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Abstract

A Roman dominating function (RDF) on a graph G = (V,E) is
a function f : V → {0, 1, 2} satisfying the condition that every vertex
u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of f is w(f) =

∑
v∈V f(v). The Roman domina-

tion number is the minimum weight of an RDF in G. It is known that
for every graph G, the Roman domination number of G is bounded
above by twice its domination number. Graphs which have Roman
domination number equal to twice their domination number are called
Roman graphs. At the Ninth Quadrennial International Conference on
Graph Theory, Combinatorics, Algorithms, and Applications held at
Western Michigan University in June 2000, Stephen T. Hedetniemi in
his principal talk entitled “Defending the Roman Empire” posed the
open problem of characterizing the Roman trees. In this paper, we
give a characterization of Roman trees.
Keywords: dominating set, Roman dominating function.
2000 Mathematics Subject Classification: 05C069.

1. Introduction

Cockayne, Dreyer, Hedetniemi, and Hedetniemi [1] defined a Roman dom-
inating function (RDF) on a graph G = (V, E) to be a function f : V →
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{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. For a real-valued
function f : V → R the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V

we define f(S) =
∑

v∈S f(v), so w(f) = f(V ). The Roman domination
number, denote γR(G), is the minimum weight of an RDF in G; that is,
γR(G) = min{w(f) | f is an RDF in G}. An RDF of weight γR(G) we call
a γR(G)-function.

This definition of a Roman dominating function was motivated by an
article in Scientific American by Ian Stewart entitled “Defend the Roman
Empire” [6]. Each vertex in our graph represents a location in the Roman
Empire. A location (vertex v) is considered unsecured if no legions are
stationed there (i.e., f(v) = 0) and secured otherwise (i.e., if f(v) ∈ {1, 2}).
An unsecured location (vertex v) can be secured by sending a legion to v from
an adjacent location (an adjacent vertex u). But Emperor Constantine the
Great, in the fourth century A.D., decreed that a legion cannot be sent from
a secured location to an unsecured location if doing so leaves that location
unsecured. Thus, two legions must be stationed at a location (f(v) = 2)
before one of the legions can be sent to an adjacent location. In this way,
Emperor Constantine the Great can defend the Roman Empire. Since it
is expensive to maintain a legion at a location, the Emperor would like to
station as few legions as possible, while still defending the Roman Empire. A
Roman dominating function of weight γR(G) corresponds to such an optimal
assignment of legions to locations.

It is shown in [1] that for every graph G, the Roman domination num-
ber of G is bounded above by twice its domination number. Graphs which
have Roman domination number equal to twice their domination number
are called Roman graphs. At the Ninth Quadrennial International Confer-
ence on Graph Theory, Combinatorics, Algorithms, and Applications held
at Western Michigan University in June 2000, Stephen T. Hedetniemi in
his principal talk entitled “Defending the Roman Empire” posed the open
problem of characterizing the Roman trees (see [1, 2, 5]).

Our aim in this paper is to give a characterization of Roman trees.

2. Notation

For notation and graph theory terminology we in general follow [3]. Specif-
ically, let G = (V, E) be a graph with vertex set V of order n and edge
set E, and let v be a vertex in V . The open neighborhood of v is N(v) =
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{u ∈ V |uv ∈ E} and the closed neighborhood of v is N [v] = {v} ∪ N(v).
For a set S ⊆ V , its open neighborhood N(S) = ∪v∈SN(v) and its closed
neighborhood N [S] = N(S) ∪ S. A vertex u is called a private neighbor of
v with respect to S, or simply an S-pn of v, if N [u] ∩ S = {v}. The set
pn(v, S) = N [v]−N [S −{v}] of all S-pns of v is called the private neighbor
set of v with respect to S. We define the external private neighbor set of v
with respect to S by epn(v, S) = pn(v, S) − {v}. Hence, the set epn(v, S)
consists of all S-pns of v that belong to V − S.

For ease of presentation, we mostly consider rooted trees. For a vertex
v in a (rooted) tree T , we let C(v) and D(v) denote the set of children
and descendants, respectively, of v, and we define D[v] = D(v) ∪ {v}. The
maximal subtree at v is the subtree of T induced by D[v], and is denoted by
Tv. A leaf of T is a vertex of degree 1, while a support vertex of T is a vertex
adjacent to a leaf. We denote the set of support vertices of T by S(T ). A
strong support vertex is adjacent to at least two leaves.

Let G = (V, E) be a graph and let S ⊆ V . A set S dominates a set
U , denoted S Â U , if every vertex in U is adjacent to a vertex of S. If
S Â V −S, then S is called a dominating set of G. The domination number
γ(G) is the minimum cardinality of a dominating set of G. A dominating
set of cardinality γ(G) we call a γ(G)-set. Domination and its variations in
graphs are now well studied. The literature on this subject has been surveyed
and detailed in the two books by Haynes, Hedetniemi, and Slater [3, 4].

3. The Family T
We describe a procedure to build trees. For this purpose, we define two
families of trees as follows. Let F∗1 denote the family of all rooted trees such
that every leaf different from the root is at distance 2 from the root and
all, except possibly one, child of the root is a strong support vertex. Let F∗2
denote the family of all rooted trees such that every leaf is at distance 2 from
the root and all but two children of the root are strong support vertices.

For a tree T , we let VS(T ) = {v ∈ V (T ) | v ∈ S(T ) and γR(T − v) ≥
γR(T )}. Note that every strong support vertex of T belongs to VS(T ).

Let T be the family of unlabelled trees T that can be obtained from a
sequence T1, . . . , Tj (j ≥ 1) of trees such that T1 is a star K1,r for r ≥ 1,
and, if j ≥ 2, Ti+1 can be obtained recursively from Ti by one of the three
operations T1, T2 and T3.
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Operation T1. Assume w ∈ VS(Ti). Then the tree Ti+1 is obtained from
Ti by adding a star K1,s for s ≥ 2 with central vertex v and adding the
edge vw.
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Operation T2. Assume x ∈ V (Ti). Then the tree Ti+1 is obtained from Ti

by adding a tree T from the family F∗1 by adding the edge xw, where w is
a leaf of T if T = P3 or w is the central vertex of T if T 6= P3.
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Operation T3. Assume x ∈ VS(Ti). Then the tree Ti+1 is obtained from
Ti by adding a tree T from the family F∗2 and adding the edge xw, where w
denotes the central vertex of T .

T3: t

t
t

t
...!!!

aaa
´

´
´́

...

t
t

t
...!!!

aaa

Q
Q

QQ

t t

S
S

S
SS

t t

¶
¶

¶
¶¶

twtx

&%

'$

4. Preliminary Results

In this section, we use the notation from the definition of the three operations
in Section 3. In the proofs of Lemmas 1, 2, and 3, we let fi+1 be a γR(Ti+1)-
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function and we let fi be the restriction of fi+1 to Ti; that is, fi(u) = fi+1(u)
for each u ∈ V (Ti). We may assume that no adjacent vertices of fi+1 are
both assigned 1, for otherwise we can assign to one vertex the weight 2 and
to the other vertex the weight 0. Further, we may assume that fi+1 assigns
to every strong support vertex the weight 2 and to every leaf adjacent to a
strong support vertex the weight 0, and that no leaf is assigned the weight 2
(for otherwise, this weight can simply be shifted up to its parent).

Lemma 1. If Ti is a Roman tree and if Ti+1 is obtained from Ti by operation
T1, then Ti+1 is also a Roman tree.

Proof. Suppose, to the contrary, that Ti+1 is not a Roman tree. Then,
w(fi+1) ≤ 2γ(Ti+1) − 1. Since v is a strong support vertex, fi+1(v) = 2
and fi+1(u) = 0 for each leaf u adjacent to v. Thus, w(fi) = w(fi+1)− 2 =
γR(Ti+1)−2 ≤ 2γ(Ti+1)−3. Any γ(Ti)-set can be extended to a dominating
set of Ti+1 by adding the vertex v, and so γ(Ti+1) ≤ γ(Ti) + 1. Thus,
w(fi) ≤ 2γ(Ti)− 1.

If fi is an RDF of Ti, then γR(Ti) ≤ w(fi) < 2γ(Ti), contradicting
the assumption that Ti is a Roman tree. Hence, fi cannot be an RDF of
Ti. Thus it must be the case that fi(w) = 0. Since fi+1 is an RDF of
Ti+1, it follows that fi must be an RDF of Ti − w. Thus, γR(Ti − w) ≤
w(fi) ≤ 2γ(Ti) − 1. However, since w ∈ VS(Ti) and since Ti is a Roman
tree, γR(Ti−w) ≥ γR(Ti) = 2γ(Ti), producing a contradiction. Hence, Ti+1

must be a Roman tree.

Lemma 2. If Ti is a Roman tree and if Ti+1 is obtained from Ti by operation
T2, then Ti+1 is also a Roman tree.

Proof. Suppose, to the contrary, that Ti+1 is not a Roman tree. Then,
w(fi+1) ≤ 2γ(Ti+1)− 1.

Suppose that Ti+1 is obtained from Ti by adding the rooted tree T with
root w such that every leaf different from w is at distance 2 from w and all,
except possibly one, child of w is a strong support vertex. If T 6= P3, then
let v1, . . . , vk, where k ≥ 1, denote the children of w that are strong support
vertices.

If k ≥ 1, then for j = 1, . . . , k, each vj is a strong support vertex, and
so fi+1(vj) = 2 and fi+1(z) = 0 for each leaf z adjacent to vj . Suppose w
has a child v of degree 2. Let u be the child of v. Suppose fi+1(u) = 1.
Then, fi+1(v) = 0 and fi+1(w) = 2. If fi+1(x) ≥ 1, then changing the
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weights assigned to u, v and w to be 0, 2 and 0, respectively, and leaving all
other weights unchanged, produces an RDF of Ti+1 of weight w(fi+1)− 1 =
γR(Ti+1)− 1, which is impossible. Hence, fi+1(x) = 0. Then, f :V (Ti+1) →
{0, 1, 2} defined by f(u) = 0, f(v) = 2, f(w) = 0, f(x) = 1 and f(z) =
fi+1(z) for all remaining vertices of Ti+1 is an RDF of Ti+1 with w(f) =
w(fi+1). Hence, we may assume that fi+1(u) = 0 and that fi+1(v) = 2.

By our assumptions, every child of w has weight 2, and so we may
assume that fi+1(w) = 0 (if w is assigned a positive weight, then this weight
can simply be shifted up to its parent x). Thus, fi is an RDF of Ti. Hence,
γR(Ti) ≤ w(fi) = w(fi+1) − 2|C(w)| = γR(Ti+1) − 2|C(w)| ≤ 2γ(Ti+1) −
2|C(w)| − 1. Any γ(Ti)-set can be extended to a dominating set of Ti+1 by
adding the children of w, and so γ(Ti+1) ≤ γ(Ti) + |C(w)|. It follows that
γR(Ti) ≤ 2γ(Ti)− 1, contradicting the assumption that Ti is a Roman tree.
Hence, Ti+1 must be a Roman tree.

Lemma 3. If Ti is a Roman tree and if Ti+1 is obtained from Ti by operation
T3, then Ti+1 is also a Roman tree.

Proof. Suppose, to the contrary, that Ti+1 is not a Roman tree. Then,
w(fi+1) ≤ 2γ(Ti+1)− 1.

Suppose that Ti+1 is obtained from Ti by adding the rooted tree T with
root w such that every leaf different from w is at distance 2 from w and all
but two children of w are strong support vertices. Let v1 and v2 be the two
children of w of degree 2 and let u1 and u2 be their respective children. If
|C(w)| = k ≥ 3, then let C(w)− {v1, v2} = {v3, . . . , vk}.

We may assume that fi+1(w) = 2 and, for i = 1, 2, fi+1(vi) = 0 and
fi+1(ui) = 1. If |C(w)| = k ≥ 3, then for j = 3, . . . , k, each vj is a strong
support vertex, and so fi+1(vj) = 2 and fi+1(z) = 0 for each leaf z adjacent
to vj . Then, w(fi) = w(fi+1)− 2|C(w)| = γR(Ti+1)− 2|C(w)| ≤ 2γ(Ti+1)−
2|C(w)| − 1. Any γ(Ti)-set can be extended to a dominating set of Ti+1 by
adding the children of w, and so γ(Ti+1) ≤ γ(Ti) + |C(w)|. It follows that
w(fi) ≤ 2γ(Ti)− 1.

If fi is an RDF of Ti, then γR(Ti) ≤ w(fi) < 2γ(Ti), contradicting the
assumption that Ti is a Roman tree. Hence, fi cannot be an RDF of Ti.
Thus it must be the case that fi(x) = 0. Now let f ′i be the restriction of fi to
Ti−x. Since fi+1 is an RDF of Ti+1 and fi(x) = 0, it follows that f ′i must be
an RDF of Ti−x. Thus, γR(Ti−x) ≤ w(f ′i) = w(fi) ≤ 2γ(Ti)−1. However,
since x ∈ VS(Ti) and since Ti is a Roman tree, γR(Ti−x) ≥ γR(Ti) = 2γ(Ti),
producing a contradiction. Hence, Ti+1 must be a Roman tree.
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Lemma 4. If T ∈ T , then T is a Roman tree.

Proof. Suppose T ∈ T . We proceed by induction on γ(T ). If γ(T ) = 1,
then T is a star K1,r for r ≥ 1, and so T is a Roman tree. Suppose, then, that
the result is true for every tree in T with domination number less than m,
where m ≥ 2. Let T ∈ T satisfy γ(T ) = m. Then, T can be obtained from
a sequence T1, . . . , Tj (j ≥ 1) of trees such that T1 is a star K1,r for r ≥ 1,
and, if j ≥ 2, Ti+1 can be obtained recursively from Ti by one of the three
operations T1, T2 and T3. Since γ(T ) > 1, T is not a star, and so j ≥ 2.
Now γ(Tj−1) < γ(T ), and so applying the inductive hypothesis to the tree
Tj−1 ∈ T , Tj−1 is a Roman tree. By construction, T = Tj is obtained from
Tj−1 by one of the three operations T1, T2 and T3. Hence, by Lemmas 1, 2,
and 3 it follows that T is also a Roman tree.

5. Main Result

In this section we provide a constructive characterization of Roman trees.
We shall prove:

Theorem 5. A tree T is a Roman tree if and only if T ∈ T .

Proof. The sufficiency follows from Lemma 4. To prove the necessity,
we proceed by induction on the domination number γ(T ) of a Roman tree
T . If γ(T ) = 1, then, since the trivial tree K1 is not a Roman tree, T
is a nontrivial star, and so T ∈ T . Hence, the result is true for the base
case when γ(T ) = 1. Suppose the result is true for all Roman trees with
domination number less than m, where m ≥ 2, and let T be a Roman tree
with γ(T ) = m. Then, diam(T ) ≥ 3.

Let f be a γR(T )-function. We may assume that the function f assigns
to each strong support vertex the weight 2 and to each leaf adjacent to
a strong support vertex the weight 0. Further, we may assume that no
adjacent vertices are both assigned the weight 1 under f .

In the proof we shall frequently prune the tree T to a tree T ′ and
then establish that T ′ is a Roman tree with γ(T ′) < m. By the inductive
hypothesis, T ′ ∈ T . We then show that T can be obtained from T ′ by
operation T1, T2 or T3.

Let T be rooted at the end-vertex r of a longest path P . Let w be the
vertex at distance diam(T )− 2 from r on P , and let v be the child of w on
P . Since diam(T ) ≥ 3, w 6= r. Let x denote the parent of w.
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Claim 1. If w ∈ S(T ), then T ∈ T .

Proof. Let T ′ = T − Tv. Any γ(T ′)-set can be extended to a dominating
set of T by adding v, and so γ(T ) ≤ γ(T ′) + 1. On the other hand, let S be
a γ(T )-set. We may assume that S contains every support vertex, and so
{v, w} ⊆ S. Thus, S − {v} is a dominating set of T ′, and so γ(T ′) ≤ |S′| =
γ(T )− 1. Consequently, γ(T ) = γ(T ′) + 1.

Any γR(T ′)-function can be extended to an RDF of T by assigning the
weight 2 to v and the weight 0 to each child of v, and so γR(T ) ≤ γR(T ′)+2.
Therefore, 2γ(T ) = γR(T ) ≤ γR(T ′) + 2 ≤ 2γ(T ′) + 2 = 2γ(T ). Hence, we
must have equality throughout this inequality chain. In particular, γR(T ) =
γR(T ′)+2 and γR(T ′) = 2γ(T ′). Thus, T ′ is a Roman tree. By the inductive
hypothesis, T ′ ∈ T .

Let f ′ be the restriction of f to T ′. Suppose f(w) ≥ 1. Then, f ′ is an
RDF of T ′. If w(f ′) > γR(T ′), then 2γ(T ′) = γR(T ′) < w(f ′) = w(f)− 2 =
2γR(T )− 2 = 2γ(T ′), which is impossible. Hence, f ′ is a γR(T ′)-function.

Any γR(T ′−w)-function can be extended to an RDF of T by assigning
the weight 2 to v and the weight 0 to each neighbor (including w) of v,
and so γR(T ) ≤ γR(T ′ − w) + 2. Hence, if γR(T ′ − w) < γR(T ′), then
γR(T ) ≤ γR(T ′ − w) + 2 < γR(T ′) + 2 = w(f ′) + 2 = w(f) = γR(T ), which
is impossible. Thus we must have γR(T ′−w) ≥ γR(T ′), and so w ∈ VS(T ′).

Suppose deg v = 2. Let S′ be a γ(T ′)-set. We may assume that S(T ′) ⊆
S′. In particular, w ∈ S′. Now let g′: V (T ′) → {0, 1, 2} be the function
defined by g′(z) = 2 if z ∈ S′ and g′(z) = 0 otherwise. Then, g′ is an
RDF of T ′ of weight 2γ(T ′). Since T ′ is a Roman tree, g′ is a γR(T ′)-
function. Let g:V (T ) → {0, 1, 2} be the function defined by g(z) = g′(z)
if z ∈ V (T ′), g(v) = 0 and g(u) = 1. Then, g is an RDF of T . Thus,
γR(T ) ≤ w(g) = γR(T ′) + 1, contradicting our earlier observation that
γR(T ) = γR(T ′) + 2. Hence, deg v ≥ 3, i.e., v must be a strong support
vertex. Thus, T can be obtained from T ′ by operation T1, and so T ∈ T .

By Claim 1 we may assume that w /∈ S(T ), for otherwise T ∈ T . It follows
that every child of w is a support vertex. We show next that at most two
children of w are not strong support vertices.

Claim 2. At most two children of w have degree 2.

Proof. Suppose that w has three children v1, v2 and v3 each of degree 2.
For i = 1, 2, 3, let ui be the child of vi. Let V ′ = {v1, v2, v3, u1, u2, u3, w}.
Let T ′ = T − V ′.
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Any γ(T ′)-set can be extended to a dominating set of T by adding the
set {v1, v2, v3}, and so γ(T ) ≤ γ(T ′) + 3. On the other hand, let S be a
γ(T )-set. We may assume that S contains every support vertex, and so
C(w) ⊆ S. If w ∈ S, then we can replace w in S with its parent x. Hence,
we may assume that w /∈ S. Thus, S−{v1, v2, v3} is a dominating set of T ′,
and so γ(T ′) ≤ |S| − 3 = γ(T )− 3. Consequently, γ(T ) = γ(T ′) + 3.

Any γR(T ′)-function can be extended to an RDF of T by assigning the
weight 2 to w and, for each i = 1, 2, 3, assigning the weight 0 to vi and the
weight 1 to ui, and so γR(T ) ≤ γR(T ′) + 5. Therefore, 2γ(T ) = γR(T ) ≤
γR(T ′) + 5 ≤ 2γ(T ′) + 5 = 2γ(T ) − 1, which is impossible. Hence, at most
two children of w can have degree 2.

By Claim 2, Tw ∈ F∗1 or Tw ∈ F∗2 . In what follows, let T ′ = T − Tw.

Claim 3. γ(T ) = γ(T ′) + |C(w)| and γR(T ′) = 2γ(T ′).

Proof. Any γ(T ′)-set can be extended to a dominating set of T by adding
C(w), and so γ(T ) ≤ γ(T ′)+|C(w)|. On the other hand, let S be a γ(T )-set.
We may assume that S contains every support vertex, and so C(w) ⊆ S.
If w ∈ S, then we can replace w in S with its parent x. Hence, we may
assume that w /∈ S. Thus, S − C(w) is a dominating set of T ′, and so
γ(T ′) ≤ |S| − |C(w)|. Consequently, γ(T ) = γ(T ′) + |C(w)|.

Any γR(T ′)-function can be extended to an RDF of T by assigning
the weight 2 to each child of w and the weight 0 to each neighbor of a
child of w. Thus, γR(T ) ≤ γR(T ′) + 2|C(w)|. Therefore, 2γ(T ) = γR(T ) ≤
γR(T ′)+2|C(w)| ≤ 2γ(T ′)+2|C(w)| = 2γ(T ). Hence, we must have equality
throughout this inequality chain. In particular, γR(T ′) = 2γ(T ′).

By Claim 3, T ′ is a Roman tree. Thus, by the inductive hypothesis, T ′ ∈ T .
Suppose that Tw ∈ F∗1 . Then, T can be obtained from T ′ by operation T2,
and so T ∈ T .

Suppose, finally, that Tw ∈ F∗2 . Let v1 and v2 be the two children of w
of degree 2 and let u1 and u2 be their respective children. If |C(w)| = k ≥ 3,
then let C(w) − {v1, v2} = {v3, . . . , vk}. We may assume that f(w) = 2
and that for i = 1, 2, f(vi) = 0 and f(ui) = 1. If |C(w)| = k ≥ 3, then
for j = 3, . . . , k, each vj is a strong support vertex, and so f(vj) = 2 and
f(z) = 0 for each leaf z adjacent to vj .

Any γR(T ′ − x)-function can be extended to an RDF of T by assigning
the weight 2 to w and each child of w that is a strong support vertex, the
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weight 1 to each of u1 and u2, and the weight 0 to all remaining vertices of
Tx. Thus, γR(T ) ≤ γR(T ′ − x) + 2|C(w)|.
We show next that γR(T ′ − x) ≥ γR(T ′). Suppose f(x) = 0. Let f ′x be the
restriction of f ′ to T ′ − x. Then, w(f ′x) = w(f ′) = w(f)− 2|C(w)|. Since f
is an RDF of T and f(x) = 0, it follows that f ′x must be an RDF of T ′−x. If
γR(T ′−x) < w(f ′x), then γR(T ) ≤ γR(T ′−x)+2|C(w)| < w(f ′x)+2|C(w)| =
w(f) = γR(T ), which is impossible. Hence, γR(T ′ − x) = w(f ′x). Thus,
γR(T ′−x) = w(f ′) = w(f)−2|C(w)| = 2γ(T )−2|C(w)| = 2γ(T ′) = γR(T ′).
On the other hand, suppose that f(x) ≥ 1. Then, f ′ is an RDF of T ′. If
γR(T ′ − x) < γR(T ′), then γR(T ) ≤ γR(T ′ − x) + 2|C(w)| < γR(T ′) +
2|C(w)| ≤ w(f ′) + 2|C(w)| = w(f) = γR(T ), which is impossible. Hence,
γR(T ′− x) ≥ γR(T ′). Therefore, x ∈ VS(T ′). Thus, T can be obtained from
T ′ by operation T3, and so T ∈ T . This completes the proof of Theorem 5.
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