CLIQUE PARTS INDEPENDENT OF REMAINDERS

Zdziseaw Skupień
Faculty of Applied Mathematics University of Mining and Metallurgy AGH
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: skupien@uci.agh.edu.pl

Let p and t stand for positive integers. Let R denote an edge subset of size $|R|=\binom{p}{2} \bmod t$ in the complete graph K_{p}. Call R a remainder (or an edge t-remainder) in the clique K_{p}.

Conjecture \mathbf{L} (L reminds of floor symbol). The floor class $\left\lfloor K_{p} / t\right\rfloor$ is nonempty. In other words, there exists a graph F such that, for each edge t-remainder R in K_{p}, F is a t th part of $K_{p}-R$, i.e., $F \in\left\lfloor K_{p} / t\right\rfloor$.
Conjecture L implies the following conjecture stated in [2].
Conjecture L*. For each edge t-remainder R in K_{p}, there is an $F_{R} \in$ $\left(K_{p}-R\right) / t=:\left\lfloor K_{p} / t\right\rfloor_{R}$.

Theorem L' (Skupień [2]). There exists an edge t-remainder R in K_{p} such that the floor class $\left\lfloor K_{p} / t\right\rfloor_{R}$ is nonempty.
Plantholt's theorem [1] on chromatic index is equivalent to the truth of Conjecture L with $t=p-1$ and p being odd.

Conjecture L can be seen true for many pairs p, t, e.g., if $t \geq p-1$ or t is small: $t \leq 5$. If t is a constant $(t \geq 4)$, both Conjectures can be reduced to some values of p in the interval $t+2 \leq p \leq 4 t-5$.

References

[1] M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph Theory 5 (1981) 45-53.
[2] Z. Skupien, The complete graph t-packings and t-coverings, Graphs Combin. 9 (1993) 353-363.

