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Abstract
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1. Introduction

Following [1] we denote the class of all finite simple graphs by Z.

A property of graphs is a non-empty isomorphism-closed subclass of 7.
We say that a graph G has the property P if G € P. A property P is called
hereditary if G € P and H C G implies H € P. P is called additive if
GUH € P whenever G € P and H € P. A homomorphism of a graph
G to a graph H is a mapping of the vertex set V(G) into V(H) such that
if e = {u,v} € E(G), then f(e) = {f(u), f(v)} € E(H). Given a graph
G and a positive integer k we define G[k] to be the graph with V(Gk]) =
V(G) x {1,2,...,k} and E(G[k]) = {(u,l1)(v,l2) : wv € E(G)}; G[k] is
called a multiplication of G. The clique number w(G) of a graph G is the
maximum order of a complete subgraph of G. A trailin a graph is a sequence
UllU2, U2US, . . . , Up_1U Of edges, with no edge repeating. If u; # ui then the
trail is open. Since we will only be interested in the length of a trail, we
associate a trail T" with the set of edges in T'.

Example 1. For a positive integer k£ and a given graph H we define the
following well-known properties:

O={GeZ:EQG) =0},
Tr = {G € Z : G does not contain Ky s},
O = {G € T : each component of G has at most k + 1 vertices},
Wi, = {G € T : each path in G has at most k edges},
Wy = {G € T : each open trail in G has at most k edges},
Sk = {G € 7 : the maximum degree of G is at most k},
Dy ={G € I : G is k-degenerate, i.e., every subgraph of G has a vertex
of degree at most k},
— H = {G € T : there is a homomorphism from G to H},
OF = {G € T: G is k-colourable} =— Kj.
Note that for a graph G we have that G €¢— H iff G is a subgraph of a
multiplication of H. A property of the form — H is called a hom-property.
Every hereditary property P is determined by the set of minimal for-
bidden subgraphs F(P) = {G € P : every proper subgraph of G is in P }.
If G = (V,FE) is a graph and E’ C E then the subgraph of G induced by
E’ is the graph (V, E’) and is denoted by G[E].
Let Q1,Qo,...,9, be arbitrary hereditary properties of graphs. An
edge (Q1, Qa, ..., Qp)-decomposition of a graph G is a decomposition
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{E1, Ea,...,E,} of E(G) such that for each i = 1,2,...,n the induced sub-
graph G[E;] has the property Q;. The property R = Q1®Qa®- - -®Q,, is de-
fined as the set of all graphs having an edge (Q1, Qa, . .., Qy)-decomposition.
It is easy to see that if Q1,Qs,...,Q, are additive and hereditary, then
R=Q1®QrP---P 9, is additive and hereditary too. If Q1 = Qg =--- =
Qn = Q, then we write nQ = Q1 ® Qo @ --- D Q.

The generalized edge-chromatic number pio(G) of a graph G is defined
as the least integer n such that G € nQ. For a property P, p’Q(P) is then
the least n such that P C nQ.

As an example of the non-existence of pio(P) we have pj (D1) since
there exist graphs in D; of arbitrary maximum degree. Theorem 1.1 by
J. Negetfil and V. Rodl (see [6]) implies that for some properties P, po(P)
exists iff pio(P) = 1. Here a graph G is called 3-chromatic connected if there
isno S C V(QG) such that G — S is disconnected and G[S] is bipartite.

Theorem 1.1 [6]. Let F(P) be a set of 3-chromatic connected graphs.
Then for every positive integer k and graph G € P there exists a graph
H € P such that for any decomposition {E1, Ea, ..., Ex} of E(H) there is
ani€{1,2,...,k}, for which G C H[E;]. |

Corollary 1.2. If F(P) is a set of 3-chromatic connected graphs, then for
any hereditary property Q, po(P) exists if and only if P C Q. [ |

Proof. Suppose that P € Q but P € nQ for some n. Let G € P and
G ¢ Q. By Theorem 1.1 there is an H € P such that for every decomposition
{E1,Es,...,E,} of E(H) thereis an i € {1,2,...,n} for which G C H[E;].
Let {E1, Es, ..., E,} be an nQ-decomposition of E(H). Then G C H[E;]
€ O for some %, a contradiction. The converse is trivial. [

In particular, for every k and any hereditary property Q we have that p/Q (Zy)
exists iff 7, C Q.

Lemma 1.3. Let Py, Py and Q be any properties. If Py C Ps, then

Po(P1) < plo(P). .
Lemma 1.4. Let Q1,92 and P be any properties. If Q1 C Qa, then
po,(P) < pg, (P). m
The lattice of (additive) hereditary properties is discussed in [1] — we use

the supremum and infimum of properties in our next result without further
discussion. A similar result is proved in [5].
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Theorem 1.5. Let Py and Po be hereditary properties and Q an additive
hereditary property such that po(P1) and po(P2) are finite. The following
hold:

(i) po(P1UP2) = pig(P1V Pa) = max{pg(P1), pg(P2)}-
(il) pg(P1NP2) < min{py(P1), pg(P2)}-
(iil) max{pg(P1), pg(P2)} < po(P1 @ Pa) < pio(Pr) + po(P2). u

In the rest of this paper we aim to study the generalized edge-chromatic
number pip(P) with @ and P amongst the properties listed in Example 1.

2. Some Values of p5(P)

The well-known results of Vizing and Petersen on edge-colourings of graphs
imply the following result — see [3] for details.

Theorem 2.1. Let p and q be any positive integers. Then
1. § @8y C Sptg-
2.5, C(p+1)S.
3. If p and q are even then Spiq = Sp ® Sy.
4. If q is odd then Sprq L Sp @ S,. |

Corollary 2.2. For all positive integers k and n,

H
—1, n even or k <n,
ps, (Sk) "
S,
" k+1
[ + —‘, otherwise.
n

Proof. The result is clearly true if & < n. If n is even then it follows from
Part 3 of Theorem 2.1 that S, C [ﬂ S, while the lower bound follows by

observing that k > n ([%1 — 1) so that S & Sn(|'§-|fl) = ([ﬂ — 1) Sh.

Now let n be odd and k > n. By Theorem 2.1 we have that S, C (k+1)
S1Cn [%W S C [%W S,. Let ¢ = [%W —1. Since [%W < %—%”Tfl it
follows that k > nc. If ¢ = 1 then, since k > n, pis (Sp) >2=c+1= [%W,
so assume that ¢ > 2. Now S 2 Sen = Sc—1yn4n € Se—1)n © Sn 2
(c=1)S, @ Sn 2 ¢Sy so that p (Sg) > c+ 1. ]
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Our next result states that, in some cases, the determination of the gen-
eralized edge-chromatic number p(— H) reduces to the determination of

po(H).

Theorem 2.3. For any additive hereditary property Q which is closed un-
der multiplications and any graph H, pg(— H) = pg(H).

Proof. Since H €— H we have po(— H) > po(H). Now suppose that
H € mQ and let (Ey, Es,...,Ey) be an mQ-decomposition of E(H). If
G €— H then G is a subgraph of a multiplication of H. Let, for every
i€{1,2,...,m}, Bl = {(u,l1)(v,l2) : uwv € E;}. Then G[E]] is a subgraph
of a multiplication of H[E;] for every i and, since Q is closed under mul-
tiplications and hereditary, G[E]] € Q. Therefore (E{, Ej, ..., E] ) is an

mQ-decomposition of E(G), hence pip(— H) < plo(H). ]

Theorem 2.4. For all positive integers n > 2 and k, if P satisfies Or_1 C
P C OF, then plon(P) = [log,, k].

Proof. It is well known that O = 0% @& O° (see e.g. [3]). This implies
that Ok C on'** " = [log,, k] O™ hence ply. (OF) < [log,, k].

Since nllogn k=1 < plognk — L it follows that Kj ¢ or'esn
([log,, k] —1)O™. Therefore Or_; Z ([log, k] —1)O™ and thus pyn (Ok_1)
[log, k1. Therefore, by Lemma 1.3 it follows that pf,. (P) = [log, k].
For our next result we define p, (P) to be the least k such that P C OF and
x*(P) to be the greatest k such that OF C P.

k-1

m VvV

Corollary 2.5. For any additive hereditary properties Q, P #£ I for which
px(P) and py(Q) ewist, [IngX(Q) X*(P)] < po(P) < [logx*(g) pX(P)W.

Proof. Since OX"(2) C Q and P € ©*x(P) we have by Lemma 1.3, Lemma
1.4 and Theorem 2.4 that [logx*(g) pX(P)W > pg(P). Similarly, since Q C
0rx(Q) and OX"(P) C P we have that pip(P) > [logpx(g) x*(Pﬂ. m

Since, for any graph H, p,(— H) = x(H) and x*(— H) = w(H) we have
the following corollary.

Corollary 2.6. For all graphs G and H,

[ng(c)w(Hﬂ <plg(—H) < ﬁogw(c) X(Hﬂ - m
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3. Some Results on D,
The next result is stated in [2].

Theorem 3.1. For all positive integers a and b, we have Dyirp C Dy & Dy.

|
From this theorem it follows that, for all positive integers ¢ and n, D., C
cD,,. We now show that this cannot be improved, even if we restrict the
graphs to be bipartite.

Theorem 3.2. For all positive integers ¢ and n, Depy1 N O? € cD,,.

Proof. Let t = (n + 1)L, Clearly, G = Keni1t € Dent1 N 0% We
show that G ¢ ¢D,: Suppose, to the contrary, that {E1, Es,...,E.} is a
¢D,,-decomposition of E(G). Let Vi = {v1,v2,...,0en+1} be the partite set
of order cn+ 1 and V5 the partite set of order t. Consider the edges incident
with v1. At least t/c of them must be in the same colour class, hence there
is a subset U; of Va with |Uy| = t/c such that all edges in G[U; U V7] incident
with v; have the same colour. Similarly, there is a subset U, of U; with
|Us| = t/c? such that all edges in G[Us U V4] incident with vy have the same
colour (not necessarily the same as for v1). Continuing in this way we obtain
a subset U of Vo with |U| = n + 1 such that, for every v € V1, all edges of
G[U U V4] incident with v have the same colour.

Since there are ¢ colours it follows that for some i € {1,2,...,c} we
have that Ky 41,41 € G[E;]. This is a contradiction, since Kp11n+1 € Dn.
Thus Kent1, € cDy,. [ |

Theorem 3.3. For all positive integers k and n, we have that

o, (00 = | 7]

Proof. It follows from Theorem 3.1, by induction on ¢, that D., C ¢D,
for all ¢ and n. Now let k£ and n be positive integers and let ¢ = [%—‘ Then
k < cn hence Dy C D, C ¢D,, and the upper bound follows.

For the lower bound, since & > (¢ — 1)n + 1 we have that Dy 2
D(c—1ynt1 £ (¢ = 1)Dy by Theorem 3.2. ]

We know that if pg > a + b, then D,;, C O+ C 0P = OP @ 09 and
Darv € Dy B Dy. Our next result shows that for graphs in D,y we can find
simultaneous (OP, O9)- and (D,, Dy)-partitions. First a set-theoretic lemma.
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Lemma 3.4. Let a, b, p and q be positive integers such that a > b, 2 < q <
b+1 andpqg>a+b. If X is a set with a+ b elements and {Uy,Us, ..., Up}
and {V1,Va,..., V,} are partitions of X then there exists a partition {A, B}
of X and i and j such that |A| =a, ANU; =0 and BNV; = 0.

Proof. It is sufficient (and necessary) to find ¢ and j such that U; NV} = 0,
|Ui| < b and |Vj| < a. Let k be the number of U;’s such that |U;| > b and m
the number of Vj’s such that |V;| > a. We will show that (p — k)(¢ —m) >
c=|X\ (U{Ui : |Ui| > b} UU{V; : |Vj] > a})|. It then follows that among
the sets of the required size there is a disjoint pair (there are (p — k)(q —m)
ways to choose a pair (Uj, Vj) of sets of the required size. Since the U;’s
are pairwise disjoint and the Vj’s are pairwise disjoint it would follow that
¢ > (p—k)(¢ —m) if all such pairs have nonempty intersection). Note that
m < 1 since a > b and that ¢ < min{a +b—k(b+1),a +b—m(a+1)}.
Also, k < p, for otherwise we get a +b = |X| > p(b+ 1) > pg. We have
three cases to consider.

(1) m = 0: In this case we have (p—k)q = pg—kq > a+b+1—k(b+1) > c.

(2) m=1and k < ‘Zf We want to show that (p —k)(¢—1) >b—1
since ¢ < b—1. If ¢ = b+ 1 this is clearly true, hence we assume that ¢ < b.
We have

e St !
b—1
= (55 1)+q_1 T
Sb(j_ )+Z:1+bj—1 sincea >band ¢ <b
1
:b(q 1)+q—q_—1
SQ( ! 1)‘1‘(]—(]_71

Suppose now that (p — k)(¢g — 1) <

b — 1. Then we have pg < <

b—1+b7%+kq—a+a<a+b a contradiction.

(3) m=1and k > aj[l Again we may assume that ¢ < b. We show
that (p —k)(¢—1) >a+b—k(b+1) > c. We have
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+b—k(b+1
—k(b+1) + 2 O+ kg
q—1
a+b b+1
= klg—(b+1)— ——
1 (q (b+1) q—1>
a+b a+1 b+1 .
Sq—1+b+1(q_(b+1)_q—71) since ¢ < b

bh—
- “<b11_1) b%ﬂ;—%

b+1 b+1 ¢g-—1
1
<0
Suppose now that (p —k)(¢—1) < a+b—k(b+1). Then we have pg <
gD 4 kg = a+b— k(b + 1) + “ECED 4 kg <ot m

Theorem 3.5. Let a, b, p and q be positive integers such that a > b,
2<q<b+1andpg>a+b. Then Dyp C (D, N OP)& (DN O).

Proof. Let G be a counterexample of minimum order and let v be a vertex
of G of degree at most a + b. Then G — v has a (D, N O, D, N O9)-
decomposition and Lemma 3.4 is exactly what we need to extend this de-
composition to G for a contradiction. [

These results now put us in a position to refine Theorem 3.3.
Theorem 3.6. For all positive integers k, n and p > 2 we have that:
Ppunor(Dk) = [log,(k+1)], ifk <n,
k
= [-‘, if k> n and p* > 2n,
n
< [log (n+ 1)} + [k—‘ — 1, otherwise.
< D -
Proof. Firstly we note that from Theorem 3.5 it follows that D., C

D(c—1yn ® (D N 0?) C D(c—1yn ® (D N OP) for all ¢ > 2 and therefore
Den € Doy @ (¢ — 2)(D,, N OP).
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Suppose that k& < n. Then ph ~0p(Dr) = pop(Dr) = [logp(k:—i—l)w by
Theorem 2.4.

Now suppose that k > n and p? > 2n. Then D, C Da, & (c — 2)(D, N
OP) C ¢(D,, N OP), using Theorem 3.5 and the fact that p?> > 2n. Now
Dy C D(ﬂn - [ﬂ (D,, N OP) giving the upper bound. The lower bound
follows from Theorem 3.3 and Lemma 1.4.

Suppose that p?> < 2n. From D, C Da, @ (¢ — 2)(D, N OP) we get
that Do, € Dy, & (¢ — 1)(Dy, N OP). Moreover, by Theorem 2.4 we have
that D, C O™+ C [log/p(n—l— 1)} (D, N OP). Therefore Dy C D[H” -

n

D, & qﬂ _ 1) (D, N OP) C Glogp(n + 1)] + [ﬂ _ 1) (D, A OF) giving
|

n

the desired bound.

4. Results on W} and W,

It has been conjectured (see e.g. [4]) that the generalized vertex-chromatic

number pyy, (W) equals “%H We now consider the similar problems of

determining p{/v;; (W;) and ply, (Wi).
We will say that two trails in a graph intersect if they have a common
edge.

Theorem 4.1. Fora >9 and b > 1 we have WFM1+” CW;eaWw;.
3

Proof. Consider any graph G in Wf,,_, Take F; to be a maximal

+b°
subset of F(G) such that G[F1] is in WE‘ 1Let E; = E(G) — Ey. Suppose
that there is an open trail 7" in G[Ej3] of length b+ 1 and let e; and e denote
the end-edges of T'. Since Ej is maximal in W it follows that there is an
open trail 77 of length a + 1 in G[E; U {e; }] and an open trail 75 of length
a+1in G[E; U{ez}]. Let T1; and T12 denote the trails on either side of e;
such that 77, U {61} U T = T7. Similarly, let To; U {62} U T = T5. Now
suppose, without loss of generality, that © = |E(T11)| < y = |E(T12)|, so
that z +y = a.

It is easily seen that if y > {QGJ + 1, then by taking the trail T1o UT

3
or T1o U (T — e;1), as the case may be, we get a trail of length at least
{%“J 4+ 14 b and therefore an open trail of length at least {%“J +14+b6-—

1> % +b > % +b > [%W + b in G, a contradiction. Therefore
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6] <y < [%“J Moreover, each Tjj, i,j € {1,2} has length at least |%],

sincex =a—vy>a— {—J >aq— 2; =g> [%J

Note that T7; and T1o are neccessarily edge disjoint as are T5; and Ths.
T must intersect 15, and The, otherwise we get an open trail of length at
least [§]+b—2+4 %] > §+ %= +b—2—5a 16+b>[2a 6W+b1nG
containing 719, T —e1 — e and T21 or Tho.

In the following, when we say that 715 intersects T2 first we mean that
there is a trail starting from an end-vertex of es, following T5; and ending
with an edge of T2, containing no edge of T7;. Similarly for T5, intersecting
Tis first or Tb; intersecting 17, first. Note that since 111 and 119 are disjoint
and T}y intersects To; and Thy, we must have that Th;, i € {1,2} intersects
one of 117 and Tio first.

Suppose that both T5; and 15 intersect Ti first. Then we obtain an
open trail of length at least z+b—14[%] > a—y+4+b—1>a— ly—l—}—b >

a—% [QJJ —14+b>a—3(2)—1+b=234p> Pa 6} +b in G; containing
T11, T — e1 and at least a half of T7,.

Now, suppose that T or Th intersects 111 first, say T5;. Then we
obtain an open trail of length at least y+[5|+b—2 = y+ [%(a - y)—‘ +b—2 >
y+ 5 +b—2> 441 (4] +b-2>34+p—2> PC‘ 6} +b in G; containing
Tio, T — e1 — eo and at least a half of T71. [}

We remark that a similar result has been proved for vertex partitions and
Wi in [5].

Theorem 4.2. For all positive integers k and n > 9, ply. (W) < [2356—"

Proof. From Theorem 4.1 it follows by induction on ¢ that W:(MW C
3

cW; for all positive integers ¢ and n. Now, with ¢ = {%-‘ we have that
Wi CWha,67 C Wi, [ |
e[ 2272

Theorem 4.3. For all positive integers k and n > 2, {%J +1< p{,vn (Wy)
< 2k.

Proof. We first show that Whagero € cWa,y1 for every positive integer c:
Clearly, G = Kgcy1,4 € Wageqo for every t. Let t be large and suppose
that G € cWaat1. Let {Ey, Ea,...,E.} be a corresponding decomposition
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of E(G). As in the proof of Theorem 3.2 we get, if ¢ is large enough, for
some i € {1,2,...,c} that Kq41 442 C G[E;], a contradiction.

Now let a = "7_1 and ¢ = {%J Since k > 2ac + 2 we have W, D
Waactra € cWh. Therefore p),, (W) > c+ 1.

For the upper bound we have W), C Dy, C kD C 2kW,y C 2kW,, from
Theorem 3.3 and the well-known fact that every tree has a 2(WaNDy) edge

decomposition. n

Acknowledgement

The authors wish to thank their supervisor, Prof. 1. Broere, for his criticism
and assistance in the final preparation of this paper.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihék and G. Semanisin, A survey of
hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50.

[2] M. Borowiecki and M. Haluszczak, Decompositions of some classes of graphs,
Report No. IM-3-99 (Institute of Mathematics, Technical University of Zielona
Goéra, 1999).

[3] I. Broere and M. J. Dorfling, The decomposability of additive hereditary prop-
erties of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291.

[4] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition
problem, Discuss. Math. Graph Theory 18 (1998) 113-125.

[5] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and addi-
tive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002)
259-270.

[6] J. Nesetiil and V. Rodl, Simple proof of the existence of restricted Ramsey
graphs by means of a partite construction, Combinatorica 1 (2) (1981) 199-202.

Received 13 June 2001
Revised 5 April 2002


http://www.tcpdf.org

