi2, vj1}, i < j ≤ k, {i, j} ∈ F ′

2.
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The other edges are edges of the factor F0. Indeed, diam(Fi) = 3, 1 ≤ i ≤ k,
because all its vertices are adjacent to at least one of vertices vi1, vi2 and
vi3, and these three vertices form a triangle.

It remains to prove that diam(F0) = 2. We have to prove that each
two vertices of F0 are adjacent or that they have a common neighbor. We
distinguish eight cases.

(1) p = x, q = vij , 1 ≤ i ≤ k, 1 ≤ j ≤ 2. Then x and vij are adjacent.
(2) p = x, q = vi3, 1 ≤ i ≤ k. Let us choose j, j 6= i, 1 ≤ j ≤ k, such that

{i, j} ∈ F ′
1. We have vj1 ∈ NF0(x) ∩NF0(vi3).

(3) p = vij , q = vab, 1 ≤ i, a ≤ k, 1 ≤ j, b ≤ 2. Then x ∈ NF0(vij) ∩
NF0(vab).

(4) p = vi3, q = vj3, 1 ≤ i, j ≤ k, i 6= j. Then vi3 and vj3 are adjacent.
(5) p = vi3, q = vj1, 1 ≤ i, j ≤ k, {i, j} ∈ F ′

1. Then vi3 and vj1 are
adjacent.

(6) p = vi3, q = vj1, 1 ≤ i, j ≤ k, {i, j} /∈ F ′
1. Let us choose m, m 6=

i,m 6= j, 1 ≤ m ≤ k, such that {m, j} ∈ F ′
1. We have vm3 ∈ NF0(vi3)∩

NF0(vj1).
(7) p = vi3, q = vj2, 1 ≤ i, j ≤ k, {i, j} ∈ F ′

2. Then vi3 and vj2 are
adjacent.

(8) p = vi3, q = vj2, 1 ≤ i, j ≤ k, {i, j} /∈ F ′
2. Then let us choose

m, m 6= i,m 6= j, 1 ≤ m ≤ k, such that {m, j} ∈ F ′
2. We have

vm3 ∈ NF0(vi3) ∩NF0(vj2).

So, the claim is proved.

Denote by H′d(n, k) the set of all graphs with n vertices and with maximal
degree at most k and diameter at most d. Put

e′d (n, k) = min
{
e (G) : G ∈ H′d (n, k)

}
.

In the proof of Theorem IV. 1.2 in [1], the following statement is proved:

Lemma A. e′d(n, n− 4) > 2n− 5, if n ≤ 12.

Corollary 10. φ(4) = 13.

Proof. By the previous Theorem φ(4) ≤ 13. It remains to prove φ(4) ≥ 13.
On the contrary, suppose that K12 can be decomposed into one factor F1 of
diameter 2 and four factors of diameter 3. From Lemma A it follows that
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e(F1) ≥ 2 ·12−5 = 19. From Lemma 2 it follows that the factors of diameter
three have at least 12 edges each, so we have

66 = e (K12) ≥ 19 + 4 · 12 = 67,

which is a contradiction, so our claim is proved.

As our last main result, we are going to generalize Corollary 7. First, we
give a lemma.

Lemma 11. There is a function q : N→ N such that, for each p ∈ N, a
complete graph Kp·q(p) with a set of vertices {eα

i : 1 ≤ i ≤ q(p), 1 ≤ α ≤ p}
can be decomposed into factors E1, E2, . . . , Ep such that:

(1) eα
i eα

j is an edge of Eα, 1 ≤ i < j ≤ q(p), 1 ≤ α ≤ p,
(2) diam(Eα) ≤ 2, 1 ≤ α ≤ p,
(3) (∀α, β ∈ {1, . . . , p}, α 6= β)(∀i ∈ {1, . . . , q(p)})(∃j ∈ {1, . . . , q(p)})

(eα
i eβ

j is an edge of Eβ).

Proof. Let E′
1, E

′
2, . . . , E

′
p be a decomposition of a graph Kp·q(p), such that:

(a) eα
i eα

j is an edge of E′
α, 1 ≤ i < j ≤ q(p), 1 ≤ α ≤ p.

(b) The probability that eα
i eβ

j , 1 ≤ i, j ≤ q(p), 1 ≤ α < β ≤ p is an edge
of E′

α is 1
2 and the probability that it is an edge of E′

β is also 1
2 .

Let us estimate a probability prob(γ, eα
i , eβ

j ) that dE′γ (eα
i , eβ

j ) > 2 for 1 ≤
α, β, γ ≤ p, 1 ≤ i, j ≤ q(p), eα

i 6= eβ
j . Distinguish four cases.

(1) γ = α = β. prob(γ, eα
i , eβ

j ) = 0, because eα
i eα

j is an edge of E′
α.

(2) γ = α 6= β. prob(γ, eα
i , eβ

j ) is less or equal to the probability that eβ
j is

not adjacent to any eα
k in E′

α, 1 ≤ k ≤ q(p), so prob(γ, eα
i , eβ

j ) ≤ (1
2)q(p).

(3) γ = β 6= α. Similarly as above prob(γ, eα
i , eβ

j ) ≤ (1
2)q(p).

(4) γ 6= α, γ 6= β. Probability that ek
γ /∈ NE′γ (eα

i ) ∩NE′γ (eβ
j ) is 3

4 for each

fixed k = 1, . . . , q(p), so prob(γ, eα
i , eβ

j ) ≤ (3
4)q(p).

For the sake of simplicity we also define prob(γ, eα
i , eα

i ) = 0. In any case,
prob(γ, eα

i , eβ
j ) ≤ (3

4)q(p). Let us find a probability prob(β, eα
i ) that for eα

i ,
1 ≤ i ≤ q(p), 1 ≤ α ≤ p and β 6= α, 1 ≤ β ≤ p there is no j, 1 ≤ j ≤ q(p)
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such that eα
i eβ

j is an edge of E′
β. The probability that eα

i eβ
j is not an edge of

E′
β for a fixed j, 1 ≤ j ≤ q(p) is 1

2 , so prob(β, eα
i ) ≤ (1

2)q(p).

Now, we can find a lower bound for the probability Xp
q(p) that the ran-

dom decomposition E′
1, E

′
2 . . . , E′

p of Kp·q(p), described above, has properties
required in Lemma. It holds that

Xp
q(p) ≥ 1−




∑

1≤i≤q(p)
1≤α,β≤p

α 6=β

prob (β, eα
i ) +

∑

1≤i,j≤q(p)
1≤α,β,γ≤p

prob
(
β, eα

i , eβ
j

)




≥ 1−
(

q (p) · p2 ·
(

1
2

)q(p)

+ p3 · (q (p))2
(

3
4

)q(p)
)

.

Since

lim
q(p)→∞

(
1−

(
q (p) · p2 ·

(
1
2

)q(p)

+ p2 · (q (p))2
(

3
4

)q(p)
))

= 1 > 0,

for any p and sufficiently large q(p) we have

Xp
q(p) > 0,

so there is a decomposition E1, . . . , Ep with the required properties.

Theorem 12. limk→∞

f(2, 2, . . . , 2︸ ︷︷ ︸
p-times

,3, 3 . . . , 3︸ ︷︷ ︸
k-times

)

k = 2, where p is a fixed natural
number.

Proof. Analogously, as in the proof of Corollary 7, we have

(1) f


2, 2, . . . , 2︸ ︷︷ ︸

p-times

, 3, 3, . . . , 3︸ ︷︷ ︸
k-times


 ≥ 2k.

Now, we are going to prove that for sufficiently large k,
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(2) f


2, 2, . . . , 2︸ ︷︷ ︸

p-times

, 3, 3, . . . , 3︸ ︷︷ ︸
k-times


 ≤ 2k + 5p ·

⌈√
k
⌉

+
(

p

2

)⌈√
k
⌉

+ 2 · p · q (p) ,

where q is the function from the previous Lemma.

Denote n = 2k + 5p · d
√

ke+
(
p
2

)d
√

ke+ 2 · p · q(p). Let E1, E2, . . . , Ep be a
decomposition of Kp·q(p) from Lemma 11. We describe a decomposition of
Kn into factors F1, F2, . . . , Fp of diameter 2 and factors G1, G2, . . . , Gk of
diameter 3. Let

V (Kn) = L ∪D ∪
p⋃

α=1

(Wα ∪ Zα ∪ Uα ∪Aα ∪Bα ∪ Cα) ∪
⋃

1≤α<β≤p

Sαβ ,

where

L = {l1, . . . , lk} ,

D = {d1, . . . , dk} ,

Wα =
{

wα
0 , . . . , wα

d√ke−1

}
, 1 ≤ α ≤ p,

Zα =
{

zα
0 , . . . , zα

d√ke−1

}
, 1 ≤ α ≤ p,

Uα =
{

uα
1 , . . . , uα

d√ke
}

, 1 ≤ α ≤ p,

Aα =
{

aα
1 , . . . , aα

q(p)

}
, 1 ≤ α ≤ p,

Bα =
{

bα
1 , . . . , bα

2d√ke
}

, 1 ≤ α ≤ p,

Cα =
{

cα
1 , cα

2 , . . . , cα
q(p)

}
, 1 ≤ α ≤ p,

Sαβ =
{

sαβ
1 , . . . , sαβ

d√ke
}

, 1 ≤ α < β ≤ p.

Let B be the set of all d
√

ke element subsets of the set {1, 2, . . . , 2d
√

ke}.
Let f be any injection

f : {1, . . . , k} → B.
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f exists, because (
2 · d

√
ke

d
√

ke

)
≥ k

for a sufficiently large k. Let us notice that for each j ∈ {1, . . . , k} there are
unique numbers qj and rj such that

j = qj ·
⌈√

k
⌉

+ rj , 0 ≤ qj ≤
⌈√

k
⌉
− 1, 1 ≤ rj ≤

⌈√
k
⌉

.

The edges of a factor Gi, 1 ≤ i ≤ k are

(1) lidi,
(2) lilj , 1 ≤ j < i ≤ k,
(3) dilj , 1 ≤ i < j ≤ k,
(4) didj , 1 ≤ j < i ≤ k,
(5) lidj , 1 ≤ i < j ≤ k,
(6) lia

α
j , 1 ≤ α ≤ p, 1 ≤ j ≤ q(p),

(7) lib
α
j , j ∈ f(i), 1 ≤ α ≤ p,

(8) dib
α
j , j ∈ {1, 2, . . . , 2 dke} \ f(i), 1 ≤ α ≤ p,

(9) dic
α
j , 1 ≤ α ≤ p, 1 ≤ j ≤ q(p),

(10) liw
α
j , 0 ≤ j ≤ d

√
ke − 1, 1 ≤ α ≤ p,

(11) diz
α
j , 0 ≤ j ≤ d

√
ke − 1, 1 ≤ α ≤ p,

(12) wα
qi

uα
ri

, 1 ≤ α ≤ p,
(13) zα

qi
uα

ri
, 1 ≤ α ≤ p,

(14) diu
α
j , 1 ≤ j ≤ k, j 6= ri, 1 ≤ α ≤ p,

(15) sαβ
qi uα

ri
, 1 ≤ α < β ≤ p,

(16) sαβ
qi uβ

ri , 1 ≤ α < β ≤ p,

(17) lis
αβ
j , 1 ≤ α < β ≤ p, 1 ≤ j ≤ d

√
ke.

The edges of a factor Fα, 1 ≤ α ≤ p are

(1) xy such that x, y ∈ L ∪D ∪Wα ∪ Zα ∪ Uα ∪ Aα ∪ Bα ∪ Cα and xy is
not an edge of any graph Gi, 1 ≤ i ≤ k.

(2) xy such that x ∈ Aα ∪ Cα and
y ∈ ⋃

1≤β≤p
β 6=α

(Wβ ∪ Zβ ∪ Uβ ∪Bβ) ∪⋃
1≤β<γ≤p Sβγ .
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(3) aα
i cβ

j , so that eα
i eβ

j ∈ Eα, 1 ≤ i, j ≤ q(p), 1 ≤ β ≤ p.

(4) aα
j cβ

i , so that eα
i eβ

j ∈ Eα, 1 ≤ i, j ≤ q(p), 1 ≤ β ≤ p.

(5) aα
i aβ

j , so that eα
i eβ

j ∈ Eα, 1 ≤ i, j ≤ q(p), 1 ≤ β ≤ p.

(6) cα
i cβ

j , so that eα
i eβ

j ∈ Eα, 1 ≤ i, j ≤ q(p), 1 ≤ β ≤ p.

Now, we shall prove that the diameter of Gi, 1 ≤ i ≤ k, is 3. First, we prove
that for each x, y ∈ Gi is dGi(x, y) ≤ 3. Distinguish 4 cases.

(1) x, y ∈ {li, di} ∪NGi(li) ∪NGi(di).
(2) x = {uα

ri
: 1 ≤ α ≤ p}, y ∈ NGi(li) ∪ {li}.

(3) x = {uα
ri

: 1 ≤ α ≤ p}, y ∈ NGi(di) ∪ {di}.
(4) x, y ∈ {uα

ri
: 1 ≤ α ≤ p}.

In each case a simple analysis shows that there is a path of length ≤ 3.

Let us prove that the diameter of Gi, 1 ≤ i ≤ k, is > 3. Let j be an
arbitrary number such that {1, 2, . . . , 2 dke} \ f(i). Then dGi(a

1
1, b

1
j ) = 3.

It remains to prove that the diameter of each Fα, 1 ≤ α ≤ p, is 2.
So, we have to prove that each x, y ∈ Fα are adjacent or have a common
neighbor. Distinguish eight cases.

(1) x, y ∈ L ∪D ∪Wα ∪ Zα ∪ Uα ∪Aα ∪Bα ∪ Cα.

This case can be proved by complete analogy with the proof of Theorem 6.

(2)

x ∈ L ∪D ∪Wα ∪ Zα ∪ Uα ∪Aα ∪Bα ∪ Cα,

y ∈
⋃

1≤β≤p
β 6=α

(Wβ ∪ Zβ ∪ Uβ ∪Bβ) ∪
⋃

1≤β<γ≤p

Sβγ .

We have Aα ∪ Cα ⊆ NFα(y) and NFα(x) ∩ (Aα ∪ Cα) 6= ∅, so NFα(x) ∩
NFα(y) 6= ∅.

(3)
x ∈ L ∪D ∪Wα ∪ Zα ∪ Uα ∪Aα ∪Bα ∪ Cα, y = aβ

i ,

1 ≤ β ≤ p, 1 ≤ i ≤ q (p) .

There is an edge eβ
i eα

j in Eα, for some j, 1 ≤ j ≤ q(p), so {aα
j , cα

j } ⊆ NFα(y).
Also we have {aa

j , c
a
j} ∩NFα(x) 6= ∅, so NFα(x) ∩NFα(y) 6= ∅.
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(4)
x ∈ L ∪D ∪Wα ∪ Zα ∪ Uα ∪Aα ∪Bα ∪ Cα, y = cβ

i ,

1 ≤ β ≤ p, 1 ≤ i ≤ q (p) .

There is an edge eβ
i eα

j in Eα, for some j, 1 ≤ j ≤ q(p), so {aα
j , cα

j } ⊆ NFα(y).
Also we have {aα

j , cα
j } ∩NFα(x) 6= ∅, so NFα(x) ∩NFα(y) 6= ∅.

(5) x, y ∈
⋃

1≤β≤p
β 6=α

(Wβ ∪ Zβ ∪ Uβ ∪Bβ) ∪
⋃

1≤β<γ≤p

Sαβ
.

We have aα
1 ∈ NFα(x) ∩NFα(y)

(6)

x ∈
⋃

1≤β≤p
β 6=α

(Wβ ∪ Zβ ∪ Uβ ∪Bβ) ∪
⋃

1≤β<γ≤p

Sαβ,

y = aγ
i , 1 ≤ γ ≤ p, α 6= γ, 1 ≤ i ≤ q (p) .

There is an edge eγ
i eα

j in Eα, for some j, 1 ≤ j ≤ q(p).
So aα

j ∈ NFα(x) ∩NFα(y)

(7)

x ∈
⋃

1≤β≤p
β 6=α

(Wβ ∪ Zβ ∪ Uβ ∪Bβ) ∪
⋃

1≤β<γ≤p

Sαβ,

y = cγ
i , 1 ≤ γ ≤ p, γ 6= α, 1 ≤ i ≤ q (p) .

There is an edge eγ
i eα

j in Eα, for some j, 1 ≤ j ≤ q(p).
So aα

j ∈ NFα(x) ∩NFα(y).

(8) x ∈ Aβ ∪ Cβ, y ∈ Aγ ∪ Cγ , 1 ≤ β, γ ≤ p, α 6= β, α 6= γ, x 6= y.

We distinguish four subcases

(8a) x = aβ
i , y = aγ

j ,

(8b) x = aβ
i , y = cγ

j ,

(8c) x = cβ
i , y = aγ

j ,

(8d) x = cβ
i , y = cγ

j .
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As proofs of this subcases are completely analogous, we prove only (8a).
Since d(eβ

i , eγ
j ) ≤ 2, either eβ

i and eγ
j are adjacent in Eα or there is a vertex

eα
k ∈ NEα(eβ

i )∩NEα(eα
j ). In the first case aβ

i and aγ
j are adjacent in Fα, and

in the second case aα
k ∈ NFα(aβ

i ) ∩NFα(aγ
j ).

So, the inequality (2) is proved.
From (1) and (2) we get

2k ≤ f


2, 2, . . . , 2︸ ︷︷ ︸

p-times

, 3, 3, . . . , 3︸ ︷︷ ︸
k-times




≤ 2k + 5p ·
⌈√

k
⌉

+
(

p

2

)⌈√
k
⌉

+ 2 · p · q (p) .

2k ≤ f


2, 2, . . . , 2︸ ︷︷ ︸

p-times

, 3, 3, . . . , 3︸ ︷︷ ︸
k-times




≤ 2k +
(

5p +
(

p

2

))√
k +

(
5p +

(
p

2

))
+ 2 · p · q (p) .

Dividing by k and passing to the limit, we get

2 ≤ lim
k→∞

f


2, 2, . . . , 2︸ ︷︷ ︸

p-times

, 3, 3, . . . , 3︸ ︷︷ ︸
k-times




k

≤ lim
k→∞

2 +

(
5p +

(
p
2

))
√

k
+

(
5p +

(
p
2

))

k
+

2 · p · q(p)
k

which proves the theorem.
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[7] Š. Znám, Decomposition of complete graphs into factors of diameter two, Math.
Slovaca 30 (1980) 373–378.
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