GENERALIZED EDGE-CHROMATIC NUMBERS AND ADDITIVE HEREDITARY PROPERTIES OF GRAPHS

Michael J. Dorfling
Department of Mathematics
Faculty of Science
Rand Afrikaans University
P.O. Box 524, Auckland Park, 2006 South Africa
AND
Samantha Dorfling ${ }^{1}$
Department of Mathematics and Applied Mathematics
Faculty of Science
University of the Free State
P.O. Box 339, Bloemfontein, 9300 South Africa
e-mail: DorfliS@sci.uovs.ac.za

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let \mathcal{P} and \mathcal{Q} be hereditary properties of graphs. The generalized edge-chromatic number $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ is defined as the least integer n such that $\mathcal{P} \subseteq n \mathcal{Q}$. We investigate the generalized edge-chromatic numbers of the properties $\rightarrow H, \mathcal{I}_{k}, \mathcal{O}_{k}, \mathcal{W}_{k}^{*}, \mathcal{S}_{k}$ and \mathcal{D}_{k}.

Keywords: property of graphs, additive, hereditary, generalized edgechromatic number.

2000 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

Following [1] we denote the class of all finite simple graphs by \mathcal{I}.
A property of graphs is a non-empty isomorphism-closed subclass of \mathcal{I}. We say that a graph G has the property \mathcal{P} if $G \in \mathcal{P}$. A property \mathcal{P} is called hereditary if $G \in \mathcal{P}$ and $H \subseteq G$ implies $H \in \mathcal{P}$. \mathcal{P} is called additive if $G \cup H \in \mathcal{P}$ whenever $G \in \mathcal{P}$ and $H \in \mathcal{P}$. A homomorphism of a graph G to a graph H is a mapping of the vertex set $V(G)$ into $V(H)$ such that if $e=\{u, v\} \in E(G)$, then $f(e)=\{f(u), f(v)\} \in E(H)$. Given a graph G and a positive integer k we define $G[k]$ to be the graph with $V(G[k])=$ $V(G) \times\{1,2, \ldots, k\}$ and $E(G[k])=\left\{\left(u, l_{1}\right)\left(v, l_{2}\right): u v \in E(G)\right\} ; G[k]$ is called a multiplication of G. The clique number $\omega(G)$ of a graph G is the maximum order of a complete subgraph of G. A trail in a graph is a sequence $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{k-1} u_{k}$ of edges, with no edge repeating. If $u_{1} \neq u_{k}$ then the trail is open. Since we will only be interested in the length of a trail, we associate a trail T with the set of edges in T.

Example 1. For a positive integer k and a given graph H we define the following well-known properties:
$\mathcal{O}=\{G \in \mathcal{I}: E(G)=\emptyset\}$,
$\mathcal{I}_{k}=\left\{G \in \mathcal{I}: G\right.$ does not contain $\left.K_{k+2}\right\}$,
$\mathcal{O}_{k}=\{G \in \mathcal{I}:$ each component of G has at most $k+1$ vertices $\}$,
$\mathcal{W}_{k}=\{G \in \mathcal{I}:$ each path in G has at most k edges $\}$,
$\mathcal{W}_{k}^{*}=\{G \in \mathcal{I}:$ each open trail in G has at most k edges $\}$,
$\mathcal{S}_{k}=\{G \in \mathcal{I}:$ the maximum degree of G is at most $k\}$,
$\mathcal{D}_{k}=\{G \in \mathcal{I}: G$ is k-degenerate, i.e., every subgraph of G has a vertex of degree at most $k\}$,
$\rightarrow H=\{G \in \mathcal{I}:$ there is a homomorphism from G to $H\}$,
$\mathcal{O}^{k}=\{G \in \mathcal{I}: G$ is k-colourable $\}=\rightarrow K_{k}$.
Note that for a graph G we have that $G \in H$ iff G is a subgraph of a multiplication of H. A property of the form $\rightarrow H$ is called a hom-property.

Every hereditary property \mathcal{P} is determined by the set of minimal forbidden subgraphs $\mathbf{F}(\mathcal{P})=\{G \in \overline{\mathcal{P}}$: every proper subgraph of G is in $\mathcal{P}\}$.

If $G=(V, E)$ is a graph and $E^{\prime} \subseteq E$ then the subgraph of G induced by E^{\prime} is the graph $\left(V, E^{\prime}\right)$ and is denoted by $G\left[E^{\prime}\right]$.

Let $\mathcal{Q}_{1}, \mathcal{Q}_{2}, \ldots, \mathcal{Q}_{n}$ be arbitrary hereditary properties of graphs. An edge $\left(\mathcal{Q}_{1}, \mathcal{Q}_{2}, \ldots, \mathcal{Q}_{n}\right)$-decomposition of a graph G is a decomposition
$\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ of $E(G)$ such that for each $i=1,2, \ldots, n$ the induced subgraph $G\left[E_{i}\right]$ has the property \mathcal{Q}_{i}. The property $\mathcal{R}=\mathcal{Q}_{1} \oplus \mathcal{Q}_{2} \oplus \cdots \oplus \mathcal{Q}_{n}$ is defined as the set of all graphs having an edge $\left(\mathcal{Q}_{1}, \mathcal{Q}_{2}, \ldots, \mathcal{Q}_{n}\right)$-decomposition. It is easy to see that if $\mathcal{Q}_{1}, \mathcal{Q}_{2}, \ldots, \mathcal{Q}_{n}$ are additive and hereditary, then $\mathcal{R}=\mathcal{Q}_{1} \oplus \mathcal{Q}_{2} \oplus \cdots \oplus \mathcal{Q}_{n}$ is additive and hereditary too. If $\mathcal{Q}_{1}=\mathcal{Q}_{2}=\cdots=$ $\mathcal{Q}_{n}=\mathcal{Q}$, then we write $n \mathcal{Q}=\mathcal{Q}_{1} \oplus \mathcal{Q}_{2} \oplus \cdots \oplus \mathcal{Q}_{n}$.

The generalized edge-chromatic number $\rho_{\mathcal{Q}}^{\prime}(G)$ of a graph G is defined as the least integer n such that $G \in n \mathcal{Q}$. For a property $\mathcal{P}, \rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ is then the least n such that $\mathcal{P} \subseteq n \mathcal{Q}$.

As an example of the non-existence of $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ we have $\rho_{\mathcal{S}_{1}}^{\prime}\left(\mathcal{D}_{1}\right)$ since there exist graphs in \mathcal{D}_{1} of arbitrary maximum degree. Theorem 1.1 by J. Nešetřil and V. Rödl (see [6]) implies that for some properties \mathcal{P}, $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ exists iff $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})=1$. Here a graph G is called 3-chromatic connected if there is no $S \subseteq V(G)$ such that $G-S$ is disconnected and $G[S]$ is bipartite.

Theorem 1.1 [6]. Let $\mathbf{F}(\mathcal{P})$ be a set of 3-chromatic connected graphs. Then for every positive integer k and graph $G \in \mathcal{P}$ there exists a graph $H \in \mathcal{P}$ such that for any decomposition $\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$ of $E(H)$ there is an $i \in\{1,2, \ldots, k\}$, for which $G \subseteq H\left[E_{i}\right]$.

Corollary 1.2. If $\mathbf{F}(\mathcal{P})$ is a set of 3 -chromatic connected graphs, then for any hereditary property $\mathcal{Q}, \rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ exists if and only if $\mathcal{P} \subseteq \mathcal{Q}$.

Proof. Suppose that $\mathcal{P} \nsubseteq \mathcal{Q}$ but $\mathcal{P} \in n \mathcal{Q}$ for some n. Let $G \in \mathcal{P}$ and $G \notin \mathcal{Q}$. By Theorem 1.1 there is an $H \in \mathcal{P}$ such that for every decomposition $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ of $E(H)$ there is an $i \in\{1,2, \ldots, n\}$ for which $G \subseteq H\left[E_{i}\right]$. Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be an $n \mathcal{Q}$-decomposition of $E(H)$. Then $G \subseteq H\left[E_{i}\right]$ $\in \mathcal{Q}$ for some i, a contradiction. The converse is trivial.
In particular, for every k and any hereditary property \mathcal{Q} we have that $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{I}_{k}\right)$ exists iff $\mathcal{I}_{k} \subseteq \mathcal{Q}$.

Lemma 1.3. Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ and \mathcal{Q} be any properties. If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right) \leq \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)$.

Lemma 1.4. Let $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ and \mathcal{P} be any properties. If $\mathcal{Q}_{1} \subseteq \mathcal{Q}_{2}$, then $\rho_{\mathcal{Q}_{2}}^{\prime}(\mathcal{P}) \leq \rho_{\mathcal{Q}_{1}}^{\prime}(\mathcal{P})$.

The lattice of (additive) hereditary properties is discussed in [1] - we use the supremum and infimum of properties in our next result without further discussion. A similar result is proved in [5].

Theorem 1.5. Let \mathcal{P}_{1} and \mathcal{P}_{2} be hereditary properties and \mathcal{Q} an additive hereditary property such that $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right)$ and $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)$ are finite. The following hold:
(i) $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)=\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1} \vee \mathcal{P}_{2}\right)=\max \left\{\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right), \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)\right\}$.
(ii) $\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1} \cap \mathcal{P}_{2}\right) \leq \min \left\{\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right), \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)\right\}$.
(iii) $\max \left\{\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right), \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)\right\} \leq \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1} \oplus \mathcal{P}_{2}\right) \leq \rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{1}\right)+\rho_{\mathcal{Q}}^{\prime}\left(\mathcal{P}_{2}\right)$.

In the rest of this paper we aim to study the generalized edge-chromatic number $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$ with \mathcal{Q} and \mathcal{P} amongst the properties listed in Example 1.

2. Some Values of $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$

The well-known results of Vizing and Petersen on edge-colourings of graphs imply the following result - see [3] for details.

Theorem 2.1. Let p and q be any positive integers. Then

1. $\mathcal{S}_{p} \oplus \mathcal{S}_{q} \subseteq \mathcal{S}_{p+q}$.
2. $\mathcal{S}_{p} \subseteq(p+1) \mathcal{S}_{1}$.
3. If p and q are even then $\mathcal{S}_{p+q}=\mathcal{S}_{p} \oplus \mathcal{S}_{q}$.
4. If q is odd then $\mathcal{S}_{p+q} \nsubseteq \mathcal{S}_{p} \oplus \mathcal{S}_{q}$.

Corollary 2.2. For all positive integers k and n,

$$
\rho_{\mathcal{S}_{n}}^{\prime}\left(\mathcal{S}_{k}\right)=\left\{\begin{aligned}
\left\lceil\frac{k}{n}\right\rceil, & n \text { even or } k \leq n \\
\left\lceil\frac{k+1}{n}\right\rceil, & \text { otherwise }
\end{aligned}\right.
$$

Proof. The result is clearly true if $k \leq n$. If n is even then it follows from Part 3 of Theorem 2.1 that $\mathcal{S}_{k} \subseteq\left\lceil\frac{k}{n}\right\rceil \mathcal{S}_{n}$ while the lower bound follows by observing that $k>n\left(\left\lceil\frac{k}{n}\right\rceil-1\right)$ so that $\mathcal{S}_{k} \nsubseteq \mathcal{S}_{n\left(\left\lceil\frac{k}{n}\right\rceil-1\right)}=\left(\left\lceil\frac{k}{n}\right\rceil-1\right) \mathcal{S}_{n}$.

Now let n be odd and $k>n$. By Theorem 2.1 we have that $\mathcal{S}_{k} \subseteq(k+1)$ $\mathcal{S}_{1} \subseteq n\left\lceil\frac{k+1}{n}\right\rceil \mathcal{S}_{1} \subseteq\left\lceil\frac{k+1}{n}\right\rceil \mathcal{S}_{n}$. Let $c=\left\lceil\frac{k+1}{n}\right\rceil-1$. Since $\left\lceil\frac{k+1}{n}\right\rceil \leq \frac{k+1}{n}+\frac{n-1}{n}$ it follows that $k \geq n c$. If $c=1$ then, since $k>n, \rho_{\mathcal{S}_{n}}^{\prime}\left(\mathcal{S}_{k}\right) \geq 2=c+1=\left\lceil\frac{k+1}{n}\right\rceil$, so assume that $c \geq 2$. Now $\mathcal{S}_{k} \supseteq \mathcal{S}_{c n}=\mathcal{S}_{(c-1) n+n} \nsubseteq \mathcal{S}_{(c-1) n} \oplus \mathcal{S}_{n} \supseteq$ $(c-1) \mathcal{S}_{n} \oplus \mathcal{S}_{n} \supseteq c \mathcal{S}_{n}$ so that $\rho_{\mathcal{S}_{n}}^{\prime}\left(\mathcal{S}_{k}\right) \geq c+1$.

Our next result states that, in some cases, the determination of the generalized edge-chromatic number $\rho_{\mathcal{Q}}^{\prime}(\rightarrow H)$ reduces to the determination of $\rho_{\mathcal{Q}}^{\prime}(H)$.

Theorem 2.3. For any additive hereditary property \mathcal{Q} which is closed under multiplications and any graph $H, \rho_{\mathcal{Q}}^{\prime}(\rightarrow H)=\rho_{\mathcal{Q}}^{\prime}(H)$.

Proof. Since $H \in H$ we have $\rho_{\mathcal{Q}}^{\prime}(\rightarrow H) \geq \rho_{\mathcal{Q}}^{\prime}(H)$. Now suppose that $H \in m \mathcal{Q}$ and let $\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be an $m \mathcal{Q}$-decomposition of $E(H)$. If $G \in \rightarrow H$ then G is a subgraph of a multiplication of H. Let, for every $i \in\{1,2, \ldots, m\}, E_{i}^{\prime}=\left\{\left(u, l_{1}\right)\left(v, l_{2}\right): u v \in E_{i}\right\}$. Then $G\left[E_{i}^{\prime}\right]$ is a subgraph of a multiplication of $H\left[E_{i}\right]$ for every i and, since \mathcal{Q} is closed under multiplications and hereditary, $G\left[E_{i}^{\prime}\right] \in \mathcal{Q}$. Therefore $\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{m}^{\prime}\right)$ is an $m \mathcal{Q}$-decomposition of $E(G)$, hence $\rho_{\mathcal{Q}}^{\prime}(\rightarrow H) \leq \rho_{\mathcal{Q}}^{\prime}(H)$.

Theorem 2.4. For all positive integers $n \geq 2$ and k, if \mathcal{P} satisfies $\mathcal{O}_{k-1} \subseteq$ $\mathcal{P} \subseteq \mathcal{O}^{k}$, then $\rho_{\mathcal{O}^{n}}^{\prime}(\mathcal{P})=\left\lceil\log _{n} k\right\rceil$.

Proof. It is well known that $\mathcal{O}^{a b}=\mathcal{O}^{a} \oplus \mathcal{O}^{b}$ (see e.g. [3]). This implies that $\mathcal{O}^{k} \subseteq \mathcal{O}^{n^{\left\lceil\log _{n} k\right\rceil}}=\left\lceil\log _{n} k\right\rceil \mathcal{O}^{n}$ hence $\rho_{\mathcal{O}^{n}}^{\prime}\left(\mathcal{O}^{k}\right) \leq\left\lceil\log _{n} k\right\rceil$.

Since $n^{\left\lceil\log _{n} k\right\rceil-1}<n^{\log _{n} k}=k$ it follows that $K_{k} \notin \mathcal{O}^{n^{\left[\log _{n} k\right\rceil-1}}=$ $\left(\left\lceil\log _{n} k\right\rceil-1\right) \mathcal{O}^{n}$. Therefore $\mathcal{O}_{k-1} \nsubseteq\left(\left\lceil\log _{n} k\right\rceil-1\right) \mathcal{O}^{n}$ and thus $\rho_{\mathcal{O}^{n}}^{\prime}\left(\mathcal{O}_{k-1}\right) \geq$ $\left\lceil\log _{n} k\right\rceil$. Therefore, by Lemma 1.3 it follows that $\rho_{\mathcal{O}^{n}}^{\prime}(\mathcal{P})=\left\lceil\log _{n} k\right\rceil$.
For our next result we define $\rho_{\chi}(\mathcal{P})$ to be the least k such that $\mathcal{P} \subseteq \mathcal{O}^{k}$ and $\chi^{*}(\mathcal{P})$ to be the greatest k such that $\mathcal{O}^{k} \subseteq \mathcal{P}$.

Corollary 2.5. For any additive hereditary properties $\mathcal{Q}, \mathcal{P} \neq \mathcal{I}$ for which $\rho_{\chi}(\mathcal{P})$ and $\rho_{\chi}(\mathcal{Q})$ exist, $\left\lceil\log _{\rho_{\chi}(\mathcal{Q})} \chi^{*}(\mathcal{P})\right\rceil \leq \rho_{\mathcal{Q}}^{\prime}(\mathcal{P}) \leq\left\lceil\log _{\chi^{*}(\mathcal{Q})} \rho_{\chi}(\mathcal{P})\right\rceil$.

Proof. Since $\mathcal{O}^{*}(\mathcal{Q}) \subseteq \mathcal{Q}$ and $\mathcal{P} \subseteq \mathcal{O}^{\rho_{\chi}(\mathcal{P})}$ we have by Lemma 1.3, Lemma 1.4 and Theorem 2.4 that $\left\lceil\log _{\chi^{*}(\mathcal{Q})} \rho_{\chi}(\mathcal{P})\right\rceil \geq \rho_{\mathcal{Q}}^{\prime}(\mathcal{P})$. Similarly, since $\mathcal{Q} \subseteq$ $\mathcal{O}^{\rho_{\chi}(\mathcal{Q})}$ and $\mathcal{O} \chi^{*}(\mathcal{P}) \subseteq \mathcal{P}$ we have that $\rho_{\mathcal{Q}}^{\prime}(\mathcal{P}) \geq\left\lceil\log _{\rho_{\chi}(\mathcal{Q})} \chi^{*}(\mathcal{P})\right\rceil$.
Since, for any graph $H, \rho_{\chi}(\rightarrow H)=\chi(H)$ and $\chi^{*}(\rightarrow H)=\omega(H)$ we have the following corollary.

Corollary 2.6. For all graphs G and H,

$$
\left\lceil\log _{\chi(G)} \omega(H)\right\rceil \leq \rho_{\rightarrow G}^{\prime}(\rightarrow H) \leq\left\lceil\log _{\omega(G)} \chi(H)\right\rceil .
$$

3. Some Results on \mathcal{D}_{k}

The next result is stated in [2].
Theorem 3.1. For all positive integers a and b, we have $\mathcal{D}_{a+b} \subseteq \mathcal{D}_{a} \oplus \mathcal{D}_{b}$.
From this theorem it follows that, for all positive integers c and $n, \mathcal{D}_{c n} \subseteq$ $c \mathcal{D}_{n}$. We now show that this cannot be improved, even if we restrict the graphs to be bipartite.

Theorem 3.2. For all positive integers c and $n, \mathcal{D}_{c n+1} \cap \mathcal{O}^{2} \nsubseteq c \mathcal{D}_{n}$.
Proof. Let $t=(n+1) c^{c n+1}$. Clearly, $G=K_{c n+1, t} \in \mathcal{D}_{c n+1} \cap \mathcal{O}^{2}$. We show that $G \notin c \mathcal{D}_{n}$: Suppose, to the contrary, that $\left\{E_{1}, E_{2}, \ldots, E_{c}\right\}$ is a ${ }^{\mathcal{D}_{n}}$-decomposition of $E(G)$. Let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{c n+1}\right\}$ be the partite set of order $c n+1$ and V_{2} the partite set of order t. Consider the edges incident with v_{1}. At least t / c of them must be in the same colour class, hence there is a subset U_{1} of V_{2} with $\left|U_{1}\right|=t / c$ such that all edges in $G\left[U_{1} \cup V_{1}\right]$ incident with v_{1} have the same colour. Similarly, there is a subset U_{2} of U_{1} with $\left|U_{2}\right|=t / c^{2}$ such that all edges in $G\left[U_{2} \cup V_{1}\right]$ incident with v_{2} have the same colour (not necessarily the same as for v_{1}). Continuing in this way we obtain a subset U of V_{2} with $|U|=n+1$ such that, for every $v \in V_{1}$, all edges of $G\left[U \cup V_{1}\right]$ incident with v have the same colour.

Since there are c colours it follows that for some $i \in\{1,2, \ldots, c\}$ we have that $K_{n+1, n+1} \subseteq G\left[E_{i}\right]$. This is a contradiction, since $K_{n+1, n+1} \notin \mathcal{D}_{n}$. Thus $K_{c n+1, t} \notin c \mathcal{D}_{n}$.

Theorem 3.3. For all positive integers k and n, we have that

$$
\rho_{\mathcal{D}_{n}}^{\prime}\left(\mathcal{D}_{k}\right)=\left\lceil\frac{k}{n}\right\rceil .
$$

Proof. It follows from Theorem 3.1, by induction on c, that $\mathcal{D}_{c n} \subseteq c \mathcal{D}_{n}$ for all c and n. Now let k and n be positive integers and let $c=\left\lceil\frac{k}{n}\right\rceil$. Then $k \leq c n$ hence $\mathcal{D}_{k} \subseteq \mathcal{D}_{c n} \subseteq c \mathcal{D}_{n}$ and the upper bound follows.

For the lower bound, since $k \geq(c-1) n+1$ we have that $\mathcal{D}_{k} \supseteq$ $\mathcal{D}_{(c-1) n+1} \nsubseteq(c-1) \mathcal{D}_{n}$ by Theorem 3.2.
We know that if $p q>a+b$, then $\mathcal{D}_{a+b} \subseteq \mathcal{O}^{a+b+1} \subseteq \mathcal{O}^{p q}=\mathcal{O}^{p} \oplus \mathcal{O}^{q}$ and $\mathcal{D}_{a+b} \subseteq \mathcal{D}_{a} \oplus \mathcal{D}_{b}$. Our next result shows that for graphs in \mathcal{D}_{a+b} we can find simultaneous $\left(\mathcal{O}^{p}, \mathcal{O}^{q}\right)$ - and $\left(\mathcal{D}_{a}, \mathcal{D}_{b}\right)$-partitions. First a set-theoretic lemma.

Lemma 3.4. Let a, b, p and q be positive integers such that $a \geq b, 2 \leq q \leq$ $b+1$ and $p q>a+b$. If X is a set with $a+b$ elements and $\left\{U_{1}, U_{2}, \ldots, U_{p}\right\}$ and $\left\{V_{1}, V_{2}, \ldots, V_{q}\right\}$ are partitions of X then there exists a partition $\{A, B\}$ of X and i and j such that $|A|=a, A \cap U_{i}=\emptyset$ and $B \cap V_{j}=\emptyset$.

Proof. It is sufficient (and necessary) to find i and j such that $U_{i} \cap V_{j}=\emptyset$, $\left|U_{i}\right| \leq b$ and $\left|V_{j}\right| \leq a$. Let k be the number of U_{i} 's such that $\left|U_{i}\right|>b$ and m the number of V_{j} 's such that $\left|V_{j}\right|>a$. We will show that $(p-k)(q-m)>$ $c=\left|X \backslash\left(\bigcup\left\{U_{i}:\left|U_{i}\right|>b\right\} \cup \bigcup\left\{V_{j}:\left|V_{j}\right|>a\right\}\right)\right|$. It then follows that among the sets of the required size there is a disjoint pair (there are $(p-k)(q-m)$ ways to choose a pair $\left(U_{i}, V_{j}\right)$ of sets of the required size. Since the U_{i} 's are pairwise disjoint and the V_{j} 's are pairwise disjoint it would follow that $c \geq(p-k)(q-m)$ if all such pairs have nonempty intersection). Note that $m \leq 1$ since $a \geq b$ and that $c \leq \min \{a+b-k(b+1), a+b-m(a+1)\}$. Also, $k<p$, for otherwise we get $a+b=|X| \geq p(b+1) \geq p q$. We have three cases to consider.
(1) $m=0$: In this case we have $(p-k) q=p q-k q \geq a+b+1-k(b+1)>c$.
(2) $m=1$ and $k \leq \frac{a+1}{b+1}$: We want to show that $(p-k)(q-1)>b-1$ since $c \leq b-1$. If $q=b+1$ this is clearly true, hence we assume that $q \leq b$. We have

$$
\begin{aligned}
\frac{b-1}{q-1}+k q-a & \leq \frac{a+1}{b+1} q-a+\frac{b-1}{q-1} \\
& =a\left(\frac{q}{b+1}-1\right)+\frac{b-1}{q-1}+\frac{q}{b+1} \\
& \leq b\left(\frac{q}{b+1}-1\right)+\frac{b-1}{q-1}+\frac{q}{b+1} \quad \text { since } a \geq b \text { and } q \leq b \\
& =b\left(\frac{1}{q-1}-1\right)+q-\frac{1}{q-1} \\
& \leq q\left(\frac{1}{q-1}-1\right)+q-\frac{1}{q-1} \\
& =1
\end{aligned}
$$

Suppose now that $(p-k)(q-1) \leq b-1$. Then we have $p q \leq \frac{b-1}{q-1} q+k q=$ $b-1+\frac{b-1}{q-1}+k q-a+a \leq a+b$, a contradiction.
(3) $m=1$ and $k>\frac{a+1}{b+1}$: Again we may assume that $q \leq b$. We show that $(p-k)(q-1)>a+b-k(b+1) \geq c$. We have

$$
\begin{aligned}
-k(b+1)+ & \frac{a+b-k(b+1)}{q-1}+k q \\
& =\frac{a+b}{q-1}+k\left(q-(b+1)-\frac{b+1}{q-1}\right) \\
& \leq \frac{a+b}{q-1}+\frac{a+1}{b+1}\left(q-(b+1)-\frac{b+1}{q-1}\right) \quad \text { since } q \leq b \\
& =a\left(\frac{q}{b+1}-1\right)+\frac{q}{b+1}+\frac{b-q}{q-1} \\
& \leq b\left(\frac{q}{b+1}-1\right)+\frac{q}{b+1}+\frac{b-q}{q-1} \\
& =(q-b)\left(1-\frac{1}{q-1}\right) \\
& \leq 0
\end{aligned}
$$

Suppose now that $(p-k)(q-1) \leq a+b-k(b+1)$. Then we have $p q \leq$ $q \frac{a+b-k(b+1)}{q-1}+k q=a+b-k(b+1)+\frac{a+b-k(b+1)}{q-1}+k q \leq a+b$.
Theorem 3.5. Let a, b, p and q be positive integers such that $a \geq b$, $2 \leq q \leq b+1$ and $p q>a+b$. Then $\mathcal{D}_{a+b} \subseteq\left(\mathcal{D}_{a} \cap \mathcal{O}^{p}\right) \oplus\left(\mathcal{D}_{b} \cap \mathcal{O}^{q}\right)$.

Proof. Let G be a counterexample of minimum order and let v be a vertex of G of degree at most $a+b$. Then $G-v$ has a $\left(\mathcal{D}_{a} \cap \mathcal{O}^{p}, \mathcal{D}_{b} \cap \mathcal{O}^{q}\right)$ decomposition and Lemma 3.4 is exactly what we need to extend this decomposition to G for a contradiction.
These results now put us in a position to refine Theorem 3.3.
Theorem 3.6. For all positive integers k, n and $p \geq 2$ we have that:

$$
\begin{aligned}
\rho_{\mathcal{D}_{n} \cap \mathcal{O}^{p}}^{\prime}\left(\mathcal{D}_{k}\right) & =\left\lceil\log _{p}(k+1)\right\rceil, \text { if } k \leq n \\
& =\left\lceil\frac{k}{n}\right\rceil, \text { if } k>n \text { and } p^{2}>2 n, \\
& \leq\left\lceil\log _{p}(n+1)\right\rceil+\left\lceil\frac{k}{n}\right\rceil-1, \text { otherwise. }
\end{aligned}
$$

Proof. Firstly we note that from Theorem 3.5 it follows that $\mathcal{D}_{c n} \subseteq$ $\mathcal{D}_{(c-1) n} \oplus\left(\mathcal{D}_{n} \cap \mathcal{O}^{2}\right) \subseteq \mathcal{D}_{(c-1) n} \oplus\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$ for all $c \geq 2$ and therefore $\mathcal{D}_{c n} \subseteq \mathcal{D}_{2 n} \oplus(c-2)\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$.

Suppose that $k \leq n$. Then $\rho_{\mathcal{D}_{n} \cap \mathcal{O}^{p}}^{\prime}\left(\mathcal{D}_{k}\right)=\rho_{\mathcal{O}^{p}}^{\prime}\left(\mathcal{D}_{k}\right)=\left\lceil\log _{p}(k+1)\right]$ by Theorem 2.4.

Now suppose that $k>n$ and $p^{2}>2 n$. Then $\mathcal{D}_{c n} \subseteq \mathcal{D}_{2 n} \oplus(c-2)\left(\mathcal{D}_{n} \cap\right.$ $\left.\mathcal{O}^{p}\right) \subseteq c\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$, using Theorem 3.5 and the fact that $p^{2}>2 n$. Now $\mathcal{D}_{k} \subseteq \mathcal{D}_{\left\lceil\frac{k}{n}\right\rceil n} \subseteq\left\lceil\frac{k}{n}\right\rceil\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$ giving the upper bound. The lower bound follows from Theorem 3.3 and Lemma 1.4.

Suppose that $p^{2} \leq 2 n$. From $\mathcal{D}_{c n} \subseteq \mathcal{D}_{2 n} \oplus(c-2)\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$ we get that $\mathcal{D}_{c n} \subseteq \mathcal{D}_{n} \oplus(c-1)\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$. Moreover, by Theorem 2.4 we have that $\mathcal{D}_{n} \subseteq \mathcal{O}^{n+1} \subseteq\left\lceil\log _{p}(n+1)\right\rceil\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$. Therefore $\mathcal{D}_{k} \subseteq \mathcal{D}_{\left\lceil\frac{k}{n}\right\rceil n} \subseteq$ $\mathcal{D}_{n} \oplus\left(\left\lceil\frac{k}{n}\right\rceil-1\right)\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right) \subseteq\left(\left\lceil\log _{p}(n+1)\right\rceil+\left\lceil\frac{k}{n}\right\rceil-1\right)\left(\mathcal{D}_{n} \cap \mathcal{O}^{p}\right)$ giving the desired bound.

4. Results on \mathcal{W}_{k}^{*} and \mathcal{W}_{k}

It has been conjectured (see e.g. [4]) that the generalized vertex-chromatic number $\rho_{\mathcal{W}_{n}}\left(\mathcal{W}_{k}\right)$ equals $\left\lceil\frac{k+1}{n+1}\right\rceil$. We now consider the similar problems of determining $\rho_{\mathcal{W}_{n}^{*}}^{\prime}\left(\mathcal{W}_{k}^{*}\right)$ and $\rho_{\mathcal{W}_{n}}^{\prime}\left(\mathcal{W}_{k}\right)$.

We will say that two trails in a graph intersect if they have a common edge.

Theorem 4.1. For $a \geq 9$ and $b \geq 1$ we have $\mathcal{W}_{\left\lceil\frac{2 a-6}{*}\right\rceil+b}^{*} \subseteq \mathcal{W}_{a}^{*} \oplus \mathcal{W}_{b}^{*}$.
Proof. Consider any graph G in $\mathcal{W}_{\left\lceil\frac{2 a-6}{3}\right\rceil+b}^{*}$. Take E_{1} to be a maximal subset of $E(G)$ such that $G\left[E_{1}\right]$ is in \mathcal{W}_{a}^{*}. Let $E_{2}=E(G)-E_{1}$. Suppose that there is an open trail T in $G\left[E_{2}\right]$ of length $b+1$ and let e_{1} and e_{2} denote the end-edges of T. Since E_{1} is maximal in \mathcal{W}_{a}^{*} it follows that there is an open trail T_{1} of length $a+1$ in $G\left[E_{1} \cup\left\{e_{1}\right\}\right]$ and an open trail T_{2} of length $a+1$ in $G\left[E_{1} \cup\left\{e_{2}\right\}\right]$. Let T_{11} and T_{12} denote the trails on either side of e_{1} such that $T_{11} \cup\left\{e_{1}\right\} \cup T_{12}=T_{1}$. Similarly, let $T_{21} \cup\left\{e_{2}\right\} \cup T_{22}=T_{2}$. Now suppose, without loss of generality, that $x=\left|E\left(T_{11}\right)\right| \leq y=\left|E\left(T_{12}\right)\right|$, so that $x+y=a$.

It is easily seen that if $y \geq\left\lfloor\frac{2 a}{3}\right\rfloor+1$, then by taking the trail $T_{12} \cup T$ or $T_{12} \cup\left(T-e_{1}\right)$, as the case may be, we get a trail of length at least $\left\lfloor\frac{2 a}{3}\right\rfloor+1+b$ and therefore an open trail of length at least $\left\lfloor\frac{2 a}{3}\right\rfloor+1+b-$ $1 \geq \frac{2 a-2}{3}+b>\frac{2 a-4}{3}+b \geq\left\lceil\frac{2 a-6}{3}\right\rceil+b$ in G, a contradiction. Therefore
$\left\lceil\frac{a}{2}\right\rceil \leq y \leq\left\lfloor\frac{2 a}{3}\right\rfloor$. Moreover, each $T_{i j}, i, j \in\{1,2\}$ has length at least $\left\lfloor\frac{a}{3}\right\rfloor$, since $x=a-y \geq a-\left\lfloor\frac{2 a}{3}\right\rfloor \geq a-\frac{2 a}{3}=\frac{a}{3} \geq\left\lfloor\frac{a}{3}\right\rfloor$.

Note that T_{11} and T_{12} are neccessarily edge disjoint as are T_{21} and T_{22}. T_{12} must intersect T_{21} and T_{22}, otherwise we get an open trail of length at least $\left\lceil\frac{a}{2}\right\rceil+b-2+\left\lfloor\frac{a}{3}\right\rfloor \geq \frac{a}{2}+\frac{a-2}{3}+b-2=\frac{5 a-16}{6}+b>\left\lceil\frac{2 a-6}{3}\right\rceil+b$ in G; containing $T_{12}, T-e_{1}-e_{2}$ and T_{21} or T_{22}.

In the following, when we say that T_{21} intersects T_{12} first we mean that there is a trail starting from an end-vertex of e_{2}, following T_{21} and ending with an edge of T_{12}, containing no edge of T_{11}. Similarly for T_{22} intersecting T_{12} first or $T_{2 i}$ intersecting T_{11} first. Note that since T_{11} and T_{12} are disjoint and T_{12} intersects T_{21} and T_{22}, we must have that $T_{2 i}, i \in\{1,2\}$ intersects one of T_{11} and T_{12} first.

Suppose that both T_{21} and T_{22} intersect T_{12} first. Then we obtain an open trail of length at least $x+b-1+\left\lceil\frac{y}{2}\right\rceil \geq a-y+\frac{y}{2}+b-1 \geq a-\frac{1}{2} y-1+b \geq$ $a-\frac{1}{2}\left\lfloor\frac{2 a}{3}\right\rfloor-1+b \geq a-\frac{1}{2}\left(\frac{2 a}{3}\right)-1+b=\frac{2 a-3}{3}+b>\left\lceil\frac{2 a-6}{3}\right\rceil+b$ in G; containing $T_{11}, T-e_{1}$ and at least a half of T_{12}.

Now, suppose that T_{21} or T_{22} intersects T_{11} first, say T_{21}. Then we obtain an open trail of length at least $y+\left\lceil\frac{x}{2}\right\rceil+b-2=y+\left\lceil\frac{1}{2}(a-y)\right\rceil+b-2 \geq$ $y+\frac{a-y}{2}+b-2 \geq \frac{a}{2}+\frac{1}{2}\left\lceil\frac{a}{2}\right\rceil+b-2 \geq \frac{3 a}{4}+b-2>\left\lceil\frac{2 a-6}{3}\right\rceil+b$ in G; containing $T_{12}, T-e_{1}-e_{2}$ and at least a half of T_{11}.

We remark that a similar result has been proved for vertex partitions and \mathcal{W}_{k} in [5].

Theorem 4.2. For all positive integers k and $n \geq 9$, $\rho_{\mathcal{W}_{n}^{*}}^{\prime}\left(\mathcal{W}_{k}^{*}\right) \leq\left\lceil\frac{3 k}{2 n-6}\right\rceil$.
$\boldsymbol{P r o o f}$. From Theorem 4.1 it follows by induction on c that $\mathcal{W}_{c\left\lceil\frac{2 n-6}{3}\right\rceil} \subseteq$ $c \mathcal{W}_{n}^{*}$ for all positive integers c and n. Now, with $c=\left\lceil\frac{3 k}{2 n-6}\right\rceil$ we have that $\mathcal{W}_{k}^{*} \subseteq \mathcal{W}_{c\left\lceil\frac{2 n-6}{3}\right\rceil}^{*} \subseteq c \mathcal{W}_{n}^{*}$.

Theorem 4.3. For all positive integers k and $n \geq 2,\left\lfloor\frac{k-2}{n-1}\right\rfloor+1 \leq \rho_{\mathcal{W}_{n}}^{\prime}\left(\mathcal{W}_{k}\right)$ $\leq 2 k$.

Proof. We first show that $\mathcal{W}_{2 a c+2} \nsubseteq c \mathcal{W}_{2 a+1}$ for every positive integer c : Clearly, $G=K_{a c+1, t} \in \mathcal{W}_{2 a c+2}$ for every t. Let t be large and suppose that $G \in c \mathcal{W}_{2 a+1}$. Let $\left\{E_{1}, E_{2}, \ldots, E_{c}\right\}$ be a corresponding decomposition
of $E(G)$. As in the proof of Theorem 3.2 we get, if t is large enough, for some $i \in\{1,2, \ldots, c\}$ that $K_{a+1, a+2} \subseteq G\left[E_{i}\right]$, a contradiction.

Now let $a=\frac{n-1}{2}$ and $c=\left\lfloor\frac{k-2}{n-1}\right\rfloor$. Since $k \geq 2 a c+2$ we have $\mathcal{W}_{k} \supseteq$ $\mathcal{W}_{2 a c+2} \nsubseteq c \mathcal{W}_{n}$. Therefore $\rho_{\mathcal{W}_{n}}^{\prime}\left(\mathcal{W}_{k}\right) \geq c+1$.

For the upper bound we have $\mathcal{W}_{k} \subseteq \mathcal{D}_{k} \subseteq k \mathcal{D}_{1} \subseteq 2 k \mathcal{W}_{2} \subseteq 2 k \mathcal{W}_{n}$ from Theorem 3.3 and the well-known fact that every tree has a $2\left(\mathcal{W}_{2} \cap \mathcal{D}_{1}\right)$ edge decomposition.

Acknowledgement

The authors wish to thank their supervisor, Prof. I. Broere, for his criticism and assistance in the final preparation of this paper.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50.
[2] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99 (Institute of Mathematics, Technical University of Zielona Góra, 1999).
[3] I. Broere and M. J. Dorfling, The decomposability of additive hereditary properties of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291.
[4] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125.
[5] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270.
[6] J. Nešetřil and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (2) (1981) 199-202.

[^0]: ${ }^{1}$ This research forms part of the author's PhD studies at the Rand Afrikaans University.

