DECOMPOSITION OF COMPLETE GRAPHS INTO
 FACTORS OF DIAMETER TWO AND THREE

Damir Vukičević
Department of Mathematics
University of Split
Teslina 12, 21000 Split, Croatia

Abstract

We analyze a minimum number of vertices of a complete graph that can be decomposed into one factor of diameter 2 and k factors of diameter at most 3 . We find exact values for $k \leq 4$ and the asymptotic value of the ratio of this number and k when k tends to infinity. We also find the asymptotic value of the ratio of the number of vertices of the smallest complete graph that can be decomposed into p factors of diameter 2 and k factors of diameter 3 and number k when p is fixed.

Keywords: decomposition, graph.
2000 Mathematics Subject Classification: 05C70.

1. Introduction

Decompositions of graphs into factors with given diameters have been extensively studied for many years, cf. $[3,4,5,6,8]$. The problem of decomposition of the factors of equal diameters $d, d \geqslant 3$, has been solved in [4]. Several papers are devoted to the decomposition of a complete graph into factors of diameter $2[6,7,8]$. Denote by $f(k)$ the smallest natural number n such that a complete graph on n vertices can be decomposed into k factors of diameter 2. In [6] it is proved that

$$
f(k) \leq 7 k
$$

In [2] this is improved to

$$
f(k) \leq 6 k
$$

In [7], it is proved that this upper bound is quite close to the exact value of $f(k)$ since,

$$
f(k) \geq 6 k-7, k \geq 664
$$

and in [8] the correct value of $f(k)$ is given for large values of k, namely

$$
f(k)=6 k, \quad k \geq 10^{17}
$$

In this paper we asymptotically solve the problem of decomposition of a complete graph into factors of diameters two and three.

Also, decompositions into small number of factors have been extensively studied. Specially, the case of decomposition of a complete graph into two factors with given diameters is solved completely in [3] and for the case of decomposition of a complete graph into three factors with given diameters is partially solved in [5]. Therefore, we shall pay some more attention to decompositions into small number of factors.

2. Definitions and Preliminaries

By a factor of graph G we mean a subgraph of G containing all the vertices of G. Two or more factors are called disjoint if every edge of G belongs to at most one of them. A set of pairwise disjoint factors such that their union is a complete graph is called a decomposition. The symbol K_{n} denotes the complete graph on n vertices, $d_{G}(x)$ - degree of a vertex x in G, the symbol $\Delta(G)$ - the maximum degree of G, the symbol $\delta(G)$ - the minimum degree of $G, e(G)$ - the number of the edges of G and $V(G)$ - the set of vertices of G. The distance of vertices x and y in a G is denoted by $d_{G}(x, y)$. We define the function $f: \cup_{k \in \mathbb{N}} \mathbb{N}^{k} \rightarrow \mathbb{N}$ with
$f\left(d_{1}, \ldots, d_{k}\right)=\min \left\{n:\right.$ there is a decomposition of K_{n} into k factors such that the diameter of the i-th factor is $\left.d_{i}\right\}$.

The following theorem can be found in [1].

Theorem 1. If $m \geq f\left(d_{1}, d_{2}, \ldots, d_{k}\right) \geq 2$, then K_{m} can be decomposed into k factors such that the diameter of the i-th factor is d_{i}.

We also define the function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with
$\phi(k)=\min \left\{n:\right.$ there is a decomposition of K_{n} into $k+1$ factors, one of diameter 2 and others of diameter 3$\}$.

The following simple lemma will be useful in the sequel.

Lemma 2. If in a decomposition of $K_{n}, n \in \mathbb{N}$, at least one of the factors has diameter 2 , then all the factors of diameter 3 must have at least n edges.

Proof. Suppose to the contrary, that there is a factor F of diameter three which is a tree and denote the factor of diameter two by F^{\prime}. Distinguish two cases.
(1) Suppose that the length of the longest path in F is more than 3. Then there are two vertices connected in F by two different paths. Since F is a tree, this is impossible.
(2) Suppose that the longest path in F has length 3. Denote, the vertices of arbitrary path of length three, in order of their appearance, by a, b, c, d.

Let us prove that each of the vertices $V\left(K_{n}\right)$ is adjacent to either b or c. Suppose oppositely that there is a vertex $x \in V\left(K_{n}\right) \backslash\{a, b, c, d\}$ which is not adjacent to either of vertices b and c. Since the longest path in F has length 3 and F does not contain a cycle, it follows that b is the only neighbor of a and that c is the only neighbor of d. It follows that there is a path of length at most 2 from x to b and from x to c. Note that $\{b, c\}$ is not an edge of any of these two paths and that b and c have no common neighbors. But, then this two paths together with the edge $\{b, c\}$ form a cycle, a contradiction.

Therefore, each vertex from $V\left(K_{n}\right) \backslash\{a, b, c, d\}$ is adjacent to either b or c, but then b and c have no common neighbors in F^{\prime} and they are not adjacent in F^{\prime}. This is in contradiction with the fact that $\operatorname{diam}\left(F^{\prime}\right)=2$, so our claim is proved.

3. Small Values of k

Though the value of $\phi(1)$ follows from [3], for the sake of completeness we state

Proposition 3. $\phi(1)=6$.
Proof. First, we prove that $\phi(1) \geq 6$. Suppose $\phi(1) \leq 5$. Then we can decompose K_{5} into two factors, one F_{1} of diameter two and the other F_{2} of diameter three. Note that F_{2} has to have at least 5 edges, but then F_{1} can
have at most 5 edges. Also, note that $\delta\left(F_{2}\right) \geqslant 1$, so $\delta\left(F_{1}\right) \leq 3$. The only graph with 5 vertices and at most 5 edges such that its maximum degree is less then 4 and its diameter is 2 is a cycle, but then F_{2} is also a cycle with 5 vertices and is not of diameter 3 .

The following sketch proves $\phi(1) \leq 6$.

$$
\operatorname{diam}\left(F_{0}\right)=2, \operatorname{diam}\left(F_{1}\right)=3
$$

So, the claim is proved.

Proposition 4. $\phi(2)=8$.
Proof. First, we prove that $\phi(2) \geq 8$. Suppose that $\phi(2)<8$. Than we can decompose K_{7} into three factors, one F_{1} of diameter two and others of diameter three. By Lemma 2, factors of diameter three have to have at least 7 edges, so $e\left(F_{1}\right) \leq 21-2 \cdot 7=7$. Each vertex has at least one incident edge in each factor of diameter three, so $\Delta\left(F_{1}\right) \leq 4$. We distinguish two cases.
(1) If each vertex has degree two in F_{1}, then F_{1} is either disconnected or is a cycle of length 7 which is a contradiction.
(2) If there is a vertex x, such that $3 \leq d_{F_{1}}(x) \leq 4$, then denote by F_{1}^{\prime} a graph obtained by deleting this vertex. Let y be an arbitrary vertex of F_{1} which is not adjacent to x. Vertex y has to be connected in F_{1}^{\prime} to each vertex of F_{1}^{\prime} by a path of length at most 2 (otherwise the diameter of F_{1} would be greater than 2), so F_{1}^{\prime} is connected. But, this is in contradiction to the fact that F_{1}^{\prime} has 6 vertices and at most 4 edges.

The following sketch proves that $\phi(2) \leq 8$.

$$
\operatorname{diam}\left(F_{0}\right)=2 ; \operatorname{diam}\left(F_{1}\right)=3, \operatorname{diam}\left(F_{2}\right)=3
$$

So, $\phi(2)=8$.
Proposition 5. $\phi(3)=10$.
Proof. First, we prove that $\phi(3) \geq 10$. Analogously, as above, suppose that we can decompose K_{9} into four factors, one F_{1} of diameter two and others of diameter three. By Lemma 2, factors of diameter three have to have at least 9 edges, so $e\left(F_{1}\right) \leq 36-3 \cdot 9=9$. Each vertex has at least one incident edge in each factor of diameter three, so $\Delta\left(F_{1}\right) \leq 5$. We distinguish two cases.
(1) If each vertex has degree two in F_{1}, then F_{1} is either disconnected or is a cycle of length 9 , a contradiction.
(2) If there is a vertex x, such that $3 \leq d_{F_{1}}(x) \leq 5$, then denote by F_{1}^{\prime} a graph obtained by eliminating this vertex. Let y be an arbitrary vertex of F_{1} which is not adjacent to x. Vertex y has to be connected in F_{1}^{\prime} to each vertex of F_{1}^{\prime} by a path of length at most 2 (otherwise the diameter of F_{1}
would be greater than 2), so F_{1}^{\prime} is connected. But, this is in contradiction to the fact that F_{1}^{\prime} has 8 vertices and at most 6 edges.

The following sketch proves that $\phi(3) \leq 10$.

$$
\operatorname{diam}\left(F_{0}\right)=2, \operatorname{diam}\left(F_{1}\right)=3, \operatorname{diam}\left(F_{2}\right)=3, \operatorname{diam}\left(F_{3}\right)=3
$$

So, the claim is proved.

4. The Main Results

First, we give an upper bound for the function ϕ.
Theorem 6. For any $k \in \mathbb{N}$, we have $\phi(k) \leq 2 k+3\lceil\sqrt{k}\rceil+2 t$ where t is the least natural number such that

$$
\binom{2 t-1}{t-1} \geq k
$$

Proof. We will construct a decomposition of $K_{n}, n=2 k+3\lceil\sqrt{k}\rceil+2 t$, in factors $F_{0}, F_{1}, F_{2}, \ldots, F_{k}$ such that $\operatorname{diam}\left(F_{0}\right)=2$ and $\operatorname{diam}\left(F_{i}\right)=3$, $1 \leq i \leq k$. Let

$$
V\left(K_{n}\right)=L \cup D \cup W \cup Z \cup U \cup A \cup B
$$

where

$$
\begin{aligned}
& L=\left\{l_{1}, \ldots, l_{k}\right\}, D=\left\{d_{1}, \ldots, d_{k}\right\}, W=\left\{w_{0}, \ldots, w_{\lceil\sqrt{k}\rceil-1}\right\} \\
& Z=\left\{z_{0}, \ldots, z_{\lceil\sqrt{k}\rceil-1}\right\}, U=\left\{u_{1}, \ldots, u_{\lceil\sqrt{k}\rceil}\right\}, A=\{a\}, B=\left\{b_{1}, \ldots, b_{2 t-1}\right\}
\end{aligned}
$$

Let \mathcal{B} be the set of all $t-1$ element subsets of the set $\{1,2, \ldots, 2 t-1\}$. Let f be any injection

$$
f:\{1, \ldots, k\} \rightarrow \mathcal{B}
$$

Let us notice that for each $j \in\{1, \ldots, k t\}$ there are unique numbers q_{j} and r_{j} such that

$$
j=q_{j} \cdot\lceil\sqrt{k}\rceil+r_{j}, 0 \leq q_{j} \leq\lceil\sqrt{k}\rceil-1,1 \leq r_{j} \leq\lceil\sqrt{k}\rceil
$$

The edges of the factor $F_{i}, 1 \leq i \leq k$ are
(1) $l_{i} d_{i}$,
(2) $l_{i} l_{j}, 1 \leq j<i \leq k$,
(3) $d_{i} l_{j}, 1 \leq j<j \leq k$,
(4) $d_{i} d_{j}, 1 \leq j<i \leq k$,
(5) $l_{i} d_{j}, 1 \leq i<j \leq k$,
(6) $l_{i} a$,
(7) $l_{i} b_{j}, j \in f(i)$,
(8) $d_{i} b_{j}, j \in\{1,2, \ldots, 2 t-1\} \backslash f(i)$,
(9) $l_{i} w_{j}, 1 \leq j \leq\lceil\sqrt{k}\rceil-1$,
(10) $d_{i} z_{j}, 1 \leq j \leq\lceil\sqrt{k}\rceil-1$,
(11) $w_{q_{i}} u_{r_{i}}$,
(12) $z_{q_{i}} u_{r_{i}}$,
(13) $d_{i} u_{j}, 1 \leq j \leq k, j \neq r_{i}$.

The other edges are edges of the factor F_{0}. In each factor $F_{i}, 1 \leq i \leq k$ all vertices are adjacent to either l_{i} or d_{i}, except $u_{r_{i}}$ which is connected by a path of length 2 to both, l_{i} and d_{i}, and also l_{i} and d_{i} are adjacent, so we have $\operatorname{diam}\left(F_{i}\right) \leq 3,1 \leq i \leq k$. Now, let us prove that $\operatorname{diam}\left(F_{i}\right) \geqslant 3$, $1 \leq i \leq k$. Let i be an arbitrary number such that $1 \leq i \leq k$. Let j be an element of the set $\{1,2, \ldots, 2 t-1\} \backslash f(i)$. Note that $d_{F_{i}}\left(a, b_{j}\right)=3$, so the claim is proved.

It remains to prove that $\operatorname{diam}\left(F_{0}\right)=2$. We have to prove that every two vertices of F_{0} are adjacent or that they have a common neighbor. We distinguish five cases.
(1) $x \notin L, y \notin L$. Then $a \in N_{F_{0}}(x) \cap N_{F_{0}}(y)$.
(2) $x, y \in L$. Since

$$
\left|N_{F_{0}}(x) \cap B\right|+\left|N_{F_{0}}(y) \cap B\right|=t+t>|B|,
$$

by pigeonhole principle we have $b \in B$ such that $b \in N_{F_{0}}(x) \cap N_{F_{0}}(y)$.
(3) $x \in L, y \in D$. We distinguish two subcases.
(3a) $x=l_{i}, y=d_{i}, 1 \leq i \leq k$. Then $u_{r_{i}} \in N_{F_{0}}\left(l_{i}\right) \cap N_{F_{0}}\left(d_{i}\right)$.
(3b) $x=l_{i}, y=d_{j}, 1 \leq i, j \leq k, i \neq j$. We have

$$
\left|N_{F_{0}}\left(l_{i}\right) \cap B\right|+\left|N_{F_{0}}\left(d_{j}\right) \cap B\right|=t-1+t=|B|
$$

so either there is a vertex $b \in N_{F_{0}}\left(l_{i}\right) \cap N_{F_{0}}\left(d_{j}\right)$ or

$$
N_{F_{0}}\left(l_{i}\right) \cap B=B \backslash N_{F_{0}}\left(d_{j}\right)=N_{F_{0}}\left(l_{j}\right) \cap B
$$

which is impossible.
(4) $x \in L, y \in U \cup Z$. Then x and y are adjacent.
(5) $x \in L, y \in W \cup A \cup B$. Then $(\forall z \in Z)\left(z \in N_{F_{0}}(x) \cap N_{F_{0}}(y)\right)$.

So, the claim is proved.
From the last theorem, it easily follows
Corollary 7. $\lim _{k \rightarrow \infty} \frac{\phi(k)}{k}=2$.
Proof. Let $k \in \mathbb{N}$ be sufficiently large. Let us find upper and lower bounds for $\phi(k)$.

$$
k \cdot(\phi(k)-1) \leq\binom{\phi(k)}{2} \Rightarrow k \leq \frac{\phi(k)}{2} \Rightarrow \phi(k) \geq 2 k
$$

Let us notice that, for sufficiently large k, we have

$$
\binom{2\lceil\sqrt{k}\rceil-1}{\lceil\sqrt{k}\rceil-1} \geq k
$$

so

$$
\begin{aligned}
& 2 k \leq \phi(k) \leq 2 k+5(\sqrt{k}+1) \Rightarrow 2 \leq \frac{\phi(k)}{k} \leq 2+\frac{5}{\sqrt{k}}+\frac{5}{k} . \\
\Rightarrow & 2 \leq \lim _{k \rightarrow \infty}\left(\frac{\phi(k)}{k}\right) \leq \lim _{k \rightarrow \infty}\left(2+\frac{5}{\sqrt{k}}+\frac{5}{k}\right) .
\end{aligned}
$$

which proves the claim.
Now, we give an auxiliary result.

Lemma 8. Let $k \geq 4$. Then there is a decomposition of K_{k} into factors F_{1}^{\prime} and F_{2}^{\prime} such that $\delta\left(F_{1}^{\prime}\right) \geq 1$ and $\delta\left(F_{2}^{\prime}\right) \geq 1$.

Proof. We prove our claim by induction on k. We denote $W\left(K_{k}\right)=$ $\{1, \ldots, k\}$. For $k=4$, the claim is trivial. Suppose it is true for j and let us prove it for $j+1$. We decompose the graph induced by vertices $\{1, \ldots, j\}$ as K_{j} and add to F_{1}^{\prime} the edge $\{1, j+1\}$ and add to F_{2}^{\prime} the edges $\{i, j+1\}, 2 \leq i \leq k$. This decomposition proves the lemma.

Theroem 9. Let $k \geq 4$. Then we have $\phi(k) \leq 3 k+1$.
Proof. We shall construct the decomposition of $K_{n}, n=3 k+1$, into factors $F_{0}, F_{1}, F_{2}, \ldots, F_{k}$ such that $\operatorname{diam}\left(F_{0}\right)=2$ and $\operatorname{diam}\left(F_{i}\right)=3,1 \leq i \leq k$. We denote

$$
V\left(K_{n}\right)=\left\{x, y_{i j}: 1 \leq i \leq k, 1 \leq j \leq 3\right\}
$$

Let F_{1}^{\prime} and F_{2}^{\prime} be the factors of K_{k} described in previous Lemma. The edges of the factor $F_{i}, 1 \leq i \leq k$ are
(1) $\left\{v_{i 3}, x t\right\}$,
(2) $\left\{v_{i 1}, v_{i 2}\right\},\left\{v_{i 2}, v_{i 3}\right\},\left\{v_{i 3}, v_{i 1}\right\}$,
(3) $\left\{v_{i 2}, v_{j 2}\right\},\left\{v_{i 2}, v_{j 3}\right\},\left\{v_{i 1}, v_{j 1}\right\}, 1 \leq j<i,\{i, j\} \in F_{1}^{\prime}$,
(4) $\left\{v_{i 2}, v_{j 1}\right\},\left\{v_{i 2}, v_{j 3}\right\},\left\{v_{i 1}, v_{j 2}\right\}, i<j \leq k,\{i, j\} \in F_{1}^{\prime}$,
(5) $\left\{v_{i 1}, v_{j 1}\right\},\left\{v_{i 1}, v_{j 3}\right\},\left\{v_{i 2}, v_{j 2}\right\}, 1 \leq j<i,\{i, j\} \in F_{2}^{\prime}$,
(6) $\left\{v_{i 1}, v_{j 2}\right\},\left\{v_{i 1}, v_{j 3}\right\},\left\{v_{i 2}, v_{j 1}\right\}, i<j \leq k,\{i, j\} \in F_{2}^{\prime}$.

The other edges are edges of the factor F_{0}. Indeed, $\operatorname{diam}\left(F_{i}\right)=3,1 \leq i \leq k$, because all its vertices are adjacent to at least one of vertices $v_{i 1}, v_{i 2}$ and $v_{i 3}$, and these three vertices form a triangle.

It remains to prove that $\operatorname{diam}\left(F_{0}\right)=2$. We have to prove that each two vertices of F_{0} are adjacent or that they have a common neighbor. We distinguish eight cases.
(1) $p=x, q=v_{i j}, 1 \leq i \leq k, 1 \leq j \leq 2$. Then x and $v_{i j}$ are adjacent.
(2) $p=x, q=v_{i 3}, 1 \leq i \leq k$. Let us choose $j, j \neq i, 1 \leq j \leq k$, such that $\{i, j\} \in F_{1}^{\prime}$. We have $v_{j 1} \in N_{F_{0}}(x) \cap N_{F_{0}}\left(v_{i 3}\right)$.
(3) $p=v_{i j}, q=v_{a b}, 1 \leq i, a \leq k, 1 \leq j, b \leq 2$. Then $x \in N_{F_{0}}\left(v_{i j}\right) \cap$ $N_{F_{0}}\left(v_{a b}\right)$.
(4) $p=v_{i 3}, q=v_{j 3}, 1 \leq i, j \leq k, i \neq j$. Then $v_{i 3}$ and $v_{j 3}$ are adjacent.
(5) $p=v_{i 3}, q=v_{j 1}, 1 \leq i, j \leq k,\{i, j\} \in F_{1}^{\prime}$. Then $v_{i 3}$ and $v_{j 1}$ are adjacent.
(6) $p=v_{i 3}, q=v_{j 1}, 1 \leq i, j \leq k,\{i, j\} \notin F_{1}^{\prime}$. Let us choose $m, m \neq$ $i, m \neq j, 1 \leq m \leq k$, such that $\{m, j\} \in F_{1}^{\prime}$. We have $v_{m 3} \in N_{F_{0}}\left(v_{i 3}\right) \cap$ $N_{F_{0}}\left(v_{j 1}\right)$.
(7) $p=v_{i 3}, q=v_{j 2}, 1 \leq i, j \leq k,\{i, j\} \in F_{2}^{\prime}$. Then $v_{i 3}$ and $v_{j 2}$ are adjacent.
(8) $p=v_{i 3}, q=v_{j 2}, 1 \leq i, j \leq k,\{i, j\} \notin F_{2}^{\prime}$. Then let us choose $m, m \neq i, m \neq j, 1 \leq m \leq k$, such that $\{m, j\} \in F_{2}^{\prime}$. We have $v_{m 3} \in N_{F_{0}}\left(v_{i 3}\right) \cap N_{F_{0}}\left(v_{j 2}\right)$.

So, the claim is proved.
Denote by $\mathcal{H}_{d}^{\prime}(n, k)$ the set of all graphs with n vertices and with maximal degree at most k and diameter at most d. Put

$$
e_{d}^{\prime}(n, k)=\min \left\{e(G): G \in \mathcal{H}_{d}^{\prime}(n, k)\right\}
$$

In the proof of Theorem IV. 1.2 in [1], the following statement is proved:
Lemma A. $e_{d}^{\prime}(n, n-4) \geqslant 2 n-5$, if $n \leq 12$.
Corollary 10. $\phi(4)=13$.
Proof. By the previous Theorem $\phi(4) \leq 13$. It remains to prove $\phi(4) \geq 13$. On the contrary, suppose that K_{12} can be decomposed into one factor F_{1} of diameter 2 and four factors of diameter 3. From Lemma A it follows that
$e\left(F_{1}\right) \geq 2 \cdot 12-5=19$. From Lemma 2 it follows that the factors of diameter three have at least 12 edges each, so we have

$$
66=e\left(K_{12}\right) \geq 19+4 \cdot 12=67
$$

which is a contradiction, so our claim is proved.
As our last main result, we are going to generalize Corollary 7. First, we give a lemma.

Lemma 11. There is a function $q: \mathbb{N} \rightarrow \mathbb{N}$ such that, for each $p \in \mathbb{N}$, a complete graph $K_{p \cdot q(p)}$ with a set of vertices $\left\{e_{i}^{\alpha}: 1 \leq i \leq q(p), 1 \leq \alpha \leq p\right\}$ can be decomposed into factors $E_{1}, E_{2}, \ldots, E_{p}$ such that:
(1) $e_{i}^{\alpha} e_{j}^{\alpha}$ is an edge of $E_{\alpha}, 1 \leq i<j \leq q(p), 1 \leq \alpha \leq p$,
(2) $\operatorname{diam}\left(E_{\alpha}\right) \leq 2,1 \leq \alpha \leq p$,
(3) $(\forall \alpha, \beta \in\{1, \ldots, p\}, \alpha \neq \beta)(\forall i \in\{1, \ldots, q(p)\})(\exists j \in\{1, \ldots, q(p)\})$ $\left(e_{i}^{\alpha} e_{j}^{\beta}\right.$ is an edge of $\left.E_{\beta}\right)$.

Proof. Let $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{p}^{\prime}$ be a decomposition of a graph $K_{p \cdot q(p)}$, such that:
(a) $e_{i}^{\alpha} e_{j}^{\alpha}$ is an edge of $E_{\alpha}^{\prime}, 1 \leq i<j \leq q(p), 1 \leq \alpha \leq p$.
(b) The probability that $e_{i}^{\alpha} e_{j}^{\beta}, 1 \leq i, j \leq q(p), 1 \leq \alpha<\beta \leq p$ is an edge of E_{α}^{\prime} is $\frac{1}{2}$ and the probability that it is an edge of E_{β}^{\prime} is also $\frac{1}{2}$.

Let us estimate a probability $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right)$ that $d_{E_{\gamma}^{\prime}}\left(e_{i}^{\alpha}, e_{j}^{\beta}\right)>2$ for $1 \leq$ $\alpha, \beta, \gamma \leq p, \quad 1 \leq i, j \leq q(p), e_{i}^{\alpha} \neq e_{j}^{\beta}$. Distinguish four cases.
(1) $\gamma=\alpha=\beta$. $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right)=0$, because $e_{i}^{\alpha} e_{j}^{\alpha}$ is an edge of E_{α}^{\prime}.
(2) $\gamma=\alpha \neq \beta$. $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right)$ is less or equal to the probability that e_{j}^{β} is not adjacent to any e_{k}^{α} in $E_{\alpha}^{\prime}, 1 \leq k \leq q(p)$, so $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right) \leq\left(\frac{1}{2}\right)^{q(p)}$.
(3) $\gamma=\beta \neq \alpha$. Similarly as above $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right) \leq\left(\frac{1}{2}\right)^{q(p)}$.
(4) $\gamma \neq \alpha, \gamma \neq \beta$. Probability that $e_{\gamma}^{k} \notin N_{E_{\gamma}^{\prime}}\left(e_{i}^{\alpha}\right) \cap N_{E_{\gamma}^{\prime}}\left(e_{j}^{\beta}\right)$ is $\frac{3}{4}$ for each fixed $k=1, \ldots, q(p)$, so $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right) \leq\left(\frac{3}{4}\right)^{q(p)}$.

For the sake of simplicity we also define $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{i}^{\alpha}\right)=0$. In any case, $\operatorname{prob}\left(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}\right) \leq\left(\frac{3}{4}\right)^{q(p)}$. Let us find a probability $\operatorname{prob}\left(\beta, e_{i}^{\alpha}\right)$ that for e_{i}^{α}, $1 \leq i \leq q(p), 1 \leq \alpha \leq p$ and $\beta \neq \alpha, 1 \leq \beta \leq p$ there is no $j, 1 \leq j \leq q(p)$
such that $e_{i}^{\alpha} e_{j}^{\beta}$ is an edge of E_{β}^{\prime}. The probability that $e_{i}^{\alpha} e_{j}^{\beta}$ is not an edge of E_{β}^{\prime} for a fixed $j, 1 \leq j \leq q(p)$ is $\frac{1}{2}$, so $\operatorname{prob}\left(\beta, e_{i}^{\alpha}\right) \leq\left(\frac{1}{2}\right)^{q(p)}$.

Now, we can find a lower bound for the probability $X_{q(p)}^{p}$ that the random decomposition $E_{1}^{\prime}, E_{2}^{\prime} \ldots, E_{p}^{\prime}$ of $K_{p \cdot q(p)}$, described above, has properties required in Lemma. It holds that

$$
\begin{aligned}
X_{q(p)}^{p} & \geq 1-\left(\sum_{\substack{1 \leq i \leq q(p) \\
1 \leq \alpha, \beta \leq p \\
\alpha \neq \beta}} \operatorname{prob}\left(\beta, e_{i}^{\alpha}\right)+\sum_{\substack{1 \leq i, j \leq q(p) \\
1 \leq \alpha, \beta, \gamma \leq p}} \operatorname{prob}\left(\beta, e_{i}^{\alpha}, e_{j}^{\beta}\right)\right) \\
& \geq 1-\left(q(p) \cdot p^{2} \cdot\left(\frac{1}{2}\right)^{q(p)}+p^{3} \cdot(q(p))^{2}\left(\frac{3}{4}\right)^{q(p)}\right)
\end{aligned}
$$

Since

$$
\lim _{q(p) \rightarrow \infty}\left(1-\left(q(p) \cdot p^{2} \cdot\left(\frac{1}{2}\right)^{q(p)}+p^{2} \cdot(q(p))^{2}\left(\frac{3}{4}\right)^{q(p)}\right)\right)=1>0
$$

for any p and sufficiently large $q(p)$ we have

$$
X_{q(p)}^{p}>0
$$

so there is a decomposition E_{1}, \ldots, E_{p} with the required properties.
Theorem 12. $\lim _{k \rightarrow \infty} \frac{f(\underbrace{2,2, \ldots, 2}_{p \text {-times }} \underbrace{3,3 \ldots, 3}_{k \text {-times }})}{k}=2$, where p is a fixed natural number.

Proof. Analogously, as in the proof of Corollary 7, we have

$$
\begin{equation*}
f(\underbrace{2,2, \ldots, 2}_{p \text {-times }}, \underbrace{3,3, \ldots, 3}_{k \text {-times }}) \geq 2 k \tag{1}
\end{equation*}
$$

Now, we are going to prove that for sufficiently large k,
(2) $f(\underbrace{2,2, \ldots, 2}_{p \text {-times }}, \underbrace{3,3, \ldots, 3}_{k \text {-times }}) \leq 2 k+5 p \cdot\lceil\sqrt{k}\rceil+\binom{p}{2}\lceil\sqrt{k}\rceil+2 \cdot p \cdot q(p)$, where q is the function from the previous Lemma.
Denote $n=2 k+5 p \cdot\lceil\sqrt{k}\rceil+\binom{p}{2}\lceil\sqrt{k}\rceil+2 \cdot p \cdot q(p)$. Let $E_{1}, E_{2}, \ldots, E_{p}$ be a decomposition of $K_{p \cdot q(p)}$ from Lemma 11. We describe a decomposition of K_{n} into factors $F_{1}, F_{2}, \ldots, F_{p}$ of diameter 2 and factors $G_{1}, G_{2}, \ldots, G_{k}$ of diameter 3. Let

$$
V\left(K_{n}\right)=L \cup D \cup \bigcup_{\alpha=1}^{p}\left(W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}\right) \cup \bigcup_{1 \leq \alpha<\beta \leq p} S_{\alpha \beta},
$$

where

$$
\begin{aligned}
L & =\left\{l_{1}, \ldots, l_{k}\right\}, \\
D & =\left\{d_{1}, \ldots, d_{k}\right\}, \\
W_{\alpha} & =\left\{w_{0}^{\alpha}, \ldots, w_{\lceil\sqrt{k}\rceil-1}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
Z_{\alpha} & =\left\{z_{0}^{\alpha}, \ldots, z_{\lceil\sqrt{k}\rceil-1}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
U_{\alpha} & =\left\{u_{1}^{\alpha}, \ldots, u_{\lceil\sqrt{k}\rceil}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
A_{\alpha} & =\left\{a_{1}^{\alpha}, \ldots, a_{q(p)}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
B_{\alpha} & =\left\{b_{1}^{\alpha}, \ldots, b_{2\lceil\sqrt{k}\rceil}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
C_{\alpha} & =\left\{c_{1}^{\alpha}, c_{2}^{\alpha}, \ldots, c_{q(p)}^{\alpha}\right\}, 1 \leq \alpha \leq p, \\
S_{\alpha \beta} & =\left\{s_{1}^{\alpha \beta}, \ldots, s_{\lceil\sqrt{k}\rceil}^{\alpha \beta}\right\}, 1 \leq \alpha<\beta \leq p
\end{aligned}
$$

Let \mathcal{B} be the set of all $\lceil\sqrt{k}\rceil$ element subsets of the set $\{1,2, \ldots, 2\lceil\sqrt{k}\rceil\}$. Let f be any injection

$$
f:\{1, \ldots, k\} \rightarrow \mathcal{B}
$$

f exists, because

$$
\binom{2 \cdot\lceil\sqrt{k}\rceil}{\lceil\sqrt{k}\rceil} \geq k
$$

for a sufficiently large k. Let us notice that for each $j \in\{1, \ldots, k\}$ there are unique numbers q_{j} and r_{j} such that

$$
j=q_{j} \cdot\lceil\sqrt{k}\rceil+r_{j}, 0 \leq q_{j} \leq\lceil\sqrt{k}\rceil-1,1 \leq r_{j} \leq\lceil\sqrt{k}\rceil .
$$

The edges of a factor $G_{i}, 1 \leq i \leq k$ are
(1) $l_{i} d_{i}$,
(2) $l_{i} l_{j}, 1 \leq j<i \leq k$,
(3) $d_{i} l_{j}, 1 \leq i<j \leq k$,
(4) $d_{i} d_{j}, 1 \leq j<i \leq k$,
(5) $l_{i} d_{j}, 1 \leq i<j \leq k$,
(6) $l_{i} a_{j}^{\alpha}, 1 \leq \alpha \leq p, 1 \leq j \leq q(p)$,
(7) $l_{i} b_{j}^{\alpha}, j \in f(i), 1 \leq \alpha \leq p$,
(8) $d_{i} b_{j}^{\alpha}, j \in\{1,2, \ldots, 2\lceil k\rceil\} \backslash f(i), 1 \leq \alpha \leq p$,
(9) $d_{i} c_{j}^{\alpha}, 1 \leq \alpha \leq p, 1 \leq j \leq q(p)$,
(10) $l_{i} w_{j}^{\alpha}, 0 \leq j \leq\lceil\sqrt{k}\rceil-1,1 \leq \alpha \leq p$,
(11) $d_{i} z_{j}^{\alpha}, 0 \leq j \leq\lceil\sqrt{k}\rceil-1,1 \leq \alpha \leq p$,
(12) $w_{q_{i}}^{\alpha} u_{r_{i}}^{\alpha}, 1 \leq \alpha \leq p$,
(13) $z_{q_{i}}^{\alpha} u_{r_{i}}^{\alpha}, 1 \leq \alpha \leq p$,
(14) $d_{i} u_{j}^{\alpha}, 1 \leq j \leq k, j \neq r_{i}, 1 \leq \alpha \leq p$,
(15) $s_{q_{i}}^{\alpha \beta} u_{r_{i}}^{\alpha}, 1 \leq \alpha<\beta \leq p$,
(16) $s_{q_{i}}^{\alpha \beta} u_{r_{i}}^{\beta}, 1 \leq \alpha<\beta \leq p$,
(17) $l_{i} s_{j}^{\alpha \beta}, 1 \leq \alpha<\beta \leq p, 1 \leq j \leq\lceil\sqrt{k}\rceil$.

The edges of a factor $F_{\alpha}, 1 \leq \alpha \leq p$ are
(1) $x y$ such that $x, y \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}$ and $x y$ is not an edge of any graph $G_{i}, 1 \leq i \leq k$.
(2) $x y$ such that $x \in A_{\alpha} \cup C_{\alpha}$ and $y \in \underset{\substack{1 \leq \beta \leq p \\ \beta \neq \alpha}}{ }\left(W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}\right) \cup \bigcup_{1 \leq \beta<\gamma \leq p} S_{\beta \gamma}$.
(3) $a_{i}^{\alpha} c_{j}^{\beta}$, so that $e_{i}^{\alpha} e_{j}^{\beta} \in E_{\alpha}, 1 \leq i, j \leq q(p), 1 \leq \beta \leq p$.
(4) $a_{j}^{\alpha} c_{i}^{\beta}$, so that $e_{i}^{\alpha} e_{j}^{\beta} \in E_{\alpha}, 1 \leq i, j \leq q(p), 1 \leq \beta \leq p$.
(5) $a_{i}^{\alpha} a_{j}^{\beta}$, so that $e_{i}^{\alpha} e_{j}^{\beta} \in E_{\alpha}, 1 \leq i, j \leq q(p), 1 \leq \beta \leq p$.
(6) $c_{i}^{\alpha} c_{j}^{\beta}$, so that $e_{i}^{\alpha} e_{j}^{\beta} \in E_{\alpha}, 1 \leq i, j \leq q(p), 1 \leq \beta \leq p$.

Now, we shall prove that the diameter of $G_{i}, 1 \leq i \leq k$, is 3 . First, we prove that for each $x, y \in G_{i}$ is $d_{G_{i}}(x, y) \leq 3$. Distinguish 4 cases.
(1) $x, y \in\left\{l_{i}, d_{i}\right\} \cup N_{G_{i}}\left(l_{i}\right) \cup N_{G_{i}}\left(d_{i}\right)$.
(2) $x=\left\{u_{r_{i}}^{\alpha}: 1 \leq \alpha \leq p\right\}, y \in N_{G_{i}}\left(l_{i}\right) \cup\left\{l_{i}\right\}$.
(3) $x=\left\{u_{r_{i}}^{\alpha}: 1 \leq \alpha \leq p\right\}, y \in N_{G_{i}}\left(d_{i}\right) \cup\left\{d_{i}\right\}$.
(4) $x, y \in\left\{u_{r_{i}}^{\alpha}: 1 \leq \alpha \leq p\right\}$.

In each case a simple analysis shows that there is a path of length ≤ 3.
Let us prove that the diameter of $G_{i}, 1 \leq i \leq k$, is $\geqslant 3$. Let j be an arbitrary number such that $\{1,2, \ldots, 2\lceil k\rceil\} \backslash f(i)$. Then $d_{G_{i}}\left(a_{1}^{1}, b_{j}^{1}\right)=3$.

It remains to prove that the diameter of each $F_{\alpha}, 1 \leq \alpha \leq p$, is 2 . So, we have to prove that each $x, y \in F_{\alpha}$ are adjacent or have a common neighbor. Distinguish eight cases.

$$
\begin{equation*}
x, y \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \tag{1}
\end{equation*}
$$

This case can be proved by complete analogy with the proof of Theorem 6.

$$
x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}
$$

$$
\begin{equation*}
y \in \bigcup_{\substack{1 \leq \beta \leq p \\ \beta \neq \alpha}}\left(W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}\right) \cup \bigcup_{1 \leq \beta<\gamma \leq p} S_{\beta \gamma} \tag{2}
\end{equation*}
$$

We have $A_{\alpha} \cup C_{\alpha} \subseteq N_{F_{\alpha}}(y)$ and $N_{F_{\alpha}}(x) \cap\left(A_{\alpha} \cup C_{\alpha}\right) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap$ $N_{F_{\alpha}}(y) \neq \emptyset$.

$$
x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}, y=a_{i}^{\beta}
$$

$$
\begin{equation*}
1 \leq \beta \leq p, 1 \leq i \leq q(p) \tag{3}
\end{equation*}
$$

There is an edge $e_{i}^{\beta} e_{j}^{\alpha}$ in E_{α}, for some $j, 1 \leq j \leq q(p)$, so $\left\{a_{j}^{\alpha}, c_{j}^{\alpha}\right\} \subseteq N_{F_{\alpha}}(y)$. Also we have $\left\{a_{j}^{a}, c_{j}^{a}\right\} \cap N_{F_{\alpha}}(x) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y) \neq \emptyset$.

$$
\begin{equation*}
x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}, y=c_{i}^{\beta} \tag{4}
\end{equation*}
$$

$$
1 \leq \beta \leq p, 1 \leq i \leq q(p)
$$

There is an edge $e_{i}^{\beta} e_{j}^{\alpha}$ in E_{α}, for some $j, 1 \leq j \leq q(p)$, so $\left\{a_{j}^{\alpha}, c_{j}^{\alpha}\right\} \subseteq N_{F_{\alpha}}(y)$. Also we have $\left\{a_{j}^{\alpha}, c_{j}^{\alpha}\right\} \cap N_{F_{\alpha}}(x) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y) \neq \emptyset$.

$$
\begin{equation*}
x, y \in \bigcup_{\substack{1 \leq \beta \leq p \\ \beta \neq \alpha}}\left(W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}\right) \cup \bigcup_{1 \leq \beta<\gamma \leq p} S_{\alpha_{\beta}} \tag{5}
\end{equation*}
$$

We have $a_{1}^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$

$$
\begin{align*}
& x \in \bigcup_{\substack{1 \leq \beta \leq p \\
\beta \neq \alpha}}\left(W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}\right) \cup \bigcup_{1 \leq \beta<\gamma \leq p} S_{\alpha \beta}, \tag{6}\\
& y=a_{i}^{\gamma}, 1 \leq \gamma \leq p, \alpha \neq \gamma, 1 \leq i \leq q(p)
\end{align*}
$$

There is an edge $e_{i}^{\gamma} e_{j}^{\alpha}$ in E_{α}, for some $j, 1 \leq j \leq q(p)$.
So $a_{j}^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$

$$
\begin{align*}
& x \in \bigcup_{\substack{1 \leq \beta \leq p \\
\beta \neq \alpha}}\left(W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}\right) \cup \bigcup_{1 \leq \beta<\gamma \leq p} S_{\alpha \beta} \tag{7}\\
& y=c_{i}^{\gamma}, 1 \leq \gamma \leq p, \gamma \neq \alpha, 1 \leq i \leq q(p)
\end{align*}
$$

There is an edge $e_{i}^{\gamma} e_{j}^{\alpha}$ in E_{α}, for some $j, 1 \leq j \leq q(p)$.
So $a_{j}^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$.
(8) $\quad x \in A_{\beta} \cup C_{\beta}, y \in A_{\gamma} \cup C_{\gamma}, 1 \leq \beta, \gamma \leq p, \alpha \neq \beta, \alpha \neq \gamma, x \neq y$.

We distinguish four subcases
(8a) $x=a_{i}^{\beta}, y=a_{j}^{\gamma}$,
(8b) $x=a_{i}^{\beta}, y=c_{j}^{\gamma}$,
(8c) $x=c_{i}^{\beta}, y=a_{j}^{\gamma}$,
(8d) $x=c_{i}^{\beta}, y=c_{j}^{\gamma}$.

As proofs of this subcases are completely analogous, we prove only (8a). Since $d\left(e_{i}^{\beta}, e_{j}^{\gamma}\right) \leq 2$, either e_{i}^{β} and e_{j}^{γ} are adjacent in E_{α} or there is a vertex $e_{k}^{\alpha} \in N_{E_{\alpha}}\left(e_{i}^{\beta}\right) \cap N_{E_{\alpha}}\left(e_{j}^{\alpha}\right)$. In the first case a_{i}^{β} and a_{j}^{γ} are adjacent in F_{α}, and in the second case $a_{k}^{\alpha} \in N_{F_{\alpha}}\left(a_{i}^{\beta}\right) \cap N_{F_{\alpha}}\left(a_{j}^{\gamma}\right)$.

So, the inequality (2) is proved.
From (1) and (2) we get

$$
\begin{aligned}
2 k & \leq f(\underbrace{2,2, \ldots, 2}_{p \text {-times }}, \underbrace{3,3, \ldots, 3}_{k \text {-times }}) \\
& \leq 2 k+5 p \cdot\lceil\sqrt{k}\rceil+\binom{p}{2}\lceil\sqrt{k}\rceil+2 \cdot p \cdot q(p) \\
2 k & \leq f(\underbrace{2,2, \ldots, 2}_{p \text {-times }}, \underbrace{3,3, \ldots, 3}_{k \text {-times }}) \\
& \leq 2 k+\left(5 p+\binom{p}{2}\right) \sqrt{k}+\left(5 p+\binom{p}{2}\right)+2 \cdot p \cdot q(p)
\end{aligned}
$$

Dividing by k and passing to the limit, we get

$$
\begin{aligned}
& 2 \leq \lim _{k \rightarrow \infty} \frac{f(\underbrace{2,2, \ldots, 2}_{p \text {-times }}, \underbrace{3,3, \ldots, 3}_{k \text {-times }})}{k} \\
& \leq \lim _{k \rightarrow \infty} 2+\frac{\left(5 p+\binom{p}{2}\right)}{\sqrt{k}}+\frac{\left(5 p+\binom{p}{2}\right)}{k}+\frac{2 \cdot p \cdot q(p)}{k}
\end{aligned}
$$

which proves the theorem.

Acknowledgement

The author thanks D. Veljan for useful advise and help.

References

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[2] J. Bosák, Disjoint factors of diameter two in complete graphs, J. Combin. Theory (B) 16 (1974) 57-63.
[3] J. Bosák, A. Rosa and Š. Znám, On decompositions of complete graphs into factors with given diameters, in: Proc. Colloq. Tihany (Hung), (1968) 37-56.
[4] D. Palumbíny, On decompositions of complete graphs into factors with equal diameters, Bollettino U.M.I. (4) 7 (1973) 420-428.
[5] P. Hrnčiar, On decomposition of complete graphs into three factors with given diameters, Czechoslovak Math. J. 40 (115) (1990) 388-396.
[6] N. Sauer, On factorization of complete graphs into factors of diameter two, J. Combin. Theory 9 (1970) 423-426.
[7] Š. Znám, Decomposition of complete graphs into factors of diameter two, Math. Slovaca 30 (1980) 373-378.
[8] Š. Znám, On a conjecture of Bollobás and Bosák, J. Graph Theory 6 (1982) 139-146.

Received 25 May 2001
Revised 5 September 2002

