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1. Introduction

Following [1] we denote the class of all finite simple graphs by I.
A property of graphs is a non-empty isomorphism-closed subclass of I.

We say that a graph G has the property P if G ∈ P. A property P is called
hereditary if G ∈ P and H ⊆ G implies H ∈ P. P is called additive if
G ∪ H ∈ P whenever G ∈ P and H ∈ P. A homomorphism of a graph
G to a graph H is a mapping of the vertex set V (G) into V (H) such that
if e = {u, v} ∈ E(G), then f(e) = {f(u), f(v)} ∈ E(H). Given a graph
G and a positive integer k we define G[k] to be the graph with V (G[k]) =
V (G) × {1, 2, . . . , k} and E(G[k]) = {(u, l1)(v, l2) : uv ∈ E(G)}; G[k] is
called a multiplication of G. The clique number ω(G) of a graph G is the
maximum order of a complete subgraph of G. A trail in a graph is a sequence
u1u2, u2u3, . . . , uk−1uk of edges, with no edge repeating. If u1 6= uk then the
trail is open. Since we will only be interested in the length of a trail, we
associate a trail T with the set of edges in T .

Example 1. For a positive integer k and a given graph H we define the
following well-known properties:
O = {G ∈ I : E(G) = ∅},
Ik = {G ∈ I : G does not contain Kk+2},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Wk = {G ∈ I : each path in G has at most k edges},
W∗

k = {G ∈ I : each open trail in G has at most k edges},
Sk = {G ∈ I : the maximum degree of G is at most k},
Dk = {G ∈ I : G is k-degenerate, i.e., every subgraph of G has a vertex

of degree at most k},
→ H = {G ∈ I : there is a homomorphism from G to H},
Ok = {G ∈ I : G is k-colourable} =→ Kk.

Note that for a graph G we have that G ∈→ H iff G is a subgraph of a
multiplication of H. A property of the form → H is called a hom-property.

Every hereditary property P is determined by the set of minimal for-
bidden subgraphs F(P) = {G ∈ P : every proper subgraph of G is in P }.

If G = (V,E) is a graph and E′ ⊆ E then the subgraph of G induced by
E′ is the graph (V, E′) and is denoted by G[E′].

Let Q1,Q2, . . . ,Qn be arbitrary hereditary properties of graphs. An
edge (Q1,Q2, . . . ,Qn)-decomposition of a graph G is a decomposition
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{E1, E2, . . . , En} of E(G) such that for each i = 1, 2, . . . , n the induced sub-
graph G[Ei] has the property Qi. The propertyR = Q1⊕Q2⊕· · ·⊕Qn is de-
fined as the set of all graphs having an edge (Q1,Q2, . . . ,Qn)-decomposition.
It is easy to see that if Q1,Q2, . . . ,Qn are additive and hereditary, then
R = Q1⊕Q2⊕ · · · ⊕Qn is additive and hereditary too. If Q1 = Q2 = · · · =
Qn = Q, then we write nQ = Q1 ⊕Q2 ⊕ · · · ⊕ Qn.

The generalized edge-chromatic number ρ′Q(G) of a graph G is defined
as the least integer n such that G ∈ nQ. For a property P, ρ′Q(P) is then
the least n such that P ⊆ nQ.

As an example of the non-existence of ρ′Q(P) we have ρ′S1
(D1) since

there exist graphs in D1 of arbitrary maximum degree. Theorem 1.1 by
J. Nešetřil and V. Rödl (see [6]) implies that for some properties P, ρ′Q(P)
exists iff ρ′Q(P) = 1. Here a graph G is called 3-chromatic connected if there
is no S ⊆ V (G) such that G− S is disconnected and G[S] is bipartite.

Theorem 1.1 [6]. Let F(P) be a set of 3-chromatic connected graphs.
Then for every positive integer k and graph G ∈ P there exists a graph
H ∈ P such that for any decomposition {E1, E2, . . . , Ek} of E(H) there is
an i ∈ {1, 2, . . . , k}, for which G ⊆ H[Ei].

Corollary 1.2. If F(P) is a set of 3-chromatic connected graphs, then for
any hereditary property Q, ρ′Q(P) exists if and only if P ⊆ Q.

Proof. Suppose that P 6⊆ Q but P ∈ nQ for some n. Let G ∈ P and
G 6∈ Q. By Theorem 1.1 there is an H ∈ P such that for every decomposition
{E1, E2, . . . , En} of E(H) there is an i ∈ {1, 2, . . . , n} for which G ⊆ H[Ei].
Let {E1, E2, . . . , En} be an nQ-decomposition of E(H). Then G ⊆ H[Ei]
∈ Q for some i, a contradiction. The converse is trivial.

In particular, for every k and any hereditary propertyQ we have that ρ′Q(Ik)
exists iff Ik ⊆ Q.

Lemma 1.3. Let P1,P2 and Q be any properties. If P1 ⊆ P2, then
ρ′Q(P1) ≤ ρ′Q(P2).

Lemma 1.4. Let Q1,Q2 and P be any properties. If Q1 ⊆ Q2, then
ρ′Q2

(P) ≤ ρ′Q1
(P).

The lattice of (additive) hereditary properties is discussed in [1] — we use
the supremum and infimum of properties in our next result without further
discussion. A similar result is proved in [5].
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Theorem 1.5. Let P1 and P2 be hereditary properties and Q an additive
hereditary property such that ρ′Q(P1) and ρ′Q(P2) are finite. The following
hold:
(i) ρ′Q(P1 ∪ P2) = ρ′Q(P1 ∨ P2) = max{ρ′Q(P1), ρ′Q(P2)}.
(ii) ρ′Q(P1 ∩ P2) ≤ min{ρ′Q(P1), ρ′Q(P2)}.
(iii) max{ρ′Q(P1), ρ′Q(P2)} ≤ ρ′Q(P1 ⊕P2) ≤ ρ′Q(P1) + ρ′Q(P2).

In the rest of this paper we aim to study the generalized edge-chromatic
number ρ′Q(P) with Q and P amongst the properties listed in Example 1.

2. Some Values of ρ′Q(P)

The well-known results of Vizing and Petersen on edge-colourings of graphs
imply the following result — see [3] for details.

Theorem 2.1. Let p and q be any positive integers. Then
1. Sp ⊕ Sq ⊆ Sp+q.
2. Sp ⊆ (p + 1)S1.
3. If p and q are even then Sp+q = Sp ⊕ Sq.
4. If q is odd then Sp+q 6⊆ Sp ⊕ Sq.

Corollary 2.2. For all positive integers k and n,

ρ′Sn
(Sk) =





⌈
k

n

⌉
, n even or k ≤ n,

⌈
k + 1

n

⌉
, otherwise.

Proof. The result is clearly true if k ≤ n. If n is even then it follows from
Part 3 of Theorem 2.1 that Sk ⊆

⌈
k
n

⌉
Sn while the lower bound follows by

observing that k > n
(⌈

k
n

⌉
− 1

)
so that Sk 6⊆ Sn(d k

ne−1) =
(⌈

k
n

⌉
− 1

)
Sn.

Now let n be odd and k > n. By Theorem 2.1 we have that Sk ⊆ (k+1)
S1 ⊆ n

⌈
k+1
n

⌉
S1 ⊆

⌈
k+1
n

⌉
Sn. Let c =

⌈
k+1
n

⌉
−1. Since

⌈
k+1
n

⌉
≤ k+1

n + n−1
n it

follows that k ≥ nc. If c = 1 then, since k > n, ρ′Sn
(Sk) ≥ 2 = c+1 =

⌈
k+1
n

⌉
,

so assume that c ≥ 2. Now Sk ⊇ Scn = S(c−1)n+n 6⊆ S(c−1)n ⊕ Sn ⊇
(c− 1)Sn ⊕ Sn ⊇ cSn so that ρ′Sn

(Sk) ≥ c + 1.
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Our next result states that, in some cases, the determination of the gen-
eralized edge-chromatic number ρ′Q(→ H) reduces to the determination of
ρ′Q(H).

Theorem 2.3. For any additive hereditary property Q which is closed un-
der multiplications and any graph H, ρ′Q(→ H) = ρ′Q(H).

Proof. Since H ∈→ H we have ρ′Q(→ H) ≥ ρ′Q(H). Now suppose that
H ∈ mQ and let (E1, E2, . . . , Em) be an mQ-decomposition of E(H). If
G ∈→ H then G is a subgraph of a multiplication of H. Let, for every
i ∈ {1, 2, . . . ,m}, E′

i = {(u, l1)(v, l2) : uv ∈ Ei}. Then G[E′
i] is a subgraph

of a multiplication of H[Ei] for every i and, since Q is closed under mul-
tiplications and hereditary, G[E′

i] ∈ Q. Therefore (E′
1, E

′
2, . . . , E

′
m) is an

mQ-decomposition of E(G), hence ρ′Q(→ H) ≤ ρ′Q(H).

Theorem 2.4. For all positive integers n ≥ 2 and k, if P satisfies Ok−1 ⊆
P ⊆ Ok, then ρ′On(P) = dlogn ke.
Proof. It is well known that Oab = Oa ⊕ Ob (see e.g. [3]). This implies
that Ok ⊆ Ondlogn ke

= dlogn keOn hence ρ′On(Ok) ≤ dlogn ke.
Since ndlogn ke−1 < nlogn k = k it follows that Kk 6∈ Ondlogn ke−1

=
(dlogn ke−1)On. Therefore Ok−1 6⊆ (dlogn ke−1)On and thus ρ′On(Ok−1) ≥
dlogn ke. Therefore, by Lemma 1.3 it follows that ρ′On(P) = dlogn ke.
For our next result we define ρχ(P) to be the least k such that P ⊆ Ok and
χ∗(P) to be the greatest k such that Ok ⊆ P.

Corollary 2.5. For any additive hereditary properties Q, P 6= I for which
ρχ(P) and ρχ(Q) exist,

⌈
logρχ(Q) χ∗(P)

⌉
≤ ρ′Q(P) ≤

⌈
logχ∗(Q) ρχ(P)

⌉
.

Proof. Since Oχ∗(Q) ⊆ Q and P ⊆ Oρχ(P) we have by Lemma 1.3, Lemma
1.4 and Theorem 2.4 that

⌈
logχ∗(Q) ρχ(P)

⌉
≥ ρ′Q(P). Similarly, since Q ⊆

Oρχ(Q) and Oχ∗(P) ⊆ P we have that ρ′Q(P) ≥
⌈
logρχ(Q) χ∗(P)

⌉
.

Since, for any graph H, ρχ(→ H) = χ(H) and χ∗(→ H) = ω(H) we have
the following corollary.

Corollary 2.6. For all graphs G and H,
⌈
logχ(G) ω(H)

⌉
≤ ρ′→G(→ H) ≤

⌈
logω(G) χ(H)

⌉
.



354 M.J. Dorfling and S. Dorfling

3. Some Results on Dk

The next result is stated in [2].

Theorem 3.1. For all positive integers a and b, we have Da+b ⊆ Da⊕Db.

From this theorem it follows that, for all positive integers c and n, Dcn ⊆
cDn. We now show that this cannot be improved, even if we restrict the
graphs to be bipartite.

Theorem 3.2. For all positive integers c and n, Dcn+1 ∩ O2 6⊆ cDn.

Proof. Let t = (n + 1)ccn+1. Clearly, G = Kcn+1,t ∈ Dcn+1 ∩ O2. We
show that G 6∈ cDn: Suppose, to the contrary, that {E1, E2, . . . , Ec} is a
cDn-decomposition of E(G). Let V1 = {v1, v2, . . . , vcn+1} be the partite set
of order cn+1 and V2 the partite set of order t. Consider the edges incident
with v1. At least t/c of them must be in the same colour class, hence there
is a subset U1 of V2 with |U1| = t/c such that all edges in G[U1∪V1] incident
with v1 have the same colour. Similarly, there is a subset U2 of U1 with
|U2| = t/c2 such that all edges in G[U2 ∪ V1] incident with v2 have the same
colour (not necessarily the same as for v1). Continuing in this way we obtain
a subset U of V2 with |U | = n + 1 such that, for every v ∈ V1, all edges of
G[U ∪ V1] incident with v have the same colour.

Since there are c colours it follows that for some i ∈ {1, 2, . . . , c} we
have that Kn+1,n+1 ⊆ G[Ei]. This is a contradiction, since Kn+1,n+1 6∈ Dn.
Thus Kcn+1,t 6∈ cDn.

Theorem 3.3. For all positive integers k and n, we have that

ρ′Dn
(Dk) =

⌈
k

n

⌉
.

Proof. It follows from Theorem 3.1, by induction on c, that Dcn ⊆ cDn

for all c and n. Now let k and n be positive integers and let c =
⌈

k
n

⌉
. Then

k ≤ cn hence Dk ⊆ Dcn ⊆ cDn and the upper bound follows.
For the lower bound, since k ≥ (c − 1)n + 1 we have that Dk ⊇

D(c−1)n+1 6⊆ (c− 1)Dn by Theorem 3.2.

We know that if pq > a + b, then Da+b ⊆ Oa+b+1 ⊆ Opq = Op ⊕ Oq and
Da+b ⊆ Da⊕Db. Our next result shows that for graphs in Da+b we can find
simultaneous (Op,Oq)- and (Da,Db)-partitions. First a set-theoretic lemma.
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Lemma 3.4. Let a, b, p and q be positive integers such that a ≥ b, 2 ≤ q ≤
b + 1 and pq > a + b. If X is a set with a + b elements and {U1, U2, . . . , Up}
and {V1, V2, . . . , Vq} are partitions of X then there exists a partition {A,B}
of X and i and j such that |A| = a, A ∩ Ui = ∅ and B ∩ Vj = ∅.

Proof. It is sufficient (and necessary) to find i and j such that Ui∩Vj = ∅,
|Ui| ≤ b and |Vj | ≤ a. Let k be the number of Ui’s such that |Ui| > b and m
the number of Vj ’s such that |Vj | > a. We will show that (p− k)(q −m) >
c = |X \ (

⋃{Ui : |Ui| > b} ∪ ⋃{Vj : |Vj | > a})|. It then follows that among
the sets of the required size there is a disjoint pair (there are (p− k)(q−m)
ways to choose a pair (Ui, Vj) of sets of the required size. Since the Ui’s
are pairwise disjoint and the Vj ’s are pairwise disjoint it would follow that
c ≥ (p− k)(q −m) if all such pairs have nonempty intersection). Note that
m ≤ 1 since a ≥ b and that c ≤ min{a + b − k(b + 1), a + b − m(a + 1)}.
Also, k < p, for otherwise we get a + b = |X| ≥ p(b + 1) ≥ pq. We have
three cases to consider.

(1) m = 0: In this case we have (p−k)q = pq−kq ≥ a+b+1−k(b+1) > c.
(2) m = 1 and k ≤ a+1

b+1 : We want to show that (p − k)(q − 1) > b − 1
since c ≤ b− 1. If q = b + 1 this is clearly true, hence we assume that q ≤ b.
We have

b− 1
q − 1

+ kq − a ≤ a + 1
b + 1

q − a +
b− 1
q − 1

= a
( q

b + 1
− 1

)
+

b− 1
q − 1

+
q

b + 1

≤ b
( q

b + 1
− 1

)
+

b− 1
q − 1

+
q

b + 1
since a ≥ b and q ≤ b

= b
( 1
q − 1

− 1
)

+ q − 1
q − 1

≤ q
( 1
q − 1

− 1
)

+ q − 1
q − 1

= 1

Suppose now that (p− k)(q − 1) ≤ b− 1. Then we have pq ≤ b−1
q−1q + kq =

b− 1 + b−1
q−1 + kq − a + a ≤ a + b, a contradiction.

(3) m = 1 and k > a+1
b+1 : Again we may assume that q ≤ b. We show

that (p− k)(q − 1) > a + b− k(b + 1) ≥ c. We have
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−k(b + 1) +
a + b− k(b + 1)

q − 1
+ kq

=
a + b

q − 1
+ k

(
q − (b + 1)− b + 1

q − 1

)

≤ a + b

q − 1
+

a + 1
b + 1

(
q − (b + 1)− b + 1

q − 1

)
since q ≤ b

= a
( q

b + 1
− 1

)
+

q

b + 1
+

b− q

q − 1

≤ b
( q

b + 1
− 1

)
+

q

b + 1
+

b− q

q − 1

= (q − b)
(
1− 1

q − 1

)

≤ 0

Suppose now that (p − k)(q − 1) ≤ a + b − k(b + 1). Then we have pq ≤
q a+b−k(b+1)

q−1 + kq = a + b− k(b + 1) + a+b−k(b+1)
q−1 + kq ≤ a + b.

Theorem 3.5. Let a, b, p and q be positive integers such that a ≥ b,
2 ≤ q ≤ b + 1 and pq > a + b. Then Da+b ⊆ (Da ∩ Op)⊕ (Db ∩ Oq).

Proof. Let G be a counterexample of minimum order and let v be a vertex
of G of degree at most a + b. Then G − v has a (Da ∩ Op,Db ∩ Oq)-
decomposition and Lemma 3.4 is exactly what we need to extend this de-
composition to G for a contradiction.

These results now put us in a position to refine Theorem 3.3.

Theorem 3.6. For all positive integers k, n and p ≥ 2 we have that:

ρ′Dn∩Op(Dk) =
⌈
logp(k + 1)

⌉
, if k ≤ n,

=
⌈

k

n

⌉
, if k > n and p2 > 2n,

≤
⌈
logp(n + 1)

⌉
+

⌈
k

n

⌉
− 1, otherwise.

Proof. Firstly we note that from Theorem 3.5 it follows that Dcn ⊆
D(c−1)n ⊕ (Dn ∩ O2) ⊆ D(c−1)n ⊕ (Dn ∩ Op) for all c ≥ 2 and therefore
Dcn ⊆ D2n ⊕ (c− 2)(Dn ∩ Op).
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Suppose that k ≤ n. Then ρ′Dn∩Op(Dk) = ρ′Op(Dk) =
⌈
logp(k + 1)

⌉
by

Theorem 2.4.
Now suppose that k > n and p2 > 2n. Then Dcn ⊆ D2n ⊕ (c− 2)(Dn ∩

Op) ⊆ c(Dn ∩ Op), using Theorem 3.5 and the fact that p2 > 2n. Now
Dk ⊆ Dd k

nen ⊆
⌈

k
n

⌉
(Dn ∩ Op) giving the upper bound. The lower bound

follows from Theorem 3.3 and Lemma 1.4.
Suppose that p2 ≤ 2n. From Dcn ⊆ D2n ⊕ (c − 2)(Dn ∩ Op) we get

that Dcn ⊆ Dn ⊕ (c − 1)(Dn ∩ Op). Moreover, by Theorem 2.4 we have
that Dn ⊆ On+1 ⊆

⌈
logp(n + 1)

⌉
(Dn ∩ Op). Therefore Dk ⊆ Dd k

nen ⊆
Dn ⊕

(⌈
k
n

⌉
− 1

)
(Dn ∩ Op) ⊆

(⌈
logp(n + 1)

⌉
+

⌈
k
n

⌉
− 1

)
(Dn ∩ Op) giving

the desired bound.

4. Results on W∗
k and Wk

It has been conjectured (see e.g. [4]) that the generalized vertex-chromatic
number ρWn(Wk) equals

⌈
k+1
n+1

⌉
. We now consider the similar problems of

determining ρ′W∗
n
(W∗

k) and ρ′Wn
(Wk).

We will say that two trails in a graph intersect if they have a common
edge.

Theorem 4.1. For a ≥ 9 and b ≥ 1 we have W∗
d 2a−6

3 e+b
⊆ W∗

a ⊕W∗
b .

Proof. Consider any graph G in W∗
d 2a−6

3 e+b
. Take E1 to be a maximal

subset of E(G) such that G[E1] is in W∗
a . Let E2 = E(G) − E1. Suppose

that there is an open trail T in G[E2] of length b+1 and let e1 and e2 denote
the end-edges of T . Since E1 is maximal in W∗

a it follows that there is an
open trail T1 of length a + 1 in G[E1 ∪ {e1}] and an open trail T2 of length
a + 1 in G[E1 ∪ {e2}]. Let T11 and T12 denote the trails on either side of e1

such that T11 ∪ {e1} ∪ T12 = T1. Similarly, let T21 ∪ {e2} ∪ T22 = T2. Now
suppose, without loss of generality, that x = |E(T11)| ≤ y = |E(T12)|, so
that x + y = a.

It is easily seen that if y ≥
⌊

2a
3

⌋
+ 1, then by taking the trail T12 ∪ T

or T12 ∪ (T − e1), as the case may be, we get a trail of length at least⌊
2a
3

⌋
+ 1 + b and therefore an open trail of length at least

⌊
2a
3

⌋
+ 1 + b −

1 ≥ 2a−2
3 + b > 2a−4

3 + b ≥
⌈

2a−6
3

⌉
+ b in G, a contradiction. Therefore
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⌈
a
2

⌉ ≤ y ≤
⌊

2a
3

⌋
. Moreover, each Tij , i, j ∈ {1, 2} has length at least

⌊
a
3

⌋
,

since x = a− y ≥ a−
⌊

2a
3

⌋
≥ a− 2a

3 = a
3 ≥

⌊
a
3

⌋
.

Note that T11 and T12 are neccessarily edge disjoint as are T21 and T22.
T12 must intersect T21 and T22, otherwise we get an open trail of length at
least

⌈
a
2

⌉
+ b − 2 +

⌊
a
3

⌋ ≥ a
2 + a−2

3 + b − 2 = 5a−16
6 + b >

⌈
2a−6

3

⌉
+ b in G;

containing T12, T − e1 − e2 and T21 or T22.
In the following, when we say that T21 intersects T12 first we mean that

there is a trail starting from an end-vertex of e2, following T21 and ending
with an edge of T12, containing no edge of T11. Similarly for T22 intersecting
T12 first or T2i intersecting T11 first. Note that since T11 and T12 are disjoint
and T12 intersects T21 and T22, we must have that T2i, i ∈ {1, 2} intersects
one of T11 and T12 first.

Suppose that both T21 and T22 intersect T12 first. Then we obtain an
open trail of length at least x+b−1+

⌈y
2

⌉ ≥ a−y+ y
2 +b−1 ≥ a− 1

2y−1+b ≥
a− 1

2

⌊
2a
3

⌋
−1+b ≥ a− 1

2(2a
3 )−1+b = 2a−3

3 +b >
⌈

2a−6
3

⌉
+b in G; containing

T11, T − e1 and at least a half of T12.
Now, suppose that T21 or T22 intersects T11 first, say T21. Then we

obtain an open trail of length at least y+
⌈

x
2

⌉
+b−2 = y+

⌈
1
2(a− y)

⌉
+b−2 ≥

y+ a−y
2 +b−2 ≥ a

2 + 1
2

⌈
a
2

⌉
+b−2 ≥ 3a

4 +b−2 >
⌈

2a−6
3

⌉
+b in G; containing

T12, T − e1 − e2 and at least a half of T11.

We remark that a similar result has been proved for vertex partitions and
Wk in [5].

Theorem 4.2. For all positive integers k and n ≥ 9, ρ′W∗
n
(W∗

k) ≤
⌈

3k
2n−6

⌉
.

Proof. From Theorem 4.1 it follows by induction on c that W∗
cd 2n−6

3 e ⊆
cW∗

n for all positive integers c and n. Now, with c =
⌈

3k
2n−6

⌉
we have that

W∗
k ⊆ W∗

cd 2n−6
3 e ⊆ cW∗

n.

Theorem 4.3. For all positive integers k and n ≥ 2,
⌊

k−2
n−1

⌋
+1 ≤ ρ′Wn

(Wk)
≤ 2k.

Proof. We first show that W2ac+2 6⊆ cW2a+1 for every positive integer c:
Clearly, G = Kac+1,t ∈ W2ac+2 for every t. Let t be large and suppose
that G ∈ cW2a+1. Let {E1, E2, . . . , Ec} be a corresponding decomposition
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of E(G). As in the proof of Theorem 3.2 we get, if t is large enough, for
some i ∈ {1, 2, . . . , c} that Ka+1,a+2 ⊆ G[Ei], a contradiction.

Now let a = n−1
2 and c =

⌊
k−2
n−1

⌋
. Since k ≥ 2ac + 2 we have Wk ⊇

W2ac+2 6⊆ cWn. Therefore ρ′Wn
(Wk) ≥ c + 1.

For the upper bound we have Wk ⊆ Dk ⊆ kD1 ⊆ 2kW2 ⊆ 2kWn from
Theorem 3.3 and the well-known fact that every tree has a 2(W2 ∩D1) edge
decomposition.
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