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Abstract

Suppose a graph G = (V, E) with edge weights w(e) and edges
partitioned into disjoint categories S1, . . . , Sp is given. We consider
optimization problems P on G defined by a family of feasible sets
D(G) and the following objective function:

L5(D) = max
1≤i≤p

(
max

e∈Si∩D
w(e)− min

e∈Si∩D
w(e)

)

For an arbitrary number of categories we show that the L5-perfect
matching, L5-a-b path, L5-spanning tree problems and L5-Hamilton
cycle (on a Halin graph) problem are NP-complete.

We also summarize polynomiality results concerning above objec-
tive functions for arbitrary and for fixed number of categories.

Keywords: algorithms on graphs, categorization of edges, NP-comple-
teness.
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1. Introduction

An optimization problem is given by a family of feasible sets D and an
objective function which is to be minimized (or maximized) over D. The
most common objective functions are the sum of weights of the elements
and their maximum weight. The former type leads to the sum problems, the
latter to the bottleneck optimization problems. Also, if some kind of equity of
used elements is sought, the range of used weights is optimized, which leads
to balanced problems. Balanced optimization problems are a relatively new
topic, see Duin and Volgenant [7] and Martello et al [11], where a polynomial
algorithm has been derived for such cases of balanced problems, where the
feasibility check can be done polynomially, including e.g. the spanning tree,
matching and path problems. Another area of balancing objective function
application is the location theory, where e.g. Gavalec and Hudec [9] consider
the problem of balanced location of service facilities with respect to a given
set of demands on a graph.

Recently, new types of objective functions were considered, based on
dividing the set of edges into disjoint categories, taking a sum, minimum or
maximum within each category and then combining the obtained values by
means of the second function. More formally, suppose a graph G = (V, E)
with nonnegative edge weights w(e) and edges partitioned into disjoint cate-
gories S1, . . . , Sp is given. An optimization problem P on a graph is given by
a family of feasible sets D = D(G) and an objective function L : 2E −→ R+

0 .
In this paper, we consider as feasible sets D(G) the set of all spanning trees,
perfect matchings, a-b paths in a graph or Hamiltonian circuits in a Halin
graph G. As an objective function we consider the function L5 defined as
follows:

L5(D) = max
1≤i≤p

(
max

e∈Si∩D
w(e)− min

e∈Si∩D
w(e)

)
.

A pair (D(G), L5) determines a particular optimization problem

L5(D) −→ min
D ∈ D(G)

(1)

The objective function defined above is called L5 since our work extends
papers by Averbakh and Berman [1], Berežný, Cechlárová, Lacko [2, 3] and
Punnen and Richie [12, 13], where other problems with objective functions
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L1 (D) =
p∑

i=1

(
max

e∈Si∩D
w (e)

)
,

L2 (D) = max
1≤i≤p

∑

e∈Si∩D

w (e),

L3 (D) = max
1≤i≤p

∑

e∈Si∩D

w (e)− min
1≤i≤p

∑

e∈Si∩D

w (e),

L4 (D) =
p∑

i=1

(
max

e∈Si∩D
w (e)− min

e∈Si∩D
w (e)

)

and others using the operators min, max and
∑

together with edge cate-
gorization were studied. The problem (1) belongs to the class of balanced
problems studied in [7, 9, 11].

The objective functions L1 and L2 were considered by Richey and Pun-
nen [13] for perfect matchings and spanning trees, by Punnen [12] for the
travelling salesman problem on Halin graphs and by Averbakh and Berman
[1] for the path problem. It was shown that the above L1-problems are
strongly NP-complete in a general case and polynomial for a fixed number
of categories and L2-problems are NP-complete even for two categories. In
[2] Berežný, Cechlárová and Lacko showed that the spanning tree, match-
ing and path problems considered with the L3 objective function are NP
complete already on bipartite outerplanar graphs even for two categories,
similarly the L3-travelling salesman problem is NP complete on Halin graphs
even for two categories. The above problems considered with the objective
function L4 were also shown to be NP complete. Here, however, the sit-
uation for a fixed number of categories is different: there is a polynomial
algorithm for any L4 problem for which a polynomial feasibility checking
algorithm exists, see [2]. The following objective functions were considered
in [5] (in addition to L5):

L6(D) = max
1≤i≤p

(
max

e∈Si∩D
w(e)

)
− min

1≤i≤p

(
max

e∈Si∩D
w(e)

)
,

L7(D) = max
1≤i≤p

(
max

e∈Si∩D
w(e)

)
− max

1≤i≤p

(
min

e∈Si∩D
w(e)

)
,

L8(D) = min
1≤i≤p

(
max

e∈Si∩D
w(e)− min

e∈Si∩D
w(e)

)
.
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It was shown there that if the number of categories p is fixed, then problems
with the L5 objective function are polynomially solvable provided that for
the given system D(G) there exists a polynomial feasibility test (decision
about the existence of a feasible solution on the given set) and problems
with the L6 objective function are polynomial provided that for the system
D(G) we are able to polynomially enlarge the set of prescribed edges using
only allowed edges to a feasible solution (extension test). In particular,
if p = 1 then problems with L5 and L6 objective functions correspond to
classical balanced problems.

On the other hand, if the number of categories p is not fixed, then
problems with the L7 objective function are polynomial if there exists a
polynomial extension test and problems with the L8 objective function are
polynomial if there exists a polynomial feasibility test (see [4]).

A polynomial solution to the L6 spanning tree problem for the general
number of categories was also derived in [5].

In this paper, we show that the L5-perfect matching, L5-spanning tree,
L5-a-b path problems and L5-Hamilton cycle (in a Halin graph) problem
are NP-complete in a general case (i.e., when the number of categories p is
not fixed).

2. Application in Management

A manufacturing plant produces various commodities. There are several
production lines in the plant, each of them is capable of producing some
subset of commodities. While producing a given commodity, the production
line must maintain a specific optimal temperature which may differ from
commodity to commodity. The heating and perhaps the cooling process
of the production lines is extremely slow. Thus, to minimize the time de-
lays while changing the temperature when switching production from one
commodity to another, the production process for each production line is
organized as follows: in the idle time (during nights) the line is heated to
the lowest optimal temperature of the commodity it produces. The produc-
tion then proceeds in increasing order of optimal temperatures — starting
with the commodity of the lowest and finishing with the commodity of the
highest optimal temperature.

The total time the production line is delayed due to temperature changes
depends entirely on the difference between the highest and the lowest opti-
mal temperature of the commodity it produces. The total delay of the man-
ufacturing plant is now the maximum of delays of production lines. Here
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we may assume that all those dependences are linear. A goal of production
manager is to minimize the total delay of the manufacturing plant.
The model: Let a graph G be a union G1∪G2∪· · ·∪Gn, where n is the total
number of commodities and each Gi is a graph depicted in Figure 1. Let p be
the number of production lines. Each graph Gi contains two vertices vi and
v′i corresponding to the i-th article and 2 ∗ ik vertices {mi,j ,m

′
i,j ; j ∈ PLi}

where PLi is the set of ik production lines which can produce the i-th
commodity. Let us assign weight equal to the optimum temperature of the
i-th commodity to edges vimi,j , j ∈ PLi and put each edge vimi,j into the
category Sj . All remaining edges are of weight 0 and belong to one extra
category So.

Figure 1

M is a perfect matching in G if and only if in each graph Gi exactly
one of the edges vimi,j is matched. (At the same time edges v′im

′
i,j and

mi,km
′
i,k, k ∈ PLi − {j} are matched, too). Think of the fact that edge

vimi,j is matched to mean that commodity i is produced on production
line j. Then it is easy to see one-to-one correspondence between feasible
commodity-line assignments and perfect matchings in G. Moreover, the ob-
jective function of the production manager is now exactly the L5-objective
function.

3. L5 Problems with Arbitrary Number of Categories

In this section, we show NP-completeness of recognition versions of the L5-
perfect matching, L5-a-b path, L5-spanning tree problems on graphs and
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the L5-Hamiltionian cycle problem on Halin graphs.
It is easy to see that the above problems are in class NP. We prove

NP-completeness by showing that 3-SATISFIABILITY problem [8] polyno-
mially transforms to recognition versions of the L5 problems in question. In
our proofs of NP-completeness below we assume that a Boolean formula F
consisting of m clauses C1, . . . , Cm and involving n variables x1, . . . , xn is
given. The key question of each proof is to construct a graph G = (V, E),
assign weights w(e) to its edges and partition them into categories S1, . . . , Sp

in such a way that

G has a feasible solution D ∈ D(G)
(the perfect matching, a-b path, spanning tree, Hamilton cycle)

with L5(D) ≤ K if and only if F is satisfiable.

(2)

Thus, in all proofs we start with the construction of a graph G and then show
only if and if parts of (2). It suffices to show polynomial transformations to
recognition versions with K = 0.

We begin with the L5-perfect matching problem:

Theorem 1. Given a graph G = (V, E) and a constant K, it is NP-complete
to decide whether there exists a perfect matching M̃ on a graph G with
L5(M̃) ≤ K.

Proof. In our construction we use the folowing special-purpose graphs:
Graph A (shown in Figure 2a) and Graph B (shown in Figure 2b).

Figure 2

Supose that the graph A is an isolated component of another graph G and
let M̃ be a perfect matching of G. Then either {b, d} ⊆ M̃ or {a, c} ⊆ M̃ .
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The graph B has a similar property. If B is a subgraph of G such that
no other edges of G are incident upon any node of B, then each perfect
matching M̃ of G contains exactly one of the edges K1, K2,K3 (the only
possible matchings of graph B are {K1, d1}, {K2, d2} and {K3, d3}).

A graph G = (V,E) will consist of n copies A1, . . . , An of the graph
A corresponding to variables x1, . . . , xn, of further 3m copies Ajr, j =
1, . . . , m, r = 1, 2, 3 of the graph A and m copies B1, . . . , Bm of the graph
B corresponding to clauses C1, . . . , Cm. We create n categories S1, . . . , Sn

corresponding to variables, 3m categories Sjr, j = 1, . . . , m, r = 1, 2, 3 cor-
responding to clauses and one extra category So.

In each copy Ai of the graph A two opposite edges have weight 1 (cor-
responding to the literal xi) and the remaining two edges have weight 0
(corresponding to the literal x̄i), all edges belong to the category Si (see
Figure 3 for an illustration of this construction).

Figure 3

The situation for m clauses C1, . . . , Cm is slightly more complicated. For
each clause Cj = (l1 + l2 + l3), where each li is a literal — either xk or x̄k for
some k ∈ {1, . . . , n}, the r-th copy, r = 1, 2, 3, Ajr of the graph A consists
of one edge of weight either 1 if the corresponding literal lr is xk or 0 if the
literal lr is x̄k. This edge then belongs to the category Sk. The other three
edges are of weights 0, 1 and 0 and all belong to the category Sjr. We finally
assign weights and categories to edges of the subgraph Bj : the three central
edges Ki have weights 1 and belong to categories Sj1, Sj2, Sj3, respectively.
The remaining three edges are of weight 0 and belong to the category So.
(See Figure 4 and Figure 5 for an illustration of subgraphs constructed for
clauses).
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Figure 4

Figure 5

We shall now argue that our construction of the graph G from a Boolean
formula F is correct, i.e., G has a perfect matching M̃ with L5(M̃) ≤ 0 if
and only if F is satisfiable.

For the only if direction, suppose that G has a perfect matching M̃
with L5(M̃) ≤ 0. In each of the subgraphs Bj exactly one central edge
Kr of weight 1 is matched. Kr ∈ Sjr, and since L5(M̃) = 0 only edges of
weight 1 in the category Sjr can be matched. It follows that an edge of
the subgraph Ajr corresponding to the r-th literal of clause j of weight 1,
which belongs to the category Sjr is matched, too. Denote this edge by f .
Then from the above mentioned property of the graph A the other matched
edge in this subgraph Ajr must be an edge g ∈ Sk for some k ∈ {1, . . . , n}.
But a similar argument shows that in the subgraph Ak corresponding to the
variable xk both edges of weight equal to w(g) must be matched (the other
two of weight 1− w(g) are of course unmatched).
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Think of the fact that edges with weight 1 in the category Sk are matched
to mean that xk takes the value true, otherwise, if edges with weight 0 in the
category Sk are matched, we say that xi is false. The reader should be able
to convince himself that the resulting function is a valid truth assignment:
each xi is assigned exactly one of the two truth assignments (due to the
subgraph Ai corresponding to xi) and due to the above mentioned property
of the graph B, each clause is satisfied by one of its three literals.

For the if part, suppose that the Boolean formula F is satisfiable by
some truth assignment τ . The perfect matching M̃ of G can be constructed
by the following rules stated in the only if part: If xi is true, both edges of
the subgraph Ai having weight 1 are included in M̃ , otherwise both edges
of weight 0 are included. Let lr be the first literal which satisfies clause
Cj = (l1 + l2 + l3). Then edges Kr and dr of the subgraph Bj are included in
M̃ . From the subgraph Ajr we include in M̃ an edge e ∈ Sjr having weight 1
and its opposite edge and from subgraphs Ajt, t ∈ {1, 2, 3}− {r} we include
two edges from the category Sjt having weight 0. It is then clear that
L5(M̃) = 0.

Next we prove that the L5-a-b path problem is NP-complete, too.

Theorem 2. Given a graph G = (V, E), vertices a, b ∈ V and a constant K,
it is NP-complete to decide whether there exists an a-b path P in G with
L5(P ) ≤ K.

Proof. In our construction we use the graph A shown in Figure 6. Suppose
that A is a subgraph of some other graph G such that

1. no other edges of G (edges not shown in Figure 6) are incident upon
any node of A except for Cj and Dj

2. Cj and Dj are articulations of G.

Then each Cj − Dj path in G traverses through edges ciaic
′
i for some i =

1, 2, 3.
A graph G = (V,E) will consist of a chain E0 − F 0 of parallel edges of

length n corresponding to variables x1, . . . , xn and of m copies A1, . . . , Am

of the graph A corresponding to clauses C1, . . . , Cm. We create n categories
S1, . . . , Sn corresponding to variables and one extra category So.

For each variable xi we have two parallel edges: one of weight 1 (corre-
sponding to the literal xi) and the other of weight 0 (corresponding to the
literal x̄i), and both belonging to the category Si. We arrange these edges
to form a chain (see Figure 7 for an illustration of this construction).
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Figure 6

Figure 7

For each clause Cj = (l1 + l2 + l3), where each li is a literal — either xki or
x̄ki for some ki ∈ {1, . . . , n}, we do the following construction: In the j-th
copy Aj of the graph A we assign weight 1 to edges ai for i = 1, 2, 3 if the
literal li = xki and 0 otherwise and put them in the category Ski . All other
edges of the subgraph Aj are of 0 weight and are included in the category
So. (See Figure 8 for an illustration of constructing the subgraph Aj).

Figure 8
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All subgraphs Aj are joined in vertices Cj and Dj to form a chain-like graph
to which we adjoin chain E0 − F 0 and let a = C1 and b = F 0. A scheme of
the resulting graph G = (V,E) is depicted in Figure 9.

Figure 9

We shall now argue that our construction of the graph G from a Boolean
formula F is correct, i.e., G has an a-b path P with L5(P ) ≤ 0 if and only
if F is satisfiable.

For the only if direction, suppose that G has an a-b path P with
L5(P ) ≤ 0. If we take into account the already mentioned property of the
subgraph A, a path P must traverse through the edge ar for some r ∈
{1, 2, 3}. Let xkr be the variable corresponding to the r-th literal lr of clause
Cj . Then P cannot traverse edges of the category Skr with weight not equal
to w(ar) and therefore, from the pair of edges corresponding to the variable
xkr in chain E0 − F 0, path P must traverse the edge of weight w(ar).

Think of the fact that edges with weight 1 in the category Sk are tra-
versed by P to mean that xk takes the value true, otherwise, if edges with
weight 0 in the category Sk are traversed by P , we say that xi is false. It is
not difficult now to verify that we have just defined a valid truth assignment:
each xi is uniquely assigned either true or false and each clause is satisfied
by one of its three literals.

For the if part, suppose that a Boolean formula F is satisfiable by some
truth assignment τ . The a-b path P with L5(P ) = 0 can be constructed
as follows: If xi is true, P will traverse from the pair of parallel edges
corresponding to the i-th variable the edge having weight 1, otherwise the
one with weight 0. Let lr be the first literal which satisfies the clause Cj =
(l1 + l2 + l3). Then P will traverse edges cr, ar and c′r of the subgraph Bj .
It is then clear that L5(P ) = 0.

Almost the same arguments can be used to prove the next theorem.

Theorem 3. Given a graph G = (V,E) and a constant K, it is NP-
complete to decide whether there exists a spanning tree T in a graph G with
L5(T ) ≤ K.
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Proof. We use the same construction of a graph G = (V, E) as in the
proof of Theorem 2. We shall now argue that G has a spanning tree T with
L5(T ) ≤ 0 if and only if F is satisfiable.

For the only if direction, suppose that G has a spanning tree T with
L5(T ) ≤ 0. Then T must contain an a-b path as a subgraph and therefore
exactly the same arguments as in the proof of Theorem 2 apply here.

For the if part, suppose that a Boolean formula F is satisfiable by
some truth assignment τ . We know that there exists an a-b path P with
L5(P ) ≤ 0. If we extend it by remaining edges of the category So, the
resulting subgraph T is clearly a spanning tree of G with L5(T ) = 0.

In the following theorem we state a result about the L5-Hamilton cycle
problem, which is closely related to the Traveling Salesman Problem (TSP).
TSP is NP-complete in a general case. Thus, we direct our attention to a
special type of graphs — so called Halin graphs, where TSP and Hamilton
cycle problems can be solved in polynomial time [6].

A Halin graph G = T ∪ C is obtained by embedding a tree T without
nodes of degree 2 in the plane and adding a cycle C (outer cycle) joining the
leaves of T in such a way that the resulting graph is planar. Given a Halin
graph G = T ∪ C, the question to decide is whether there exists a cycle O
in a graph H passing through each vertex exactly once.

Theorem 4. Given a Halin graph G = (V, E) and a constant K, it is NP-
complete to decide whether there exists a Hamilton cycle O in a Halin graph
G with L5(O) ≤ K.

Proof. In our construction we use the folowing special-purpose graphs:
Graph A (shown in Figure 10a) and Graph B (shown in Figure 10b).

Suppose that A is a subgraph of some other graph G such that no other
edges of G (edges not shown in Figure 10) are incident upon any vertex of
A except for Ci and Di. Then there are only two possible ways in which a
Hamilton path can cross the graph A traversing vertices Ci and Di: either
using edges b1b2a2 or edges a1b2b3.

Similarly, if there are no edges incident upon any vertex of the graph B
except for Ej and F j , there are 5 possible ways in which a Hamilton path
can cross the graph B traversing vertices Ej and F j . Such a Hamilton path
must then contain exactly two edges bpq, p, q = 1, . . . , 3. Moreover, for every
p = 1, . . . , 3 there exists an Ej −F j path traversing through bp1 and bp2 but
not through bp′1, bp′2, p′ ∈ {1, 2, 3} − {p}.
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Figure 10

A Halin graph G = (V, E) will consist of n copies A1, . . . , An of the graph
A corresponding to variables x1, . . . , xn and of m copies B1, . . . , Bm of the
graph B corresponding to clauses C1, . . . , Cm. We also create n categories
S1, . . . , Sn corresponding to variables and one extra category So.

In each copy Ai of the graph A an edge b1 (corresponding to the literal
xi) has weight 1 and belongs together with edge b3 of weight 0 (corresponding
to the literal x̄i) to the category Si. All remaining edges have weight 0 and
are included in the category So. (See Figure 11 for an illustration of this
construction).

Figure 11

For each clause Cj = (l1 + l2 + l3) we have one copy Bj of the graph B.
We assign weight 1 to edges bi1, bi2, i = 1, 2, 3 if the literal li = xki

and 0
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otherwise and put them in the category Ski . All other edges of the subgraph
Bj are of 0 weight and are included in the category So. (See Figure 12 for
an illustration of constructing a subgraph Bj).

Figure 12

We join vertices Di and Ci+1 and vertices F j and Ej+1 with edges of weight
0. We also join all vertices Mi and Mj with one extra vertex M with edges
of weight 1. We finally add two extra vertices K and L and edges C1K,
KM , ML, LFm and DnE1 of weight 0 and an edge KL of weight 1. All
these extra edges belong to the category So. See Figure 13 for an illustration
of the final construction of a Halin graph G.

Figure 13
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We shall now argue that our construction of a Halin graph G from a Boolean
formula F is correct, i.e., G has a Hamilton cycle O with L5(O) ≤ 0 if and
only if F is satisfiable.

For the only if direction, suppose that G has a Hamilton cycle O with
L5(O) ≤ 0. A Hamilton cycle O clearly traverses an edge e ∈ So of weight
0 and since L5(O) = 0, O cannot traverse edges of So of weight 1. If
we take into account the already mentioned property of the graph B, we
see that Hamilton cycle O must traverse in each subgraph Bj at least one
edge bip, i = 1, 2, 3, p = 1, 2 corresponding to the i-th literal of clause
j — either xki or x̄ki . It follows that an edge f of the subgraph Aki of
weight w(f) = w(bip), which belongs to the same category as an edge bip is
traversed by Hamilton cycle, too.

Think of the fact that edges with weight 1 in the category Sk, k =
1, . . . , n are traversed by O to mean that xk takes the value true, otherwise,
if edges with weight 0 in the category Sk are traversed by O, we say that
xi is false. It is not difficult now to verify that we have just defined a valid
truth assignment: each xi is uniquely assigned either true or false and each
clause is satisfied by at least one of its three literals.

For the if part, suppose that a Boolean formula F is satisfiable by some
truth assignment τ . The construction of a Hamilton cycle O in a Halin graph
G is as follows: If xi is true, O traverses edges b1, b2, a2 (in that order) of
the subgraph Ai, otherwise it traverses edges a1, b2, b3. Let lr be the first
literal which satisfies clause Cj = (l1 + l2 + l3). Then O traverses edges
br1, br2, as, s ∈ {1, . . . , 5} − {2r − 1} (in proper order) of the subgraph Bj .
Clearly L5(O) = 0.

Since all four constructions of a graph G and assignments of edge weights
and categories described above can clearly be carried out in polynomial time
(polynomial in size of a Boolean formula F ), this completes the proofs of
NP-completeness.
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A Boolean formula F consists of clauses with exactly three literals each and
with no negated variables. Does there exist such a Boolean valuation of
variables that each clause contains exactly one true literal?

We shall have one graph A for each variable, one modified graph B for
each clause (see Figure 14) and only one category Si for each variable xi and
one extra category S0. In the figure of the graph B for clause C = x1+x2+x3

the label i attached to an edge denotes its category. The edges of weight 1
are drawn thick and edges of weight 0 are thin.

Figure 14

The reader may verify that the Boolean formula is satisfiable if and only
if there exists a perfect matching M for the constructed graph with
L5(M) = 0.
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