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Abstract

Let G = (L,R; E) be a bipartite graph such that V (G) = L ∪ R,
|L| = p and |R| = q. G is called (p, q)-tree if G is connected and
|E(G)| = p + q − 1.

Let G = (L, R;E) and H = (L′, R′;E′) be two (p, q)-tree. A bijec-
tion f : L ∪ R → L′ ∪ R′ is said to be a biplacement of G and H if
f(L) = L′ and f(x)f(y) /∈ E′ for every edge xy of G. A biplacement
of G and its copy is called 2-placement of G. A bipartite graph G is
2-placeable if G has a 2-placement. In this paper we give all (p, q)-trees
which are not 2-placeable.
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1. Definitions

We shall use standard graph theory notation. All graphs will be assumed
to have neither loops nor multiple edges. Let G = (L,R; E) be a bipartite
graph with a vertex set V (G) = L ∪ R, where L ∩ R = ∅ L(G) = L,
R(G) = R are left and right set of bipartition of the vertex set, an edge
set E(G) = E and size e(G). For a vertex x ∈ V (G) by N(x,G) and
d(x,G) we denote the set of its neighbors in G and the degree of the vertex
x in G, respectively. ∆L(G) and ∆R(G) are the maximum vertex degree in
the set L(G) and R(G), respectively. By Pn we denote the path of length
n − 1. Bipartite graph G = (L,R; E) is said (p, q)-bipartite if |L| = p and
|R| = q. Kp,q is the complete (p, q)-bipartite graph. Ḡ is the complement of
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G in Kp,q. A bipartite graph G = (L,R; E) is a subgraph of bipartite graph
H = (L′, R′;E′) if L ⊆ L′, R ⊆ R′ and E ⊆ E′.

Let G = (L,R; E) and H = (L′, R′; E′) be two (p, q)-bipartite graphs.
We say that G and H are mutually placeable (for short mp) if there is a
bijection f : L ∪R → L′ ∪R′ such that f(L) = L′ and f(x)f(y) is not edge
in H whenever xy is an edge of G. The function f is called the biplacement
of G and H. Thus G and H are mp if and only if G is contained in the graph
H̄, i.e., G is subgraph of H̄. 2-placement of G is a biplacement of G and its
copy. If such a 2-placement of G exists then we say that G is 2-placeable.

In the proof of the main theorem of this paper we use the adjacency
matrices defined as follows.

Let G = (L,R; E) be a (p, q)-bipartite graph, L = {x1, . . . , xp} and
R = {y1, . . . , yq}. The matrix MG = (aij) i=1,...,p

j=1,...,q
where:

aij =

{
1, xixj ∈ E(G),
0, xixj 6∈ E(G)

is called adjacency matrix of the graph G. Let G and H be mutually place-
able (p, q)-bipartite graphs and let f be a biplacement of G and H. We may
define the new p× q matrix MG,H = (bi,j) by the formula

bij =





1, when xixj ∈ E(H),
2, when xixj ∈ E(f(G)),
0, when xixj 6∈ E(H) and xixj 6∈ E(f(G)).

The matrix MG,H is said to be the matrix of biplacement of G and H. Next,
instead of looking for biplacement of G and H we shall look for a matrix
MG,H .

A (p, q)-bipartite graph G is called (p, q)-tree if G is connected and
|E(G)| = p + q − 1. Thus each (p, q)-tree is a tree and for each tree T there
exist integers p and q such that T is (p, q)-tree.

Let T be a (p, q)-tree and y ∈ V (T ). Let us denote by Uy the set of
all z ∈ N(y, T ) such that d(z, T ) = 1. We shall call Uy the bough with the
center y. We say that {x, y} ⊂ L (or {x, y} ⊂ R) is a good pair of vertices
(for short good pair) if there exist vertices w and z such, that x ∈ Uw, y ∈ Uz

and w 6= z.
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2. Results

Let G be a general graph of order n. The following theorem has been proved
in [2].

Theorem 1. If e(G) ≤ n− 1 and n ≥ 8 then either G is contained in Ḡ or
G is isomorphic to one of the following graphs: K1,n−1, K1,n−4 ∪K3.

Wang and Saver proved the following result in [6].

Theorem 2. A tree of order n ≥ 7 is not 3-placeable if and only if it is
isomorphic to the star Sn or the graph obtained from Sn−1 by inserting a
new vertex into an edge of Sn−1.

Makheo, Saclé and Woźniak in [4] characterized all triples of trees {Tn, T ′n,
T ′′n} which are not mutually placeable in Kn.

For bipartite graphs, J.L. Fouquet and A.P. Wojda in [3] characterized
those (p, q)-bipartite graphs of size p+q−2 which are not 2-placeable in Kp,q.

All pairs of (p, q)-bipartite graphs G,H which are not placeable, e(G) ≤
p + q − 1, e(H) ≤ p and p ≤ q are given in [5].

The main result to be presented in this paper is that any (p, q)-tree T
such that ∆R(T ) < p, ∆L(T ) < q, p ≥ 3, q ≥ 3 and p + q ≥ 7 is either
2-placeable or T is in the family T (p, q) of graphs which are defined below:

T ′L(p, q, k) is the (p, q)-tree T such that, there are three vertices v, w,
w′ such that v ∈ L and d(v, T ) = q − 1, w′ ∈ R \ N(v, T ), d(w′, T ) = k,
w ∈ N(v, T ) and d(w, T ) = p − k + 1 (see Figure 1). We shall called the
vertex v the left center of T .

It is not difficult to see that T ′L(p, q, k) is 2-placeable if and only if
1 < k ≤ p

2 . Let T L(p, q) =
⋃{T ′L(p, q, k); k > p

2}. Analogically we define
the tree T ′R(p, q, k) and the set T R(p, q) = {T ′R(p, q, k); k > q

2}. The tree
T ′R(p, q, k) is shown in Figure 2.

By T (p, q) we denote the set T R(p, q) ∪ T L(p, q).
Now, we can formulate our main result.

Theorem A. Let T = (L,R; E) be a (p, q)-tree such that ∆L(T ) < q,
∆R(T ) < p, p ≥ 3, q ≥ 3 and p + q ≥ 7. Then either T is 2-placeable or
T ∈ T (p, q).
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3. Proof of Theorem A

To prove Theorem A we shall need two lemmas and some observations.

Lemma 3.1. Let T = (L, R; E) be a (p, q)-tree such that there are two
different vertices y and y′ such that either y, y′ ∈ L or y, y′ ∈ R, Uy 6= ∅ and
Uy′ 6= ∅. Let |Uy| = k, Uy = {x1, . . . , xk}, |Uy′ | = k′, Uy′ = {x′1, . . . , x′k′},
and k ≤ k′. Denote by U∗

y′ the set {x′1, . . . , x′k}.
If T \ (Uy ∪ U∗

y′) is 2-placeable, then T is 2-placeable, too.

Proof. Let T ′ = T \ (Uy ∪ U∗
y′) and let f be a 2-placement of T ′. We may

define a 2-placement f∗ of T in the following way:
• f∗(v) = f(v), for each vertex v of T ′,
• if f(y′) = y′ or f(y) = y then f∗(Uy) = U∗

y′ , f∗(U∗
y′) = Uy,

• if f(y′) 6= y′ and f(y) 6= y then f∗(Uy) = Uy, f∗(U∗
y′) = U∗

y′ .

Lemma 3.2. Let T = (L, R; E) be (3, q)-tree, ∆L(T ) < q, ∆R(T ) < 3 and
q ≥ 4. Then T is 2-placeable unless T ∈ T (3, q).

Proof. Let T = (L, R; E) be a (3, q)-tree, ∆L(T ) < q and ∆R(T ) < 3. Let
L = {a, b, c}, d(a, T ) = k1, d(b, T ) = k2 and d(c, T ) = k3. Note that two of
sets N(a, T )∩N(b, T ), N(b, T )∩N(c, T ), N(c, T )∩N(a, T ) are 1-sets, while
the third is empty. We assume that N(a, T ) ∩N(b, T ) 6= N(b, T ) ∩N(c, T ),
otherwise ∆R(T ) = 3. Let z be a common neighbor of vertices a and
b, and let y be a common neighbor of vertices b and c. Let N(a, T ) =
{x1, . . . , xk1}, xk1 = z, N(b, T ) = {xk1 , . . . , xk1+k2−1}, xk1+k2−1 = y and
N(c, T ) = {xk1+k2−1, . . . , xq}. The tree T and the matrix MT is shown in
Figure 3.

Observe that k1 ≥ 1, k3 ≥ 1, k2 ≥ 2 and k1 + k2 + k3 − 2 = q. If k1 = 1
and k3 > q

2 or k3 = 1 and k1 > q
2 then T ∈ T (3, q). If k1 = 1 and k3 ≤ q

2 then
any function f : L∪R → L∪R such that f(N(b, T )) = {xq−k2+1, . . . , xq} and
f(N(c, T )) = {x1, . . . , xq−k2+1}, f(b) = a, f(a) = b, f(c) = c is 2-placement
of T . For k3 = 1 and k1 ≤ q

2 we define a 2-placement of T analogically.
So, we assume that for each i ∈ {1, 2, 3} ki ≥ 2. Let k = max{k1, k2, k3}.

We consider two cases.

Case 1. k 6= k2

We may assume that k = k3. The function f such that f(c) = a, f(b) = b,
f(c) = a, f(N(a, T )) = {x1, . . . , xk}, f(N(b, T )) = {x1, xk1+k3 , . . . , xq} and
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f(N(c, T )) = {xk1+1, . . . , xk1+k3−1, xq} is a 2-placement of T . For k1 = 4,
k2 = 4 and k3 = 6 the matrix MT,T is shown in the Figure 4.
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
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

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


Figure 4

Case 2. k = k2

Without loss of the generality, we may suppose that k1 ≤ k3 < k2. The
2-placement of T we may define as follows: f(a) = b, f(b) = a, f(c) = c,
f(N(b, T )) = {xq−k2+1, . . . , xq}, f(N(a, T )) = {x1, . . . , xk1−1, xq},
f(N(c, T )) = {xk1 , . . . , xq−k2+1}. The matrix of MT,T when k1 = 4, k2 = 6
and k3 = 5 is shown in Figure 5.
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
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
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Figure 5

Let T be (p, q)-tree, such that ∆R(T ) < p ∆L(T ) < q, 5 ≤ p ≤ q and 6 ≤ q.
Let {x, y} be a good pair of vertices. We say that {x, y} is a very good pair
if either ∆L(T \{x, y}) < q−2 and T \{x, y} /∈ T (p, q−2) when {x, y} ⊂ R
or ∆R(T \ {x, y}) < p− 2 and T \ {x, y} /∈ T (p− 2, q) when {x, y} ⊂ L.

Observations.

1. If T ∈ T (p, q) then if v is the left (or right) center of T , then there is
exactly one vertex which is not pendent in N(v, T ).

2. If T ∈ T (p, q) and z is the common neighbor of the vertices w and w′

then d(z, T ) = 2.

Proof of Theorem A. We shall give the main idea of the proof, leaving
to reader long but easy verification of some details. The proof is by induction
on p + q.

Without the loss of the generality we may assume that p ≤ q. By
Lemma 3.2 the theorem holds if p = 3 and q ≥ 4. So, we assume that p ≥ 4,
q ≥ p and the theorem is true for every (p′, q′)-tree if p′ + q′ < p + q.

Let T be a (p, q)-tree verifying assumptions of the theorem. Then there
is a pendent vertex in R.

To prove that T is 2-placeable unless T ∈ T (p, q) we shall distinguish
two cases.

Case 1. There are two pendent vertices in R, say x and y, having
different neighbors — {x, y} is a good pair in R. When q = 4 then the
theorem is easy to check. So, we may assume that q ≥ 5.

Let T ′ = T \ {x, y}. If {x, y} is a very good pair, then by the induction
hypothesis T ′ is 2-placeable. The 2-placement of T we have by the Lemma
3.1. Now, we suppose that {x, y} is not a very good pair. We consider three
subcases.
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Subcase 1.1. ∆L(T ′) = q − 2
Let v be a vertex in L such that d(v, T ′) = q − 2. First, we assume that
d(v, T ) = q − 2. Let N(x) = {z} and N(y) = {z′} (see Figure 6). Observe
that if p ≤ q − 2 then there is a pendent vertex, say x′, in the set N(v, T )
and {x, x′} is a very good pair in R. In fact, if T ′′ = T \ {x, x′} then
∆L(T ′′) = q − 3 < q − 2 and ∆R(T ′′) = ∆R(T ) < p. Suppose that T ′′ ∈
T L(p, q − 2). Then the only possible center is the vertex v. But then
R(T ′′) \N(v, T ′′) = {y} and d(y, T ′′) = 1, a contradiction.

Now, we suppose that p = q ≥ 6 or p = q − 1 ≥ 5 and each neighbor of
the vertex v has the degree at least two. In this case either T = T1 or T = T2

else T = T3 where T1, T2 and T3 are the graphs defined in the Figure 7.
Note that there is a very good pair of vertices in L. Let {x′, y′} be a

very good pair in L. By induction hypothesis T \ {x′, y′} has 2-placement.
T is 2-placeable by the Lemma 3.1.

When p = q = 5 and there are no very good pairs in L and each
neighbour of the vertex v has the degree at least two or if p = 4 the proof
may be completed by checking all possible cases.
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Let us suppose now, that d(v, T ) = q − 1 and y 6∈ N(v, T ) (see Figure 8).
If there is a 2-placement f of T \ {x} then f(v) 6= {v} and the map

defined by f∗(z′) = f(z′), for z′ 6= x, f∗(x) = x is 2-placement of T .
Observe that T \ {x} is (p, q− 1)-tree, ∆L(T \ {x}) = q− 2 < q− 1 and

∆R(T \ {x}) = ∆R(T ) < p. There are at least two vertices of the degree at
least two in the set N(v, T ). In the other case ∆R(T ) = p. Therefore, by
Observation 1, T \ {x} 6∈ T L(p, q− 1). If there is a vertex of degree p− 1 in
N(v, T )\{y1}, where {y1} = N(v, T )∩N(z, T ), then T \{x} ∈ T R(p, q−1).
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But the degree of the vertex z, which is not adjacent to the right center of T ,
is two. Hence we conclude that T \{x} 6∈ T R(p, q−1) and, by the induction
hypothesis, there is a 2-placement f of T \ {x}.

. . .

. . .
v z

x y1 y

Figure 8

Subcase 1.2. T ′ ∈ T R(p, q − 2)
First we assume that d(w, T ′) ≥ 3. Then either T = T1, or T = T2, or
T = T3, else T = T4 (see Figure 9).

Let T = T1 and let x′ be a pendent neighbor of the vertex w′. The tree
T \ {x′, y} has two neighbors of vertex v of degree at least two. Hence, by
Observation 1, T \ {x′, y} 6∈ T (p, q − 2) and {x′, y} is very good pair.

Analogically, we may show that {x′, y} is a very good pair if T = T2

and x′ is pendent in N(w′) or if T = T3, x′ ∈ N(w) and d(x′, T ) = 1. When
T = T4 then T ∈ T R(p, q).

If d(w, T ′) = 2 and T = T3 then there is no very good pair in V (T ). Let
then the tree T = T3′ . The matrix MT ′3,T ′3 is shown in Figure 10.

Subcase 1.3. T ′ ∈ T L(p, q − 2)
At the beginning we assume that d(w′, T ′) = p− 1. In this case either there
are very good pair in R or T ∈ T R(p, q) else T = T ′3 (See Figure 10).

For d(w′, T ′) = p− 2, unless T = T5 or T = T6 (See Figure 11), there is
a very good pair of vertices in T ′. The matrices MT5,T5 and MT6,T6 are not
difficult to find.

If d(w′, T ) ≤ p− 3 then there is very good pair of vertices V (T ).

Case 2. There is a vertex in L, say z0, such that each pendent vertex in
R is its neighbor.
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Let us denote by Uz0 the bough with center z0 and let |Uz0 | = m. Note that
d(z0, T ) ≥ m. If d(z0, T ) = m then m = q and T = K1,q. So, we suppose
now, that d(z0, T ) ≥ m + 1. Observe, that there is at least one pendent
vertex in L. In the other case there is a good pair of the vertices in R.

First, we assume that there is a good pair, say x′ and y′, in L. When
p = 4 then m = q − 2 or m = q − 3 and is easy to check the theorem.

For p ≥ 5 T ′′ = T \ {x′, y′} is (p− 2, q)-tree, (p − 2 ≥ 3) and if {x′, y′}
is very good pair then T ′′ is 2-placeable by the induction hypothesis. T has
2-placement by Lemma 3.1.

Now, we suppose that there is no very good pair in L — i.e., {x′, y′} is
a good pair but either ∆R(T ′′) = p − 2 or T ′′ ∈ T (p − 2, q). Observe that
∆R(T ′′) < p− 2. In the other case either ∆L(T ) = q or there is a cycle C4

in T .

. . . . . .

. . .

z0

x0




1 1 · · · 1 1 1 0 0 2 0
2 2 · · · 2 2 1 1 0 2 2
0 0 · · · 0 2 2 1 1 0 0

0 2 2
. . . . . . 0

...
...

. . . . . . 1 1
0 2 2 1

0 2 1
...

...
...

...
...

0 2 1
0 0 . . . . . . . . . . . . . . . . . 0 2 1




Figure 12
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If T ′′ ∈ T R(p − 2, q) or T ′′ ∈ T L(p − 2, q), then either T ∈ T L(p, q) or
T = T3′ .

Finally, we assume that all pendent vertices in L have a common neigh-
bor. Let x0 be a vertex in R such that if v′ ∈ L and d(v′, T ) = 1 then
v′ ∈ N(x0) and let |Ux0 | = l. Observe, that T ′′′ = T \ Uz0 \ Ux0 = P2n,
where n = q − m = p − l. When n = 1 then ∆L(T ) = q. If n = 2 then
T ∈ T L(p, q). For n ≥ 3 the tree T = T10 and the matrix MT10,T10 shown in
Figure 12.

This completes the proof of the theorem.
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