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Abstract

Let G be a graph with ∆(G) > 1. It can be shown that the dom-
ination number of the graph obtained from G by subdividing every
edge exactly once is more than that of G. So, let ξ(G) be the least
number of edges such that subdividing each of these edges exactly once
results in a graph whose domination number is more than that of G.
The parameter ξ(G) is called the subdivision number of G. This no-
tion has been introduced by S. Arumugam and S. Velammal. They
have conjectured that for any graph G with ∆(G) > 1, ξ(G) ≤ 3. We
show that the conjecture is false and construct for any positive integer
n ≥ 3, a graph G of order n with ξ(G) > 1

3 log2 n. The main results
of this paper are the following: (i) For any connected graph G with
at least three vertices, ξ(G) ≤ γ(G) + 1 where γ(G) is the domination
number of G. (ii) If G is a connected graph of sufficiently large order
n, then ξ(G) ≤ 4

√
n ln n + 5.
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1. Introduction

All graphs considered in this paper are finite and have neither loops nor
multiple edges. For definitions not given here and notations not explained,
we refer to [2]. For a graph G, unless otherwise specified, V (G) and E(G)
denote respectively the vertex-set and the edge-set of G.

Let G = (V, E) be a graph. For any a ∈ V , its neighbourhood—the set
of all vertices which are joined to a—is denoted by N(a). (Sometimes it is
denoted by NG(a) to avoid ambiguity when more graphs are under consi-
deration.) The closed neighbourhood of a—the set N(a) ∪ {a}—is denoted
by N [a]. Its degree—the number of vertices in N(a)—is denoted by deg a.
Occasionally we use I(a) or IG(a) to denote the set of all edges incident
with a. By δ(G) and ∆(G), we mean minx∈V deg x and maxx∈V deg x re-
spectively. For any A ⊆ V , N(A) = ∪x∈A N(x). The induced subgraph
defined on A is denoted by G[A].

A dominating set of a graph G with vertex-set V , is a subset D of V
such that each vertex of V − D has a neighbour in D. The domination
number of G is the least number that can be the cardinality of a dominating
set. The domination number of a graph G is denoted by γ(G) or simply γ
when there is no ambiguity regarding the graph whose domination number
is referred to by γ. (This convention will be adopted for other parameters
also.)

Remark 1.1. Let G be a connected graph with at least two vertices. Since
any spanning tree is bipartite, V (G) has a bipartition {X,Y } such that every
vertex of X has a neighbour in Y and vice versa. Therefore both X and Y are
dominating sets of G and it follows that γ(G) ≤ min{|X| , |Y |} ≤ 1

2 |V (G)|.

Definition 1.2. Let G be a graph and uv be an edge of G. By subdividing
the edge uv we mean forming a graph H from G by adding a new vertex w
and replacing the edge uv by uw and wv. (Formally, V (H) = V (G) ∪ {w}
and E(H) = (E(G) − {uv}) ∪ {uw, wv}.) The graph obtained from G by
subdividing each edge exactly once is denoted by S(G).

Remark 1.3. If G is a graph and H is any graph obtained from G by
subdividing some edges of G, then γ(H) ≥ γ(G). (From a minimum domi-
nating set D of H, by replacing each vertex x of D − V (G) by a vertex of
V (G) which is adjacent to x, we get a dominating set D′ of G such that
|D′| ≤ |D|.)
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In [6] it has been observed that for a connected graph G with at least 3
vertices, γ(S(G)) > γ(G). (A lengthy argument has been given to prove this.
A simpler proof is the following: Let V and E be respectively the vertex-set
and the edge-set of G and n be the number of vertices. Let D be a minimum
dominating set of S(G). Let D1 = V ∩D and D2 = D−D1. In S(G), since
each vertex of D1 dominates exactly one vertex of V and each vertex of D2

dominates exactly two vertices of V , it follows that |D1| + 2 |D2| ≥ n. If
D1 6= ∅, then 2γ(S(G)) = 2 |D1| + 2 |D2| ≥ n + 1; otherwise, D = V ′ − V
where V ′ is the vertex-set of S(G) and γ(S(G)) = |V ′ − V | = |E| ≥ n − 1.
In either case, γ(S(G)) > n

2 and by Remark 1.1, it follows that γ(S(G)) >
γ(G).)

By the above observation, obviously for any graph G with ∆ > 1,
γ(G) < γ(S(G)). This has prompted S. Arumugam to ask the following
question: For a graph G with ∆ > 1, what is the minimum number of
edges to be subdivided exactly once so that the domination number of the
resulting graph exceeds that of G?

Definition 1.4. Let G be a graph with ∆ > 1. The least number that
can be the cardinality of a set of edges such that subdividing each of them
exactly once results in a graph with domination number more than that of
G, is called the subdivision number of G and is denoted by ξ(G).

In [6], S. Velammal has computed the above parameter for a number of
graphs. An interesting result of [6] in this regard is the following.

Proposition 1.5. For any tree T of order ≥ 3, ξ ≤ 3.

Finding that ξ ≤ 3 holds for each of the graphs considered in this regard in
[6], S. Arumugam and S. Velammal have conjectured that for any connected
graph G with at least 3 vertices, ξ(G) ≤ 3.

In [3], an upper bound for the subdivision number of a graph in terms
of the minimum degrees of adjacent vertices has been found.

In this paper we show that the above conjecture is false by exhibiting a
graph with ξ > 3. Using the method for constructing this graph we prove
the following result.

Proposition 1.6. For any integer n ≥ 3, there exists a graph of order n
such that ξ > 1

3 log2 n.

The main results of this paper are the following theorems.
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Theorem 1.7. For a connected graph with at least 3 vertices, ξ ≤ γ + 1.

In [4], a different proof of the above result is given.

Theorem 1.8. For a connected graph of large order n, ξ ≤ 4
√

n lnn + 5.

We also give a proof of Proposition 1.5, since the argument given in [6] to
prove this result is incorrect.

2. Results

First let us prove Proposition 1.5.
If T is a path, then it is easy to verify that the conclusion holds. So,

assume that ∆(T ) ≥ 3. If P = (v0, v1, . . . , vn) is a path in T such that
deg v0 > 2, deg vi = 2 for 0 < i < n and deg vn = 1, then P is said to be
a hanging path and v0 is called the support of P . If any hanging path is of
length more than 2, then subdividing three of its edges shows that ξ(T ) ≤ 3.
So we assume the following.

(∗∗) Length of any hanging path is at most 2.

Clearly removal of all the hanging paths but retaining their supports yields
a tree T ′. Let u be a pendant vertex of T ′. Then u supports at least two
hanging paths. Now by (∗∗) we have two cases.

Case a. u is incident with a pendant edge of T .
Subdivide this pendant edge. If u is incident with one more pendant edge
of T , then we find that ξ(T ) = 1; otherwise subdividing the two edges of
any other hanging path supported by u shows that ξ(T ) ≤ 3.

Case b. Every hanging path supported by u is of length 2.
Now subdivide the two edges of one hanging path supported by u. If V (T ′) =
{u}, then we find that ξ(T ) = 2. Otherwise, subdividing the edge of T ′ which
is incident with u shows that ξ(T ) ≤ 3.

This completes the proof.

Remark 2.1. Let T be as above and H be any graph. If a graph G is
formed by joining a pendant vertex a of T with a vertex b of H (formally
V (G) = V (T ) ∪ V (H), V (T ) ∩ V (H) = ∅ and E(G) = E(T ) ∪ E(H) ∪
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{ab}), then ξ(G) ≤ 3. The above proof works with slight modification just
before choosing u: We can assume that |V (T ′)| > 1 for otherwise T is
simply a graph obtained from a star by subdividing some of its edges and
the conclusion can be easily verified; now let u be a pendant vertex of T ′

such that a does not lie on any hanging path supported by u. (Note that
hanging paths supported by different vertices are vertex-joint.) With this
modification, in Case b the possibility that V (T ′) = {u} does not arise.

Disproving the Conjecture. Now let us construct a graph with ξ > 3.
Let X = {1, 2, . . . , 10}. Let S = {A ⊂ X : |A| = 4}. S has

(
10
4

)
elements.

Let G be the bipartite graph with bipartition {X, S} and adjacency defined
as follows: For any x ∈ X and A ∈ S, x is adjacent to A ⇐⇒ x ∈ A.

Let D be any dominating set of G. If |D ∩X| ≤ 4, then |D| ≥ |D ∩ S| ≥(
6
4

)
. If |D ∩X| = 5, then |D ∩ S| ≥ 5 implying |D| ≥ 10. If |D ∩X| = 6,

then D ∩ S 6= ∅ implying |D| ≥ 7. Therefore it can be easily seen that

(1) γ(G) = 7.

Let αiAi, 1 ≤ i ≤ 3 be three edges of G. Let H be the graph obtained
from G by subdividing these three edges. For i = 1, 2, 3, choose an element
βi ∈ Ai − {α1, α2, α3}. Let D1 be a subset of X such that {α1, α2, α3,
β1, β2, β3} ⊆ D1 and |D1| = 6. Let D = D1 ∪ {X −D1}. It can be verified
that D is a dominating set of H. Now by (1) and Remark 1.3, it follows
that

(2) γ(H) = 7.

Now (1) and (2) ⇒ γ(H) = γ(G). Therefore ξ(G) > 3.

Remark 2.2. In the above example taking X = {1, 2, . . . , 9} also works but
needs a little more computations.

Proof of Proposition 1.6. Let n be any positive integer. The propo-
sition trivially holds when n ≤ 7 since 1

3 log2 n < 1. When n = 8 or 9, we
can construct a graph of order n with ξ = 2 and the conclusion holds. So,
let us assume that n ≥ 10.

Let k be the positive integer such that

3k − 2 +
(

3k − 2
k

)
≤ n < 3k + 1 +

(
3k + 1
k + 1

)
.

Note that k ≥ 2. Now let
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X = {1, 2, . . . , 3k − 2} and

S = {A ⊂ X : |A| = k} ∪
{

X ∪ {−i} : 1 ≤ i ≤ n− (3k − 2)− (
3k−2

k

)}
.

Let G be as defined in the above example. Then by construction, order of
G is n. Let us show that γ(G) = 2k − 1. Let D be a dominating set of G
and ` = |D ∩X|. We can assume that ` ≤ 2k − 2. Then

|D| ≥ ` +
(
3k−2−`

k

) ≥ ` + 2k − 2− ` + 1

(by using the fact that
(
k+m

k

) ≥ m + 1 when m ≥ 0.)
= 2k − 1.

Therefore γ(G) ≥ 2k−1; since a dominating set D of cardinality 2k−1 can be
easily constructed such that |D ∩X| = 2k−2, it follows that γ(G) = 2k−1.

Let {αiAi : 1 ≤ i ≤ k−1} be a set of k−1 edges and let H be the graph
obtained from G by subdividing these k−1 edges. For any i ≤ k−1, choose
a positive integer βi ∈ Ai − {αj : 1 ≤ j ≤ k − 1}. Let D be a subset of X
such that {αi : 1 ≤ i ≤ k − 1} ∪ {βi : 1 ≤ i ≤ k − 1} ⊆ D and |D| = 2k − 2.
It can be verified that D ∪ {X −D} is a dominating set of H. Therefore by
Remark 1.3, γ(H) = 2k− 1. Thus we have γ(H) = γ(G) and it follows that
ξ(G) ≥ k.

Since n < 3k + 1 +
(
3k+1
k+1

)
= 1 + 3k +

(
3k
k

)
+

(
3k

k+1

)
< 23k, we have

3k > log2 n implying that ξ > 1
3 log2 n. This completes the proof.

A set M of edges in a graph G is called a matching of G (sometimes an
independent set of edges in G) if no two edges of M have a common end-
vertex. The cardinality of a largest matching of G is denoted by µ(G).
The following result is quite well known. (cf. [5, p. 58]; for the sake of
completeness, we give a proof of this result.)

Lemma 2.3. If G is a graph without isolated vertices, then γ ≤ µ.

Proof. Let M be a maximum matching. Let S be the set of vertices which
are not end-vertices of the edges in M . If a is any vertex in S, then a is not
joined to any other vertex in S since M is a maximum matching; therefore
a is joined to an end-vertex, say x, of an edge in M , since G does not have
isolated vertices. Let y be the other end of this edge. If b is any other vertex
in S, then b is not joined to y for otherwise (M − {xy}) ∪ {ax, by} would
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be a matching of size |M | + 1. Hence it is possible to choose a dominating
set D of cardinality µ having exactly one end of each edge in M . Therefore
γ ≤ µ.

Remark 2.4. Let G be a graph with vertex set V ; suppose A is a subset of
V such that G[V −A] has no isolated vertex and µ(G[A]) > γ(G[A]). Then
because of

µ(G) ≥ µ(G[A]) + µ(G[V −A]),

γ(G) ≤ γ(G[A]) + γ(G[V −A]) and

µ(G[V −A]) ≥ γ(G[V −A]) (by Lemma 2.3)

we have µ(G) > γ(G).

Lemma 2.5. Suppose G is a graph with vertex-set V which can be parti-
tioned as {A1, B1, A2, B2} such that the following hold:

• For i = 1, 2, every vertex of Ai is adjacent to every vertex of Bi.
• |A1| , |A2| ≥ 2, |B1| ≥ 3 and |B2| ≥ 1.
• A vertex of B1 is adjacent to a vertex of A2.

Then µ(G) > γ(G).

Proof. If |A2| = 2 or |B2| = 1 then γ(G) ≤ 3 and µ(G) ≥ 4. So suppose
|A2| ≥ 3 and |B2| ≥ 2. Then µ(G) ≥ 5 and γ(G) ≤ 4. Thus it follows that
µ(G) > γ(G).

Definition 2.6. Let G be a graph with vertex-set V ; a subset X of V is said
to be modular in G, if all the vertices in X have same neighbourhood and
G[V − (X ∪N(X))] has no isolated vertices. If in addition X dominates G,
then G is called a module; G is a proper module if |X| ≥ 2 and |N(X)| ≥ 3.

Note that any modular set X of a graph is independent; i.e., no two vertices
of X are adjacent. If G = (V,E) is a module with E 6= ∅, then γ(G) ≤ 2.
(G can be imagined as a graph obtained from the complete bipartite graph
with bipartition {X,V −X} by adding edges having end-vertices in V −X
only.)

Lemma 2.7. For a graph G without isolated vertices, one of the following
holds.
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(i) µ(G) > γ(G).
(ii) Each connected component is a proper module.
(iii) There exists a modular subset A of V (G) such that either |A| = 1 or

|N(A)| ≤ 2.

Proof. By induction; assume that for any graph of order less than that of
G, the theorem holds. Let α be any vertex of G such that deg α = δ(G).
Let A = {x ∈ V (G) : N(x) = N(α)}. Let H = G[V (G) − (A ∪ N(A))]. If
V (H) = ∅ then G is a module and therefore either (ii) or (iii) holds.
When V (H) 6= ∅, by the construction of A, H has no isolated vertex. We
can assume the following for otherwise (iii) holds.

(∗∗) |A| ≥ 2 and |N(A)| ≥ 3.

Applying the induction hypothesis for H we have the following cases.

Case 1. µ(H) > γ(H).
Since G[A ∪N(A)] has no isolated vertex, by Remark 2.4, (i) holds.

Case 2. Each component of H is a proper module.
If there is one component J such that N(V (J))∩N(A) 6= ∅, then by Lemma
2.5 and (∗∗), µ(G[A∪N(A)∪V (J)]) > γ(G[A∪N(A)∪V (J)]) and (i) holds by
Remark 2.4; otherwise the components of G are those of H and G[A∪N(A)]
and therefore (ii) holds.

Case 3. A subset B of V (H) is modular in H such that either |B| = 1
or |NH(B)| ≤ 2.
Let X = A ∪N(A) ∪ B ∪NH(B). Note that G[V (G) −X] has no isolated
vertex. First suppose |B| ≥ 2. If there is any edge from N(A) to B then
by (∗∗) and Lemma 2.5, µ(G[X]) > γ(G[X]) and by Remark 2.4, (i) holds;
otherwise N(B) = NH(B) and (iii) holds with B in place of A.

Now suppose B has only one vertex, say α. If α is not joined to every
vertex of N(A), then (iii) holds with B in place of A. So assume that α
is joined to every vertex of N(A). Then γ(G[X]) ≤ 2 and µ(G[X]) ≥ 3;
therefore again we have µ(G[X]) > γ(G[X]) and (i) holds. This completes
the proof.

Proof of Theorem 1.7. For a graph G, by using induction on its order,
let us show the following:
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(∗∗) If G is connected and has at least three vertices then there exists a set
F of edges of order γ or γ + 1 such that F contains a matching of order γ
and subdividing the edges of F results in a graph whose domination number
is more than that of G.

When |V (G)| = 3, (∗∗) is obvious. So, let |V (G)| > 3 and assume that
for any graph H with |V (H)| < |V (G)|, (∗∗) holds with H in place in G.
By Lemma 2.7, we have three cases.

Case 1. G has a matching M of order γ + 1.
Then (∗∗) holds with M in place of F .

Case 2. G is a module.
Then there exists a modular subset A of V (G) such that V (G) = A∪N(A).
If γ(G) = 1, it is easy to see that (∗∗) holds. So let γ(G) = 2. Let a, b be
two distinct vertices in A.

Suppose N(A) has two adjacent vertices x, y. Since γ(G) = 2, there
must be one more vertex z ∈ N(A). If |N(A)| ≥ 4, then µ(G) ≥ 3. So, let
N(A) = {x, y, z}. Then neither x nor y is joined to z. If |A| ≥ 3, then also
we have µ(G) ≥ 3. So, let A = {a, b}. Now subdividing the edges of the
matching {az, xy} shows that ξ(G) = 2 and (∗∗) holds.

If N(A) is a set of independent vertices, then subdividing the edges
ax, ay, bx where x, y are any two arbitrary vertices in N(A) shows that (∗∗)
holds.

Case 3. (iii) of Lemma 2.7 holds.
Let H1 = G[A ∪ N(A)] and H2 = G[V (G) − (A ∪ N(A))]. We can assume
that γ(H1)+γ(H2) = γ(G) for otherwise µ(G) ≥ µ(H1)+µ(H2) ≥ γ(H1)+
γ(H2) > γ(G) and (∗∗) holds.

Subcase a. |A| = 1.
Let A = {a} and x be any vertex in N(A).

If H2 has a component K of order ≥ 3, then by induction hypothesis,
there exists a set F ′ ⊆ E(K) such that (∗∗) holds with K and F ′ in places
of G and F respectively. Since H2[V (H2) − V (K)] has no isolated vertex,
it has a matching of size γ(H2)− γ(K). Now taking F = {ax} ∪ F ′ ∪M it
can be verified that (∗∗) holds.

So assume that H2 is a union of copies of K2. If deg a > 1, then
(∗∗) holds with F = {ax} ∪ E(H2). So suppose N(a) = {x}. For any
e ∈ E(H2), we can assume that both of its end-vertices are not joined to x,



344 A. Bhattacharya and G.R. Vijayakumar

for otherwise we would have γ(G) < µ(G). Therefore by connectivity of G,
x is joined to exactly one vertex of each edge in E(H2) and (∗∗) holds with
F = {ax}∪{xy}∪E(H2) where y is a vertex in V (H2) which is joined to x.

Subcase b. |A| ≥ 2.
Then |N(A)| ≤ 2. Let M be any matching in H2 of size γ(H2). Let a, b
be two distinct vertices in A. If |N(A)| = 1, then a, b are pendant with
the same support, say x; subdividing the edge ax shows that ξ(G) = 1 and
obviously (∗∗) holds with F = {ax} ∪M .

So suppose N(A) contains one more vertex, say y. If γ(H1) = 1, then
F = {ax, by} ∪ M is a matching of size γ(G) + 1 and (∗∗) holds; so let
γ(H1) = 2. Subdividing the edges ax, ay, bx shows that ξ(G) ≤ 3 and (∗∗)
holds with F = {ax, ay, bx} ∪M .

Now we prove the second main result of this paper. The main tool used
in the proof is Alon’s result (cf. [1, Page 4]) on domination number of a
graph: Any graph G has a dominating set of size ≤ n1+ln(δ+1)

δ+1 where n is
the number of vertices.

Proof of Theorem 1.8. First we settle a few simple cases. (Through-
out this proof, we consider a number of cases. Whenever a case is under
consideration, it is assumed that the previous cases do not hold.)

Case 1. G has two pendant vertices with same support.

By subdividing one of them, we find ξ = 1.

Case 2. There is an edge e ∈ E(G) such that G− e has two connected
components G1 and G2 with the property that G1 is a tree with at least 3
vertices.

Then by Remark 2.1, ξ ≤ 3.

Case 3. There is a path (u, v, w, x) such that deg(u) = deg(x) = 1.

Subdividing the three edges of this path shows that ξ ≤ 3.
So let us assume that none of the above cases holds. Removing all the

hanging paths but retaining their supports results in a connected graph G′

such that the following hold:
Every pendant vertex in G is connected to a vertex in G′ by a path

of length at most 2. Any such path of length 1 cannot have a vertex in
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common with any other path. Any such path of length 2 cannot have an
edge in common with any other path.

Let m = d√n ln ne. For any pendant vertex u of G let u∗ denote its
support.
Let S1 = {v ∈ V (G′) | deg(v) ≤ m},

S2 = {v ∈ V (G′) | deg(v) > m},
V1 = {v ∈ V (G) | deg(v) = 1 and v∗ ∈ V (G′)},
V2 = {v ∈ V (G) | deg(v) = 1, deg(v∗) = 2, and N(v∗) ∩ V (G′) 6= ∅}

and S = {v ∈ S1 | N(v) ∩ V1 6= ∅}.
Let ` be the number of vertices in V2 which are joined to vertices in S2

by paths of length 2. If there is a vertex v ∈ V2 which is joined by a path of
length 2 to a vertex u ∈ S1; i.e., then by subdividing the edges of this path
and all the edges of E(G′) which are incident with u, we find that ξ ≤ m+2.

Let k be the number of vertices in V1 with supports in S2. Now let us
settle three more cases.

Case 4. There exist u, v ∈ S1 which are adjacent.

In this case by subdividing all the edges in I(u)∪ I(v) we find that ξ ≤ 2m.

Case 5. There exist u ∈ S1 and v ∈ S1 − S such that N(u) ∩N(v) 6= ∅.
Fix a vertex a ∈ N(u) ∩ N(v). Then subdivide all edges in IG(u) ∪ IG(v).
Also for each vertex x ∈ (N(u)∪N(v))−{a} we subdivide an edge xy ∈ G′

where y /∈ {u, v, a}. If there is any edge ab with b ∈ V1, it is also subdivided.
If there are paths (a, b, c) with c ∈ V2 then both the edges of one such path
are also subdivided. Hence in this case the subdivision number is at most
4m + 1.

Case 6. There exist u, v ∈ S1−S and v1v2 ∈ E(G′) with v1 ∈ N(u) and
v2 ∈ N(v).

We subdivide v1v2 and the edges in IG′(u) ∪ IG′(v). Also for each vertex
x ∈ N(u) ∪ N(v) we subdivide an edge xy ∈ E(G′) with y /∈ {u, v, v1, v2}.
If there is any edge a1a2 ∈ E(G′) with a1 ∈ V1 and a2 ∈ {v1, v2} then
subdivide it. If there are paths (a1, a2, v1) with a1 ∈ V2, then subdivide
both the edges of one such path; this is repeated with v2 in place of v1.
Hence the subdivision number is at most 4m + 5.
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If none of the cases considered so far holds, then by using Alon’s result
mentioned above we have

(∗) ` + k + |S1| ≤ γ(G) ≤ ` + k + ρ + |S1|

where ρ = |S2| ln(m+1)+1
m+1 .

Case 7. k >
√

n
ln n .

Then there exist two pendant vertices u, v with supports in S2 such that
N(N(u)) ∩N(N(v)) 6= ∅. Let x and y be supports of u and v respectively.
Let p be a vertex in N(x) ∩N(y). Now we subdivide the edges ux, xp, py
and yv. We also subdivide m edges in I(x). If any such edge is incident
with a vertex a ∈ N(S1 − S) then we also subdivide the edge ab where
b is in S1 − S. Now the domination number of the resulting graph is at
least |S1| + k + ` + m which is more than that of G (if n ≥ 8). Hence the
subdivision number is at most 2m + 4.

Case 8. |S1 − S| ≤ m
4 .

We take a matching M of size min
(

m
2 , |V (G′)− (S1 − S)|) in G′[V (G′) −

(S1 − S)] and subdivide all the edges in the matching and all edges uu∗

where u∗ is an end-vertex of an edge in this matching. For the result-
ing graph H, the size of the dominating set is at least γ(H) ≥ ` + |S| +
min

(
m
2 , |V (G′)− (S1 − S)|). If |M | < m

2 then γ(H) > |S| + ` = γ(G);
otherwise for n ≥ 235, by using (∗), it can be verified that ` + |S| + m

2 >
` + k + ρ + |S1| ≥ γ(G). Thus, when n ≥ 235, γ(G) < γ(H).

Case 9. |S1 − S| > m
4 .

First we fix a set S′1 ⊂ S1 − S with |S′1| = m
4 . Next we get a matching M

of size m
4 in S2 such that each edge in M has an end in N(S′1) and for any

a ∈ S′1, there is at most one edge in M having an end-vertex in N(a). Now
we subdivide all edges in M and for every vertex b ∈ S′1 an edge bb1 ∈ E(G′).
We also subdivide all edges of the form uv ∈ E(G) where u is an end-vertex
of an edge in M and v ∈ S′1. In the resulting graph H the domination
number is at least |S1| + m

4 + `. So as in the last case, if n ≥ 235 then
γ(H) > γ(G). Therefore the subdivision number in this case is at most 3m

4 .
Thus we conclude that if n ≥ 235 then ξ ≤ 4

√
n lnn + 5.
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