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Abstract

For a vertex v of a connected graph G and a subset S of V (G),
the distance between v and S is d(v, S) = min{d(v, x)|x ∈ S}. For an
ordered k-partition Π = {S1, S2, · · · , Sk} of V (G), the representation
of v with respect to Π is the k-vector r(v|Π) = (d(v, S1), d(v, S2), · · · ,
d(v, Sk)). The k-partition Π is a resolving partition if the k-vectors
r(v|Π), v ∈ V (G), are distinct. The minimum k for which there is
a resolving k-partition of V (G) is the partition dimension pd(G) of
G. A resolving partition Π = {S1, S2, · · · , Sk} of V (G) is connected
if each subgraph 〈Si〉 induced by Si (1 ≤ i ≤ k) is connected in G.
The minimum k for which there is a connected resolving k-partition
of V (G) is the connected partition dimension cpd(G) of G. Thus 2 ≤
pd(G) ≤ cpd(G) ≤ n for every connected graph G of order n ≥ 2. The
connected partition dimensions of several classes of well-known graphs
are determined. It is shown that for every pair a, b of integers with
3 ≤ a ≤ b ≤ 2a − 1, there is a connected graph G having pd(G) = a
and cpd(G) = b. Connected graphs of order n ≥ 3 having connected
partition dimension 2, n, or n− 1 are characterized.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G
is the length of a shortest u− v path in G. The diameter of G is the largest
distance between two vertices in G and is denoted by diamG. For a set S
of vertices of G and a vertex v of G, the distance d(v, S) between v and S is
defined as

d(v, S) = min{d(v, x) | x ∈ S}.

For an ordered k-partition Π = {S1, S2, · · · , Sk} of V (G) and a vertex v of
G, the representation of v with respect to Π is defined as the k-vector

r(v|Π) = (d(v, S1), d(v, S2), · · · , d(v, Sk)) .

The partition Π is called a resolving partition for G if the distinct vertices
of G have distinct representations with respect to Π. The minimum k for
which there is a resolving k-partition of V (G) is the partition dimension
pd(G) of G. A resolving partition of V (G) containing pd(G) elements is
called a minimum resolving partition.

As an illustration of these concepts, we consider the graph G in Figure 1.

x y

wv

u2 u3u1

G :

Figure 1: A graph G

Let Π = {S1, S2, S3}, where S1 = {u1, v}, S2 = {u2, w}, and S3 = {u3, x, y}.
Then

r(u1|Π) = (0, 1, 2), r(u2|Π) = (1, 0, 2), r(u3|Π) = (1, 1, 0),

r(v|Π) = (0, 1, 1), r(w|Π) = (1, 0, 1), r(x|Π) = (1, 2, 0), r(y|Π) = (2, 1, 0).
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So Π is a resolving partition for G. Since there is no resolving 2-partition
in G, it follows that pd(G) = 3.

The example just presented also illustrates an important point. Let
Π = {S1, S2, · · · , Sk} be a resolving partition of V (G). If u ∈ Si and v ∈
Sj , where i 6= j and i, j ∈ {1, 2, · · · , k}, then r(u | Π) 6= r(v | Π) since
d(u, Si) = 0 and d(u, Sj) 6= 0. Thus, when determining whether a given
partition Π of vertices of a graph G is a resolving partition for G, we need
only verify that the vertices of G belonging to same element in Π have
distinct representations with respected to Π.

The following lemma appeared in [4] will be useful to us.

Lemma 1.1. Let Π be a resolving partition of V (G) and u, v ∈ V (G). If
d(u,w) = d(v, w) for all w ∈ V (G)− {u, v}, then u and v belong to distinct
elements of Π.

A resolving partition Π = {S1, S2, · · · , Sk} of V (G) is connected if each
subgraph 〈Si〉 induced by Si (1 ≤ i ≤ k) is connected in G. The minimum k
for which there is a connected resolving k-partition of V (G) is the connected
partition dimension cpd(G) of G. A connected resolving partition of V (G)
containing cpd(G) elements is called a cr-partition of V (G). Certainly, every
connected resolving partition of a connected graph is a resolving partition.
In general, however, the converse is not true. Thus if G is a connected graph
of order n ≥ 2, then

2 ≤ pd(G) ≤ cpd(G) ≤ n.(1)

As an example, we again consider the graph G of Figure 1. In the resolving
partition Π described above, the subgraph 〈S3〉 induced by S3 is disconnected
in G and so Π is not connected. On the other hand, let Π′ = {S′1, S′2, S′3, S′4},
where S′1 = {u1, v}, S′2 = {u2, w}, S′3 = {u3}, and S′4 = {x, y}. Then Π′ is a
connected resolving partition of V (G). By a case-by-case analysis, one can
show that Π′ is a cr-partition of G and so cpd(G) = 4. Thus pd(G) < cpd(G)
for the graph G of Figure 1. The following observation is useful.

Observation 1.2. Let G be a connected graph. Then pd(G) = cpd(G) if
and only if G contains a minimum resolving partition that is connected.

The concept of resolvability in graphs has previously appeared in the lit-
erature. In [8] and later in [9], Slater introduced and studied these ideas
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with different terminology. Slater described the usefulness of these ideas
when working with U.S. sonar and coast guard Loran (Long range aids to
navigation) stations. Harary and Melter [5] discovered these concepts inde-
pendently as well. These concepts were rediscovered by Johnson [6, 7] of
the Pharmacia Company while attempting to develop a capability of large
datasets of chemical graphs. A basic problem in chemistry is to provide
mathematical representations for a set of chemical compounds in a way
that gives distinct representations to distinct compounds. Thus, a graph-
theoretic interpretation of this problem is to provide representations for the
vertices of a graph in such a way that distinct vertices have distinct repre-
sentations. The resolving partition and partition dimension of a graph were
introduced and studied in [3, 4]. We refer to the book [1] for graph theory
notation and terminology not described here.

2. Some Basic Results on Connected Partition
Dimensions of Graphs

We have seen that if G is a connected graph of order n ≥ 2, then 2 ≤
cpd(G) ≤ n. We now present improved upper and lower bounds for the
connected partition dimension of a connected graph in terms of its order
and diameter. For integers n and d with n > d ≥ 1, we define f(n, d) as the
least positive integer k for which kdk−1 ≥ n. Thus f(n, 1) = n for all n ≥ 2.

Theorem 2.1. If G is a connected graph of order n ≥ 3 and diameter d,
then

f(n, d) ≤ cpd(G) ≤ n− d + 1.

Proof. If d = 1, then G = Kn and cpd(Kn) = n by Lemma 1.1. On
the other hand, f(n, 1) = n and n − d + 1 = n. So the result is true
for d = 1. Thus we may assume that d ≥ 2. We first establish the up-
per bound. Let u and v be vertices of G for which d(u, v) = d and let
u = v1, v2, · · · , vd+1 = v be a u − v path of length d. Assume that V (G) =
{v1, v2, . . . , vd, · · · , vn}. Then the partition Π = {S1, S2, · · · , Sn−d+1} of
V (G), where S1 = {v1, v2, . . . , vd} and Si = {vi+d−1} for 2 ≤ i ≤ n− d + 1,
is a connected resolving (n− d+1)-partition of V (G). Therefore, cpd(G) ≤
n− d + 1.

Next we verify the lower bound. Suppose that cpd(G) = k and that Π is
a connected resolving k-partition of V (G). Since (1) each representation of
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a vertex with respect to Π is a k-vector whose coordinates are nonnegative
integers not exceeding d with exactly one coordinate zero and (2) all n
representations are distinct, it follows that kdk−1 ≥ n. Thus f(n, d) ≤ k =
cpd(G).

Note that the upper and lower bounds given in Theorem 2.1 can be attained.
Consider the graphs G1 and G2 of Figure 2. It can be verified that cpd(Gi) =
3 for i = 1, 2. A cr-partition in each of G1 and G2 is also shown in Figure 2.
The graph G1 has order n = 5 and diamG1 = 3. Thus cpd(G1) = 3 =
n−diamG1 +1, attaining the upper bound. On the other hand, The graph
G2 has order n = 9 and diamG2 = 4. Since f(9, 4) = 3, it follows that
cpd(G2) = f(9, 4), attaining the lower bound.

G1 G2

Figure 2: The graphs G1 and G2

For each integer n ≥ 2, it was shown in [4] that the path Pn of order n is
the only connected graph of order n having partition dimension 2 and the
complete graph Kn is the only connected graph of order n having partition
dimension n. We show that this is also true for the connected partition
dimension of a connected graph.

Proposition 2.2. Let G be a connected graph of order n ≥ 2. Then
(a) cpd(G) = 2 if and only if G = Pn,
(b) cpd(G) = n if and only if G = Kn.

Proof. We first verify (a). Let Pn : v1, v2, · · · , vn, where n ≥ 2, and let Π =
{S1, S2} be the partition of V (Pn) with S1 = {v1} and S2 = {v2, v3, · · · , vn}.
Then 〈S1〉 = K1 and 〈S2〉 = Pn−1 are connected in Pn. Since r(v1|Π) = (0, 1)
and r(vi|Π) = (i − 1, 0) for 2 ≤ i ≤ n, it follows that Π is a cr-partition of
Pn and so cpd(Pn) = 2 by (1). For the converse, if G is a connected graph
of order n ≥ 2 with cpd(G) = 2. Then pd(G) = 2 by (1) and so G = Pn,
which establishes (a).
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Next we verify (b). We have seen that cpd(Kn) = n. On the other hand, if G
is not a complete graph, then diamG ≥ 2. It then follows from Theorem 2.1
that cpd(G) ≤ n− 1.

It was shown in [4] that pd(Kr,s) = r + 1 if r = s and pd(Kr,s) = max{r, s}
if r 6= s. We now show that this is also true for the connected partition
dimension of Kr,s for all positive integers r, s.

Proposition 2.3. For positive integers r, s,

cpd(Kr,s) =

{
r + 1 if r = s,
max{r, s} if r 6= s.

Proof. Let G = Kr,s with partite sets V1 = {u1, u2, · · · , ur} and V2 ={v1,
v2, · · ·, vs}. By Observation 1.2, it suffices to show that G contains a
minimum resolving partition that is connected. For r = s, let Π = {S1, S2,
· · ·, Sr+1}, where Si = {ui, vi} (1 ≤ i ≤ r− 1), Sr = {ur}, and Sr+1 = {vr}.
Since Π is a connected resolving (r + 1)-partition of V (G), it follows that
cpd(Kr,s) = r + 1 if r = s. For r 6= s, assume, without loss of generality,
that r > s. Let Π = {S1, S2, · · · , Sr}, where Si = {ui, vi} (1 ≤ i ≤ s) and
Si = {ui} (s + 1 ≤ i ≤ r). Since Π is a connected resolving r-partition of
V (G), it follows that cpd(Kr,s) = r = max{r, s}.
Thus, if G is a path, a complete graph, or a complete bipartite graph, then
pd(G) = cpd(G). This observation yields the following.

Corollary 2.4. For each integer k ≥ 2, there is a connected graph G with

pd(G) = cpd(G) = k.

Note that every graph G encountered thus far has the property that either
pd(G) = cpd(G) or cpd(G) − pd(G) ≤ 1. This might lead one to believe
that cpd(G) and pd(G) are close for every connected graph G. However,
this is not the case. In fact, as we will see in the next section, the difference
cpd(G)− pd(G) can be arbitrarily large.

3. Connected Partition Dimensions of Trees That
Are Not Paths

Although the partition dimensions of some special types of trees that are not
paths have been studied in [3], there is no general formula for the partition
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dimension of a tree that is not a path. In this section we present a formula
for the connected resolving partition dimension of a tree that is not a path.
First, we need some additional definitions.

A vertex of degree at least 3 in a connected graph G is called a major
vertex of G. An end-vertex u of G is said to be a terminal vertex of a
major vertex v of G if d(u, v) < d(u,w) for every other major vertex w of
G. The terminal degree ter(v) of a major vertex v is the number of terminal
vertices of v. A major vertex v of G is an exterior major vertex of G if it has
positive terminal degree. Let σ(G) denote the sum of the terminal degrees of
the major vertices of G and let ex(G) denote the number of exterior major
vertices of G. If G is a tree that is not path, then ex(G) is the number
of end-vertices of G. For example, the tree T of Figure 3 has four major
vertices, namely, v1, v2, v3, v4. The terminal vertices of v1 are u1 and u2,
the terminal vertices of v3 are u3, u4, and u5, and the terminal vertices of
v4 are u6 and u7. The major vertex v2 has no terminal vertex and so v2 is
not an exterior major vertex of T . Therefore, σ(T ) = 7 and ex(T ) = 3.

u7

u6 u5

u4

u3

u1

u2

v1

v2

v4 v3

Figure 3: A tree with its exterior major vertices

We first present a lemma that provides a lower bound for the connected
partition dimension of a connected graph G in terms of σ(G) and ex(G).

Lemma 3.1. If G is a connected graph, then

cpd(G) ≥ σ(G)− ex(G) + 1.

Proof. Let Π = {S1, S2, · · · , Sk} be a connected resolving partition of G.
Suppose that G contains p exterior major vertices v1, v2, · · · , vp. For each i
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with 1 ≤ i ≤ p, let ui1, ui2, · · · , uiki be the terminal vertices of vi. For each
i with 1 ≤ i ≤ p, let Pij be the vi − uij path in G for all 1 ≤ j ≤ ki and let
xij be a vertex in Pij that is adjacent to vi. Then let Qij be the xij − uij

subpath of Pij for all 1 ≤ i ≤ p and 1 ≤ j ≤ ki.
Without loss of generality, assume that v1 ∈ S1. We claim that at

least one vertex, say a1j , from the path Q1j (1 ≤ j ≤ k1) such that all
vertices a1j (1 ≤ j ≤ k1) belong to distinct elements in Π and a1j /∈ S1

for all 1 ≤ j ≤ k1 with at most one exception. Assume, to the contrary,
that this is not the case. We may assume that V (Q11) and V (Q12) are
contained in the same element of Π. Since d(x11, v) = d(x12, v) for all
v ∈ V (G)−((V (Q11) ∪ V (Q12)), it follows that r(x11 | Π) = r(x12 | Π), which
is a contradiction. Thus assume, without loss of generality, that a1j ∈ Sj for
2 ≤ j ≤ k1. Since Π is a connected partition of V (G) and v1 ∈ S1, no vertex
in V (G) −

(⋃k1
j=2 V (Q1j)

)
belongs to Sj for all 2 ≤ j ≤ k1; for otherwise,

the subgraph 〈Sj〉 cannot be connected in G. On the other hand, the vertex
a11 is either in S1 or in St for some integer t with k1 + 1 ≤ t ≤ k. In either
case, k ≥ k1 = (k1 − 1) + 1.

Next, we consider the exterior major vertex v2. Since v2 /∈ Sj for all j
with 2 ≤ j ≤ k1, we assume that v2 ∈ S`, where ` = 1 or k1 + 1 ≤ ` ≤ k.
Similarly, at least one vertex, say a2j , from the path Q2j (1 ≤ j ≤ k2)
such that all vertices a2j (1 ≤ j ≤ k2) belong to distinct elements in Π and
a2j /∈ S` for all 1 ≤ j ≤ k2 with at most one exception. Thus, we may
assume that a2j ∈ Sj+k1−1 for 2 ≤ j ≤ k2 and j + k1 − 1 6= `. Then no
vertex in V (G)−

(⋃k2
j=2 V (Q2j)

)
belongs to Sj+k1−1 for all j with 2 ≤ j ≤ k2.

Note that either S1 = S`, or S1 6= S`. In either case, all elements Si, where
1 ≤ i ≤ k1 + k2 − 1, are distinct elements in Π. Thus k ≥ k1 + k2 − 1 =
(k1 − 1) + (k2 − 1) + 1.

Continuing this procedure to the remaining exterior major vertices of G,
we obtain

k ≥
( p∑

i=1

(ki − 1)

)
+ 1 = σ(G)− ex(G) + 1.

Therefore, cpd(G) ≥ σ(G)− ex(G) + 1.

In order to determine the connected partition dimension of a tree that is
not a path, we will apply a lemma appeared in [2]. First, some additional
definitions are needed. For an ordered set W = {w1, w2, · · · , wk} of vertices
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in a connected graph G and a vertex v of G, the k-vector

r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk))

is referred to as the (metric) representation of v with respect to W . The set W
is called a resolving set for G if the vertices of G have distinct representations
with respect to W . For more information on this topic, see [2, 5, 8, 9]. The
following lemma [2] is useful.

Lemma 3.2. Let T be a tree that is not a path, having order n ≥ 4 and
p exterior major vertices v1, v2, · · · , vp. For 1 ≤ i ≤ p, let ui1, ui2, · · · , uiki

be the terminal vertices of vi and let Pij be the vi − uij path (1 ≤ j ≤ ki).
Suppose that W is a set of vertices of T . Then W is a resolving set of T if
and only if W contains at least one vertex from each of the paths Pij − vi

(1 ≤ j ≤ ki and 1 ≤ i ≤ p) with at most one exception for each i with 1 ≤
i ≤ p.

We are prepared to present a formula for the connected partition dimension
of a tree that is not a path.

Theorem 3.3. If T is a tree of order n ≥ 4 that is not a path, then

cpd(T ) = σ(T )− ex(T ) + 1.

Proof. By Lemma 3.1, cpd(T ) ≥ σ(T )−ex(T )+1. Thus it remains to show
that cpd(T ) ≤ σ(T )− ex(T ) + 1. Let k = σ(T )− ex(T ) + 1. Suppose that T
contains p exterior major vertices v1, v2, · · · , vp. For each i with 1 ≤ i ≤ p,
let ui1, ui2, · · · , uiki be the terminal vertices of vi. For each i with 1 ≤ i ≤ p,
let Pij be the vi − uij path in T for all 1 ≤ j ≤ ki and let xij be a vertex in
Pij that is adjacent to vi. Then let Qij be the xij − uij subpath of Pij for
all 1 ≤ i ≤ p and 1 ≤ j ≤ ki.

Let U = {v1, u11, u21, · · · , up1} and let T1 be the subtree of T of smallest
size such that T1 contains U . Let S0 = V (T1) and Sij = V (Qij) for all
1 ≤ i ≤ p and 2 ≤ j ≤ ki. Define a k-partition Π of V (T ) by

Π = {S0, S12, S13, · · · , S1k1 , S22, S23, · · · , S2k2 , · · · , Sp2, Sp3, · · · , Spkp}.
Then Π is connected. We now show that Π is a resolving partition of V (T ).
Note that it suffices to show that the vertices of T belonging to same element
of Π have distinct representations with respect to Π. Let x, y ∈ V (T ). We
consider two cases.
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Case 1. x, y ∈ S0.
Then d(x, Sij) = d(x, xij) and d(y, Sij) = d(y, xij) for all pairs i, j with
1 ≤ i ≤ p and 2 ≤ j ≤ ki. Let

B = {xij : 1 ≤ i ≤ p and 2 ≤ j ≤ ki}.

By Lemma 3.2, the set B is a resolving set of T and so r(x | B) 6= r(y | B).
Observe that the first coordinate in each of r(x | Π) and r(y | Π) is 0, the
remaining k − 1 coordinates of r(x | Π) are exactly those of r(x | B), and
the remaining k − 1 coordinates of r(y | Π) are exactly those of r(y | B).
Since r(x | B) 6= r(y | B), it follows that r(x | Π) 6= r(y | Π).

Case 2. x, y ∈ Sij , where 1 ≤ i ≤ p and 2 ≤ j ≤ ki.
Then d(x, S0) = d(x, vi) and d(y, S0) = d(y, vi). Since x and y are two
distinct vertices in the xij − uij path Qij , it follows that d(x, vi) 6= d(y, vi)
and so d(x, S0) 6= d(y, S0). Therefore, r(x | Π) 6= r(y | Π).

Therefore, Π is a connected resolving k-partition of V (T ) and so cpd(T )
≤ k = σ(T )− ex(T ) + 1.

To illustrate Theorem 3.3, we consider the tree of Figure 2, which is re-
drawn in Figure 4. We have seen that σ(T ) = 7 and ex(T ) = 3. The
subtree T1 of T that contains U = {v1, u11, u21, u31} and the four subpath
Q12, Q22, Q32, Q33 are shown in Figure 4, where T1 is drawn in bold. By The-
orem 3.3 the 5-partition Π = {S0, S12, S22, S32, S33} of V (T ) is a cr-partition
and so cpd(T ) = 5 = σ(T )− ex(T ) + 1.

By Theorem 3.3, we are now able to show that every pair a, b of integers
with 3 ≤ a < b ≤ 2a − 1 is realizable as the partition dimension and the
connected partition dimension of some connected graph.

Theorem 3.4. For every pair a, b of integers with 3 ≤ a < b ≤ 2a−1, there
is a connected graph G such that pd(G) = a and cpd(G) = b.

Proof. Let G be a double star with central vertices u and v and N(u) =
{x1, x2, · · · , xa} and N(v) = {y1, y2, · · · , yb−a+1}. Then cpd(G) = b by The-
orem 3.3. Thus it remains to show that pd(G) = a. By Lemma 1.1, the
vertices of N(u) must belong to distinct elements in a resolving partition of G
and so pd(G) ≥ a. On the other hand, if b = a+1, let Π = {S1, S2, · · · , Sa},
where Si = {xi} for 1 ≤ i ≤ a− 3, Sa−2 = {xa−2, y2}, Sa−1 = {u, xa−1, y1},
and Sa = {v, xa}; while if b > a + 1, let Π = {S1, S2, · · · , Sa}, where
S1 = {u, x1, y1}, S2 = {v, x2, y2}, Si = {xi, yi} for 3 ≤ i ≤ b − a + 1,
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v1

v2

u21

u22 = x22

u31

u32

u12

x12

x32v3

u33 = x33

u11

T :

x12

u12

u22 = x22

u32

u33 = x33

Q12 Q22 Q32 Q33

x32

Figure 4: Illustrating Theorem 3.3

and Sj = {xj} for b−a+2 ≤ j ≤ a. In either case, Π is a resolving partition
of V (G) and so pd(G) = a.

On the other hand, the following problem is still open.

Problem 3.5. For which pairs a, b of integers with a ≥ 3 and b ≥ 2a, does
there exists a connected graph G such that pd(G) = a and cpd(G) = b?

As a consequence of Theorem 3.4, we see that, for some connected graph G,
the difference cpd(G)− pd(G) can be arbitrarily large. In fact, we have the
following result.

Corollary 3.6. For each positive integer N , there is an infinite class of
connected graphs G such that

cpd(G)− pd(G) ≥ N.

Proof. For each integer a with a ≥ max{N + 1, 3}, let Ga be the dou-
ble star with central vertices u and v such that deg u = deg v = a. Then
cpd(Ga) = 2a − 1 by Theorem 3.3 and pd(Ga) = a by the proof of Theo-
rem 3.4. Therefore, cpd(Ga)− pd(Ga) = a− 1 ≥ N , as desired.
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4. Graphs With Connected Partition Dimension
n− 1

We have seen that the complete graph Kn of order n ≥ 2 is the only con-
nected graph of order n with connected partition dimension n. Thus, if G
is a connected graph of order n ≥ 3 that is not a complete graph, then
cpd(G) ≤ n − 1. It was shown in [4] that the graphs K1,n−1, Kn − e,
K1 + (K1

⋃
Kn−2) are the only connected graphs of order n ≥ 3 with parti-

tion dimension n−1. Applying the same technique used in [4], we now show
that those graphs are also the only connected graphs of order n ≥ 3 with
connected partition dimension n− 1. In order to do this, we first present a
lemma which is an immediate consequence of Theorem 2.1.

Lemma 4.1. If G is a connected graph of order n ≥ 3 and cpd(G) = n− 1,
then diamG = 2.

Theorem 4.2. Let G be a connected graph of order n ≥ 3. Then cpd(G) =
n−1 if and only if G is one of the graphs K1,n−1, Kn−e, K1+(K1

⋃
Kn−2).

Proof. It is routine to verify that the graphs mentioned in the theorem
have connected partition dimension n − 1. For the converse, assume that
G is a connected graph of order n ≥ 3 with connected partition dimension
n− 1. By Lemma 4.1, it follows that the diameter of G is 2. Suppose first
that G is bipartite. Since the diameter of G is 2, it follows that G = Kr,s

for some integers r and s with n = r + s ≥ 3. By Proposition 2.3, it follows
that G = K1,n−1.

We now suppose that G is not bipartite. Let Y be the vertex set of
a maximum clique of G. We show that |Y | ≥ 3. Since G is not bipartite,
G contains an odd cycle. Let C2`+1 be the smallest odd cycle in G. Since
the diameter of G is 2, it follows that C2`+1 is C3 or C5. Suppose first
that C2`+1 = C5 : v1, v2, v3, v4, v5, v1. Let Π = {S1, S2, · · · , Sn−2}, where
S1 = {v1, v2, v3}, S2 = {v4}, S3 = {v5}, and Si (4 ≤ i ≤ n − 2) contains a
single vertex of V (G) − {v1, v2, v3, v4, v5}. Then each 〈Si〉 is connected for
all 1 ≤ i ≤ n − 2. Since r(v1|Π) = (0, 2, 1, · · ·), r(v2|Π) = (0, 2, 2, · · ·), and
r(v3|Π) = (0, 1, 2, · · ·), it follows that Π is a connected resolving (n − 2)-
partition of V (G), contradicting cpd(G) = n − 1. Therefore, C2`+1 = C3.
Since G contains K3 as a subgraph, it follows that |Y | ≥ 3.

Let U = V (G) − Y . Since G is not complete, |U | ≥ 1. Assume first
that |U | = 1. Then G = Ks + (K1 ∪Kt) for some integers s and t. Since
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G is connected and G is not complete, s ≥ 1 and t ≥ 1. Let V (Ks) =
{u1, u2, · · · , us}, V (Kt) = {v1, v2, · · · , vt}, and V (K1) = {w}. We consider
two cases.

Case 1. s ≥ t.
Let Π = {S1, S2, · · · , Ss+1}, where Si = {ui, vi} (1 ≤ i ≤ t), Si = {ui}
(t + 1 ≤ i ≤ s), and Ss+1 = {w}. Since d(u,w) = 1 for u ∈ V (Ks) and
d(v, w) = 2 for v ∈ V (Kt), it follows that Π is a connected resolving (s+1)-
partition of V (G). Hence cpd(G) ≤ s + 1. By Lemma 1.1, cpd(G) ≥ s.
However, cpd(G) 6= s, for otherwise s = n − 1 and G = Kn. Therefore,
cpd(G) = s + 1. Since cpd(G) = n− 1, it follows that s = n− 2 and t = 1.
Therefore,

G = Kn−2 + (K1 ∪K1) = Kn − e .

Case 2. s < t.
Then let Π = {S1, S2, · · · , St+1}, where Si = {ui, vi} (1 ≤ i ≤ s), Si = {vi}
(s + 1 ≤ i ≤ t), and St+1 = {w}, is a connected resolving partition of V (G).
Thus cpd(G) ≤ t+1. By Lemma 1.1, cpd(G) ≥ t. However, cpd(G) 6= t, for
otherwise t = n− 1 and s = 0, implying that G is disconnected. Therefore,
cpd(G) = t + 1. Since cpd(G) = n − 1, we have t = n − 2 and s = 1.
Therefore,

G = K1 + (K1 ∪Kn−2) .

Next we assume that |U | ≥ 2. We first claim that U is an independent set of
vertices. Suppose, to the contrary, that this is not the case. Then U contains
two adjacent vertices u and w. Because of the defining property of Y , there
exist v ∈ Y such that uv /∈ E(G) and v′ ∈ Y such that wv′ /∈ E(G), where
v and v′ are not necessarily distinct. We also consider these two cases.

Case 1. There exists a vertex v ∈ Y such that uv, wv /∈ E(G).
We now consider two subcases.

Subcase 1.1. There exists a vertex x ∈ Y that is adjacent to exactly one
of u and w, say u.
Since |Y | ≥ 3, there exist a vertex y ∈ Y that is distinct from v and x. Thus
G contains the subgraph shown in Figure 5, where dashed lines indicate that
the given edge is not present.

Let Π={S1, S2, · · ·, Sn−2}, there S1={u, w}, S2={v, x}, S3={y}, and
each of remaining sets Si (4 ≤ i ≤ n − 2) contains exactly one vertex from
V (G) − {u,w, y, x, v}. Then 〈Si〉 is connected for all 1 ≤ i ≤ n − 2. Since
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v u

wx

y

Figure 5: The subgraph of G in Subcase 1.1

r(u|Π) = (0, 1, · · ·), r(v|Π) = (2, 0, · · ·), r(w|Π) = (0, 2, · · ·), and r(x|Π) =
(1, 0, · · ·), it follows that Π is a connected resolving (n−2)-partition of V (G),
contradicting the fact that cpd(G) = n−1. Thus this subcase cannot occur.

Subcase 1.2. Every vertex of Y is adjacent to either both u and w or to
neither u nor w.
If u and w are adjacent to every vertex in Y − {v}, then the vertices of
(Y −{v})∪{u,w} are pairwise adjacent, contradicting the defining property
of Y . Thus, there exists a vertex y ∈ Y such that y is distinct from v, and
y is adjacent to neither u nor w. Since the diameter of G is 2, there is a
vertex x of G that is adjacent to both u and v and a vertex z of G such that
z is adjacent to both y and w. Since x and z are not necessary distinct and
they do not necessary belong to Y , we consider two cases.

Subcase 1.2.1. x = z.
Then G contains the subgraph shown in Figure 6. Let Π = {S1, S2, · · · , Sn−2},
where S1 = {x, y, w}, S2 = {u}, S3 = {v}, and each of the remaining sets
Si (4 ≤ i ≤ n − 2) contains only one vertex from V (G) − {u,w, y, x, v}.
Then 〈Si〉 is connected for all 1 ≤ i ≤ n − 2. Since r(x|Π)=(0, 1, 1, · · ·),
r(y|Π) = (0, 2, 1, · · ·), and r(w|Π) = (0, 1, 2, · · ·), it follows that Π is a
connected resolving (n − 2)-partition of V (G), contradicting the fact that
cpd(G) = n− 1.

Subcase 1.2.2. x 6= z.
Then G contains the subgraph shown in Figure 7. Let Π = {S1, S2, · · · , Sn−2},
where S1 = {u}, S2 = {w}, S3 = {v, x}, S4 = {y, z}, and each of the re-
maining sets Si (5 ≤ i ≤ n − 2) contains only one vertex from V (G) −
{v, u, w, x, y, z}. Then 〈Si〉 is connected for all 1 ≤ i ≤ n − 2. Since
r(v|Π) = (2, 2, 0, · · ·), r(x|Π) = (1, 2, 0, · · ·), r(y|Π) = (2, 2, 1, 0, · · ·), and
r(z|Π) = (∗, 1, ∗, 0, · · ·), where ∗ is either 1 or 2, it follows that Π is a
connected resolving (n − 2)-partition of V (G), contradicting the fact that
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Figure 6: The subgraph of G in Subcase 1.2.1

cpd(G) = n− 1. Thus Subcase 1.2 and, in fact, Case 1 cannot occur.

wy

x

v u

z

Figure 7: The subgraph of G in Subcase 1.2.2

Case 2. There exist distinct vertices v and v′ in Y such that uv,wv′ /∈
E(G). For each vertex y0 of Y , y0 is adjacent to at least one of u and w, for
otherwise, we have the conditions of Case 1.

Necessarily, then vw, v′u ∈ E(G). Since |Y | ≥ 3, there exists a vertex y
in Y distinct from v and v′. Also, at least one of the edges yu and yw must
be present in G, say yu. Thus G contains the subgraph shown in Figure 8.
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Figure 8: The subgraph of G in Case 2

Let Π={S1, S2, · · ·, Sn−2}, where S1 = {u, w, y}, S2 = {v}, S3 = {v′}, and
each of the remaining sets Si (4 ≤ i ≤ n− 2) contains only one vertex from
V (G) − {u,w, y, v, v′}. Since r(u|Π) = (0, 2, 1, · · ·), r(w|Π) = (0, 1, 2, · · ·),
and r(y|Π) = (0, 1, 1, · · ·), it follows that Π is a connected resolving (n− 2)-
partition of V (G), contradicting the fact that cpd(G) = n − 1. Therefore,
U is an independent set.

Next we claim the N(u) = N(w) for all u,w ∈ U . It suffices to show that
if uv ∈ E(G), then vw ∈ E(G). Suppose that uv ∈ E(G) for some vertex
v of G. Necessarily v ∈ Y . Assume, to the contrary, that wv /∈ E(G).
Since Y is the vertex set of a maximum clique, there exists y ∈ Y such that
uy /∈ E(G). Since G is connected and U is independent, w is adjacent to
some vertex of Y . we consider two cases.

Case 1. w is adjacent only to y.
Since w and y are not adjacent to u, it follows that d(w, u) = 3, which
contradicts the fact that the diameter of G is 2.

Case 2. There exists a vertex x in Y distinct from y such that wx ∈
E(G).
Thus G contains the subgraph shown in Figure 9. Let Π = {S1, S2, · · · , Sn−2},
where S1 = {w, x}, S2 = {u, v}, S3 = {y}, and each of the remaining
sets Si (4 ≤ i ≤ n − 2) contains only one vertex of V (G) − {u,w, x, v, y}.
Then 〈Si〉 is connected for all 1 ≤ i ≤ n − 2. Since r(u|Π) = (∗, 0, 2, · · ·),
where ∗ is either 1 or 2, r(v|Π) = (1, 0, 1, · · ·), r(w|Π) = (0, 2, 1, · · ·), and
r(x|Π) = (0, 1, 1, · · ·), it follows that Π is a connected resolving (n − 2)-
partition of V (G), contradicting the fact that cpd(G) = n− 1.
Therefore, V (G) = Y ∪U , where 〈Y 〉 is complete, U is independent, |Y | ≥ 3,
|U | ≥ 2, and N(u) = N(w) for all u,w,∈ U .
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Figure 9: The subgraph of G in Subcase 2.2

Next we show that for each u ∈ U , there exists at most one vertex of Y
not contained in N(u). Suppose, to the contrary, that there are two vertices
x, y ∈ Y not in N(u). Let w be a vertex of U that is distinct from u.
Thus wx, wy /∈ E(G). Since G is connected, there exists z ∈ Y such that
z ∈ N(u) = N(w). Thus G contains the subgraph shown in Figure 10.

z

w

x

u

y

Figure 10: The subgraph of G

Let Π = {S1, S2, · · · , Sn−2}, where S1 = {y, z, w}, S2 = {u}, S3 = {x},
and each of the remaining sets Si (4 ≤ i ≤ n − 2) contains only one vertex
of V (G) − {y, z, w, u, x}. Since r(y|Π) = (0, 2, 1, · · ·), r(z|Π) = (0, 1, 1, · · ·),
and r(w|Π) = (0, 2, 2, · · ·), it follows that Π is a connected resolving (n− 2)-
partition of V (G), contradicting the fact that cpd(G) = n− 1.

Now either N(u) = Y or N(u) = Y −{v} for some v ∈ Y . If N(u) = Y ,
then G = Ks + Kt for s = |Y | ≥ 3 and t = |U | ≥ 2. If N(u) = Y − {v},
then G = Ks + (K1 ∪ Kt), where V (K1) = {v}, s = |Y | − 1 ≥ 2, and
t = |U | ≥ 2. However, Ks + (K1 ∪ Kt) = Ks + Kt+1. In either case,
G = Ks + Kt, where t ≥ 3 and so s ≤ n− 3. Let V (Ks) = {u1, u2, · · · , us}
and V (Kt) = {v1, v2, · · · , vt}. We consider three cases.

Case 1. s = t.
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Let Π = {S1, S2, · · · , Ss+1}, where Si = {ui, vi} (1 ≤ i ≤ s− 1), Ss = {us},
and Ss+1 = {vs}. Since d(u, vs) = 1 (u ∈ V (Ks)) and d(v, vs) = 2 (v ∈
V (Kt)), it follows that Π is a connected resolving (s + 1)-partition of V (G).
Hence cpd(G) ≤ s + 1 ≤ n − 3 + 1 = n − 2, which is a contradiction, and
this case cannot occur.

Case 2. s > t.
Let Π = {S1, S2, · · · , Ss+1}, where Si = {ui, vi} (1 ≤ i ≤ t − 1), Si = {ui}
(t + 1 ≤ i ≤ s), and Ss+1 = {vt}. Since d(u, vt) = 1 (u ∈ V (Ks)) and
d(v, vt) = 2 (v ∈ V (Kt)), it follows that Π is a connected resolving (s + 1)-
partition of V (G). Hence cpd(G) ≤ s + 1 ≤ n − 3 + 1 = n − 2, which is a
contradiction, and this case cannot occur.

Case 3. s < t.
Let Π = {S1, S2, · · · , St}, where Si = {ui, vi} (1 ≤ i ≤ s) and Si = {vi}
(s + 1 ≤ i ≤ t). Since Π is a connected resolving t-partition of V (G), it
follows that cpd(G) ≤ t ≤ n − 2, which is a contradiction, and this case
cannot occur.

5. Topics for Study

If G is a connected graph with V (G) = {v1, v2, · · · , vn}, then the ordered
partition Π = {S1, S2, · · · , Sn}, where Si = {vi} for 1 ≤ i ≤ n, into singleton
subsets of V (G) is always a resolving partition of V (G). Since 〈Si〉 is trivially
connected for each i (1 ≤ i ≤ n), it follows that Π is a connected resolving
partition of V (G) as well, and, consequently, cpd(G) is defined.

This suggests a variety of concepts to study. If P is any graphical
property possessed by a trivial subgraph of a connected graph G, then the
ordered partition Π of V (G) described above is said to satisfy property P and
the P -partition dimension pdP (G) is defined. Among the various properties
P , in addition to the property of being connected, are:

(1) the property of being acyclic,
(2) the property of being a path,
(3) the property of being a star,
(4) the property of linear forest (every component is a path),
(5) the property of being a galaxy (every component is a star), and
(6) the property of being planar.
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