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Abstract

We give several characterisations of strongly projective graphs which
generalise in many respects odd cycles and complete graphs [7]. We
prove that all known families of projective graphs contain only strongly
projective graphs, including complete graphs, odd cycles, Kneser graphs
and non-bipartite distance-transitive graphs of diameter d ≥ 3.
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1. Introduction

In this paper all graphs are finite and undirected. For basic terminology
and notation we shall follow [4] (see also [7]). If G and H are graphs, a
homomorphism from G to H is an edge-preserving map from the vertex-set
of G to the vertex-set of H, i.e., a map f : G → H such that f(g)f(g′) is an
edge of H whenever gg′ is an edge of G. The product G×H of two graphs
has vertex set G×H and two vertices (g, h) and (g′, h′) are adjacent if gg′
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and hh′ are edges of G and H respectively. For n ≥ 1 we let Gn denote the
product of G with itself n times.
Consider the following problem: if G, H and K are connected graphs, then
under which conditions are the homomorphisms from G×H to K determined
by the homomorphisms from G to K and those from H to K? Here are a
few instances and aspects of this problem:

1. In [3], Greenwell and Lovász prove that if G is connected and χ(G) ≥ n+1,
i.e., G admits no homomorphism into K, where K is the complete graph on
n ≥ 3 vertices, then the homomorphisms from G×K to K are of the form
(g, k) 7→ σ(k) where σ is an automorphism of K. In other words, we have a
bijection between Hom(G×K,K) and Hom(K, K).

2. C. Tardif [16] has recently proved the following: if H and H ′ are uniquely
3-colourable, i.e., admit, up to automorphisms, a unique homomorphism
to the complete graph on 3 vertices, then H × H ′ admits exactly two 3-
colourings. More generally, Duffus, Sands and Woodrow [1] have conjec-
tured the following: if H and H ′ are uniquely n-colourable then H × H ′

admits exactly two n-colourings. They show that this conjecture implies
Hedetniemi’s conjecture for fixed n: if H and H ′ are (n+1)-chromatic then
χ(H ×H ′) = n + 1.

3. Let K be a core graph, i.e., K has no proper retracts, or equivalently,
every homomorphism f : K → K is an automorphism. Then the homo-
morphisms from Ks to K are determined by those from K to K if they are
of the form σ ◦ πi where σ is an automorphism of K and πi is the projec-
tion onto the i-th factor (i = 1, . . . , s). This is equivalent to saying that
K is projective: in general, a graph K is projective if, for every s ≥ 2, the
only homomorphisms from Ks to K that satisfy f(x, . . . , x) = x (i.e., are
idempotent) for all x ∈ K are the projections [8].

4. In [7] we extend the result of Greenwell and Lovász as follows: let K
be an odd cycle or a complete graph on n ≥ 3 vertices, and let s ≥ 1. If
G is connected and admits no homomorphism to K then there are, up to
automorphisms of K, only s homomorphisms from G×Ks to K. It follows
from results in [8] that this sets up a bijection between Hom(G × Ks, K)
and Hom(Ks,K). Notice that in the case where K is a complete graph
and s = 2, this result verifies the conjecture of Duffus, Sands and Woodrow
where H = G×K and H ′ = K.

In view of the above, we are led to the following restricted version of the
problem:
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Problem 1. Let K be a core graph. Under what conditions on K may we
conclude that, if G is any connected graph which admits no homomorphism
to K, then there are, up to automorphisms of K, only s homomorphisms
from G×Ks to K ?

This problem splits naturally into 2 distinct problems, which we now de-
scribe. We shall require the notion of exponential graph, first introduced by
Lovász [11] (see also [2]): Let G and K be two graphs. Define KG as fol-
lows: the vertices are all the functions from G to K, and two such functions
f and g are adjacent if they satisfy the following condition: if x and y are
adjacent in G then f(x) and g(y) are adjacent in K.1 This definition sets
up a natural bijection between Hom(G ×H, K) and Hom(H, KG) for any
graph H.

Problem 1a. Let K be a core graph. Under what conditions on K may we
conclude that, if G is any connected graph which admits no homomorphism
to K, then there is a unique homomorphic image of K in KG (namely, the
the one induced by the constant maps) ?

Problem 1b. Let K be a core graph. Under what conditions on K may
we conclude the following: if G is any connected graph which admits no
homomorphism to K, and if s ≥ 2, then the only homomorphisms f :
G×Ks → K that satisfy the identity f(g, x, . . . , x) = x for all x and g, are
projections ?

We have the following:

Proposition 1.1. A core graph K satisfies the condition of Problem 1 if
and only if it satisfies the conditions of Problems 1a and 1b.

Proof. Let K satisfy the conditions of Problems 1a and 1b. Let G be
any connected graph which admits no homomorphism to K, and let f :
G × Ks → K be a homomorphism. Since we may embed K in Ks as the
diagonal, we obtain a map Φ : K → Ks → KG using the natural property
of the exponential graph. By the property of Problem 1a, the image of this
map must be the set of constant maps. Since K is a core, it follows that
there exists an automorphism σ of K such that f(g, x, . . . , x) = σ(x) for all
x ∈ K and g ∈ G. Hence h = σ−1 ◦f satisfies the identity h(g, x, . . . , x) = x
for all x and g, and by the condition of Problem 1b it follows that h is a

1These graphs may contain loops, namely, the homomorphisms from G to K.
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projection. Consequently, f is a projection up to an automorphism of K
and there are exactly s of these.

Now suppose that K satisfies the condition of Problem 1. For s = 1,
this is precisely the condition of Problem 1a; and it is immediate that K
satisfies the condition of Problem 1b.

It is easy to see that a core graph K that satisfies the condition of Problem
1b must be projective: if f : Ks → K is idempotent, let G be any connected
graph that admits no homomorphism into K, and define a homomorphism
F : G ×Ks → K by F (g, x1, . . . , xs) = f(x1, . . . , xs). It follows that f is a
projection. On the other hand, consider the following stronger property.

Problem 1b’. Let K be a core graph. Under what conditions on K
may we conclude the following: if G is any connected graph, and if s ≥ 2,
then the only homomorphisms f : G × Ks → K that satisfy the identity
f(g, x, . . . , x) = x for all x and g, are projections ?

In the first part of the paper we give several characterisations of those graphs
K that satisfy the condition of Problem 1b’ (Theorem 2.3), which we shall
refer to as strongly projective graphs. In the second half of the paper we
shall investigate the following question: is every projective graph in fact
strongly projective ? We shall prove that all known families of projective
graphs contain only strongly projective graphs (Theorems 3.2, 3.3, 3.4, 3.5,
3.9 and 3.10). These include, among others, complete graphs (with at least
3 vertices), odd cycles, Kneser graphs, and non-bipartite distance-transitive
graphs of diameter d ≥ 3. Obviously, if every projective graph is strongly
projective, then the conditions of Problems 1b and 1b’ are equivalent.

Although we shall not investigate Problem 1a here, a few comments are
in order. Let K be a core graph. For convenience, call a graph G uniquely
K-colourable if, up to automorphisms of K, there exists a unique homomor-
phism from G to K. We adapt the result of Duffus, Sands and Woodrow
[1] mentioned above to the more general setting of graph homomorphisms.
Consider the following properties that a core graph K might possess:

(A) If G and H are uniquely K-colourable, then G × H admits only two
homomorphisms to K (up to automorphisms of K).

(B) If G is uniquely K-colourable and H admits no homomorphism to K
then G×H is uniquely K-colourable.

(C) If G and H admit no homomorphism to K then neither does G × H,
i.e., K is multiplicative.



Families of Strongly Projective Graphs 275

Proposition 1.2. Let K be a core graph that satisfies the property of Prob-
lem 1a. If K satisfies property (A) then it must satisfy property (B). If it
satisfies property (B), then K is multiplicative.

Proof. This is a direct adaptation of [1], Theorem 3.3. Notice first that if
a graph K satisfies the property of Problem 1a then by the natural property
of the exponential graph, for every graph G that admits no homorphisms to
K, G×K is uniquely K-colourable.

Suppose that G is uniquely K-colourable, that H admits no homomor-
phism to K but G×H admits more than one homomorphism to K. Consider
the graph (G×H)×K: it admits at least three homomorphisms to K (two
from the factor G ×H and one from the factor K. However, when viewed
as G× (H ×K), it admits only two homomorphisms to K, since (A) holds
and G and H×K are uniquely K-colourable. This is a contradiction so (A)
implies (B).

Now suppose that G and H admit no homomorphism to K but that
G × H does. Consider the graph (G × H) × K: it admits at least two
homomorphisms, one from the factor G × H the other from the factor K.
However, when viewed as G× (H ×K), it must be uniquely K-colourable,
by (B). Hence (B) implies that K is multiplicative.

2. Strongly Projective Graphs

Let K be any graph and let s ≥ 1. Let Es(K) denote the graph KKs
and let

Is(K) denote the subgraph of Es(K) consisting of the idempotent functions,
i.e., those f that satisfy f(x, . . . , x) = x for all x. Call a graph K strongly
projective if, for every s ≥ 2, the only f ∈ Is(K) with at least one neighbour
(in Is(K)) are the projections (see [7] for details).

We shall require the notion of probe, which was introduced in [10] and
used by Nešetřil and Zhu in [13] to construct sparse graphs with prescribed
colourings. Let K be any graph. A triple (P, Q, q) is a K-coloured graph if
P is a graph, Q is a (possibly empty) set of vertices of P and q is a function
with domain Q and codomain K. Let θ be a k-ary relation on K, k ≥ 1. A
quadruple (P, Q, q,R) is a K-probe for θ (or θ admits the probe (P,Q, q, R))
if (i) (P, Q, q) is a K-coloured graph and (ii) R = (v1, . . . , vk) is a k-tuple of
vertices of P such that

θ = {(f(v1), . . . , f(vk)) : f is a map from P to K that extends q} .
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A K-probe (P, Q, q, R) is said to be bipartite if P is bipartite. When k = 1,
which is the only case we’ll use in this paper, we’ll assume that R = v is a
vertex of K.

We shall need the following:

Lemma 2.1 [9]. A graph K with at least 3 vertices is projective if and only
if every pair of vertices admits a probe.

Let K be a graph. If a is a vertex of K let Na denote its neighbourhood in
K, i.e., the set of all vertices of K adjacent to a. We shall say that a graph is
ramified if for all vertices a and b of K we have that Na ⊆ Nb implies a = b.
If K is a ramified, connected, non-bipartite graph, the neighbourhood poset
of K is the poset P = PK of all non-empty intersections of neighbourhoods
of K ordered by inclusion. A poset is projective if the only idempotent
order-preserving operations on P are projections.

Lemma 2.2 [7]. Let K be a ramified, connected, non-bipartite graph and
let f ∈ Es(K) have at least one neighbour. Then

1. If f is adjacent to a projection in Es(K) then f is equal to that projec-
tion.

2. If f ∈ Is(K) and g is adjacent to f then g ∈ Is(K).
3. If f satisfies f(x1, . . . , xs) ∈ {x1, . . . , xs} for all xi then f is a projec-

tion.

We can now state and prove our first result:

Theorem 2.3. Let K be a graph with at least 3 vertices. Then the following
statements are equivalent:

1. K is strongly projective.
2. PK is a projective poset.
3. K is projective and I2(K) consists of isolated vertices.
4. Every pair of vertices of K admits a bipartite probe.
5. For every connected graph G with at least 2 vertices, and every s ≥ 2,

the only maps f : G ×Ks → K satisfying f(y, x, . . . , x) = x for all y
and x, are the projections f(y, x1, . . . , xs) = xi.

Proof. The equivalence of (1), (2) and (3) is proved in [7].
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(1) ⇒ (5) Let f : G × Ks → K satisfy f(y, x, . . . , x) = x for all y and x.
By the natural property of exponential graphs we obtain a homomorphism
F : G → Is(K) such that F (g)(x1, . . . , xs) = f(g, x1, . . . , xs) for all g and
xi. Since G is connected and contains at least two vertices, F (g) has at
least one neighbour, and so must be a projection, for any g ∈ G. Hence by
Lemma 2.2 (1) no two distinct projections can be adjacent, so there is an
i = 1, . . . , s such that F (g) is the i-th projection, and (5) follows.

(5) ⇒ (4) Let θ = {u, v} be a pair of vertices of K. Our probe is the
following: let P be K2×K2 where K2 is the complete graph on two vertices
(we shall denote these by 0 and 1 for convenience). Let Q be all elements
of P of the form (i, x, x), and define q by q(i, x, x) = x for all x ∈ K and
i = 0, 1. Let R be (0, u, v). Now any map f from P to K that extends q
satisfies f(i, x, x) = x for all x and all i so f must be a projection. Hence
f(0, u, v) is u or v. Since both projections do extend q, it follows that we
have a bipartite probe for θ.

(4) ⇒ (3) It follows from Lemma 2.1 that K is projective. Let φ ∈ I2(K)
have a neighbour ψ. It will suffice by Lemma 2.2 (3) to show that φ(x, y) ∈
{x, y} for all x, y ∈ K. Note that by Lemma 2.2 (2) we know that ψ ∈ I2(K).
Pick x and y in K distinct, and let (P,Q, q,R) be a bipartite probe for the
pair {x, y}, where R = u. We show that φ(x, y) ∈ {x, y} as follows: let A
and B be the colour classes of P and assume wlog that u ∈ A. There are
maps µ and ν from P to K extending q such that µ(u) = x and ν(u) = y.
Consider the map η from P to K defined by

η(p) =

{
φ(µ(p), ν(p)) if p ∈ A,

ψ(µ(p), ν(p)) if p ∈ B.

Notice that η is a homomorphism because φ and ψ are adjacent, and η
extends q because both φ and ψ are in I2(K). It follows that η(u) = φ(x, y)
must be in {x, y}, and this completes the proof.

3. Families of Strongly Projective Graphs

We now proceed to show that all known projective graphs are in fact strongly
projective. For our first result we require the following: a poset P has length
1 if every element of P is either minimal or maximal (in other words, every
chain in P has at most 2 elements). A finite poset is ramified if every
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non-maximal element is covered by at least two elements, and dually, every
non-minimal element covers at least two-elements. The following result is a
special case of Corollary 1 of [5].

Theorem 3.1 [5]. Let P be a finite, connected, ramified poset of length 1.
Then P is projective.

We shall say that a graph is square-free if it contains no (not necessarily
induced) 4-cycle.

Theorem 3.2. Let K be a square-free, connected, ramified, non-bipartite
graph. Then K is strongly projective. In particular, odd cycles are strongly
projective.

Proof. It is easy to see that the neighbourhood poset of a square-free graph
has length 1 (see [17], Corollary 12.2). Since K is connected, ramified and
non-bipartite, it follows easily that its neighbourhood poset P is connected
and ramified (see [7]). Hence P is projective by Theorem 3.1. We conclude
by Theorem 2.3 that K is strongly projective.

Let r, l be positive integers such that r < l/2. The circular graph Circ(r, l)
is defined as follows:

V (Circ(r, l)) = Zl = {0, 1, . . . , l − 1},
E(Circ(r, l)) = {[i, j] : i− j ∈ {r, r + 1, . . . , l − r}}.

Theorem 3.3. If K is a circular graph, then K is strongly projective. In
particular, complete graphs on at least 3 vertices are strongly projective.

Proof. We prove that every pair of vertices admits a bipartite probe. In
Theorem 6 of [10] it is proved that every pair of vertices admits a probe. It
is easy to see that in fact, the probe constructed in that proof is bipartite,
if one notices the following:

(i) if two sets of vertices admit bipartite probes then so does their in-
tersection. Indeed, if θ admits the bipartite probe (P, Q, q,R) and θ′ admits
the bipartite probe (P ′, Q′, q′, R′), then we construct a probe for θ ∩ θ′ as
follows. Let R = v and R′ = v′. Let (P ′′, Q′′, q′′) be the K-coloured graph
obtained from the disjoint union of (P, Q, q) and (P ′, Q′, q′) by identifying
v and v′. Let v′′ denote this vertex, and let R′′ = v′′. Then it is easy to see
that (P ′′, Q′′, q′′, R′′) is a bipartite probe for θ ∩ θ′.
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(ii) if a set A of vertices admits a bipartite probe (P,Q, q, R), then the set
B of all vertices adjacent to some member of A also admits a bipartite probe
(P ′, Q, q, R′), obtained by adding a new vertex u adjacent to the vertex R,
keeping Q and q as is and letting R′ = u. Since every pair of vertices admits
a bipartite probe, it follows from Theorem 2.3 that the circular graphs are
strongly projective.

The graphs we call truncated simplices were defined in [10]: Let n ≥ 4 be an
integer. The truncated n-simplex Tn is defined as follows:

V (Tn) = {(i, j) ∈ {0, 1, . . . , n− 1}2 : i 6= j},
E(Tn) = {[(i, j), (k, l)] : i = k, j 6= l or i = l, j = k}.

Theorem 3.4. If K is a truncated simplex, then K is strongly projective.

Proof. Let K = Tn be a truncated simplex. If n = 4 then K is ramified,
non-bipartite and square-free so by Theorem 3.2 we may assume that n ≥ 5.
For convenience, in what follows we shall denote the vertex (a, b) of K by
ab. Define binary relations λ, σ, ρ, E, I and M on V (K)2 as follows:

• ab λ cd iff a = c;
• ab ρ cd iff b = d;
• ab σ cd iff a = d and c = b;
• ab E cd iff a = d;
• ab I cd iff b = c;
• ab M cd iff a, b, c, d are all distinct.

Notice that the union of these relations is equal to V (K)2. We prove that
K is strongly projective using the definition. Let f and g be adjacent in
I2(K).

Claim. Let B be a block of λ. Then f |B2 = g|B2 is a projection.
Indeed, we have that f(ab, ac) is adjacent to g(ad, ad) = ad for all d 6= a, b, c.
Since there are at least two such d’s it follows that f(ab, ac) is either ab or
ac. This means that the restriction of f to B2 is a member of I2(B) which
satisfies the condition of Lemma 2.2 (3). Since B is a complete graph with
at least 4 vertices, and by Theorem 3.3 these graphs are strongly projective,
it follows from Lemma 2.2 (1) and (3) that f |B2 = g|B2 is a projection on
each block of λ.
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Now we prove that f and g are the same projection on all blocks. Assume
wlog that f(ab, ac) = ab for all b, c, for some a. Then g(ab, ba) is adjacent
to f(ac, ab) = ac for all b, c 6= a, which forces g(ab, ba) = ab, and similarly
for g. Now ab = f(ab, ba) is adjacent to g(ba, bc) for all c 6= a, b, and this
forces g(ba, bc) = ba. Hence f and g are the first projection when restricted
to any block of λ.

We may now assume without loss of generality that f |B2 = g|B2 is the
first projection for every block B of λ. We show that f(x, y) = g(x, y) = x
for all x, y. Notice first that the result holds for pairs in σ as was shown in
the proof of the claim. Next we prove it for pairs in ρ: f(ac, bc) is adjacent
to g(ab, ba) = ab and to g(ca, cb) = ca, and again we find f(ac, bc) = ac.
Now for I: f(ab, bc) is adjacent to g(ad, bd) = ad for any d distinct from
a, b, c so this forces f(ab, bc) = ab or f(ab, bc) = ac. However f(ab, bc) is
adjacent to g(ba, ba) = ba so we’re done. Next for E: f(ab, ca) is adjacent
to g(ad, ac) = ad for any d different from a, b so this takes care of this case.
Finally we take care of M : f(ab, cd) is adjacent to g(ad, dc) = ad and is also
adjacent to g(ac, dc) = ac.

If u, v are vertices of a connected graph K, let ∂(u, v) denote the usual
distance between u and v in K. Recall that a vertex in a graph K is
universal if it is adjacent to all other vertices.

Theorem 3.5. Let K be a graph obtained from a connected, ramified, bi-
partite graph by adding a universal vertex. Then K is strongly projective.

Proof. Let K0 be a connected, ramified bipartite graph, and let K be the
graph obtained from K0 by adding a vertex u such that u is adjacent to
every vertex in K0. We construct a bipartite probe for every pair in K.

It is usually more convenient to depict probes by diagrams. We shall use
the following conventions (see Figures 1 and 2): let (P, Q, q,R) be a probe
for θ. Vertices in Q are depicted by darkened vertices, and the value of the
function q is indicated. The element R = v is surrounded by a square. If
there exists a bipartite probe (P ′, Q′, q′, R′) for the set A, we may use the
glueing method used in the proof of Theorem 3.3 above to force values of
extensions of q at certain vertices of P . More precisely, if p ∈ P , we may
construct a bipartite probe for the set θ′ defined by

θ′ = {f(v) : f is a map from P to K that extends q and f(p) ∈ A}
simply by attaching a copy of the probe for A at the vertex p. The process
may of course be repeated. In diagrams, such glued probes will be omitted,
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but the possible values that a homomorphism f : P → K extending q may
take at a vertex p (i.e., the elements in A) will be indicated.

Let P be a path of length t, i.e., a graph with vertices {0, 1, 2, . . . , t}
and edges [i, i + 1] 0 = i, . . . , t− 1. Let Q = {0} and R = t. If θ admits the
probe (P, Q, q, R) we say that θ is a ball. Notice that neighbourhoods are
balls, and that intersection of balls admit bipartite probes.

(i) Let x ∈ K0 and consider the pair {x, u}. Then this is an intersection
of balls, namely, if N is the set of all neighbours of x in K0 then {x, u} is
the set of all vertices of G that are adjacent to every vertex in N . Hence
{x, u} admits a bipartite probe.

Let {x, y} ⊆ K0. Let {a1, . . . , ak} and {b1, . . . , br} denote the respective
neighbourhoods of x and y in K0.

(ii) Suppose first that ∂(x, y) is odd. We construct a probe (P, Q, q, R)
for {x, y} as follows (see Figure 1): let P ′ be the subset of K2 × K2 con-
sisting of the following triples: (x, y, 0), (y, x, 1), (u, u, 0), (u, u, 1); (ai, u, 1),
(u, bj , 1), (u, ai, 0) and (bj , u, 0) for all i, j. The edges of P ′ are: (u, u, 1) ad-
jacent to (x, y, 0), which is adjacent to each of (ai, u, 1) and (u, bj , 1). Each
(ai, u, 1) is adjacent only to (u, ai, 0) and each (u, bj , 1) is adjacent only to
(bj , u, 0). Then each (u, ai, 0) and (bj , u, 0) is adjacent to (y, x, 1) which is
adjacent to (u, u, 0). To obtain P , it remains to glue bipartite probes at
each (ai, u, 0) and (u, bj , 1) to insure that the possible values are only u and
ai (u and bj). Also, Q consists of (u, u, 0) and (u, u, 1) with q(u, u, i) = u.
Finally let R = (x, y, 0).

Figure 1: A probe for {x, y} when ∂(x, y) is odd

It is easy to see that the set θ that admits this probe contains x and y (just
choose the correct projection). Now suppose it contains some z ∈ K, and let
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f be a map from P to K such that f(R) = z. Clearly z ∈ K0, so there exist
ai and bj not adjacent to z since K0 is ramified. This means f(ai, u, 1) = u
and f(u, bj , 1) = u. This in turn forces f(u, ai, 0) = ai and f(bj , u, 0) = bj ,
and both of these are adjacent to f(y, x, 1) ∈ K0. But this is impossible
since ∂(x, y) is odd.

(iii) Now suppose that ∂(x, y) is even. Consider a path {c0, c1, . . . ,
c2n−1, c2n} such that c0 = x, c1 = a1, c2n−1 = b1 and c2n = y (it must exist
since K0 is bipartite and x and y are in the same colour block). We construct
a probe (P,Q, q, R) for {x, y} as follows (see Figure 2): first let P ′ consist
of vertices labeled by (x, y, 0), (x, y, 1); (ai, u, 1), (u, bj , 1), (bj , u, 0), (u, ai, 0)
for all i, j; (y, a1, 1), (b1, x, 1); and (u, x, 0), (y, ai, 0) for all i; and vertices
labeled by C1, . . . , C2n−2 and vertices labeled by B0, . . . , B2n−1. The edges
are as follows: (x, y, 0) is adjacent to each (ai, u, 1), (u, bj , 1); each (ai, u, 1)
is adjacent only to (u, ai, 0) and each (u, bj , 1) is adjacent only to (bj , u, 0).
(y, a1, 1) is adjacent to every (bj , u, 0) and to (u, x, 0); (b1, x, 1) is adjacent
to every (u, ai, 0) and to every (y, ai, 0); (x, y, 1) is adjacent to (u, x, 0) and
every (y, ai, 0); the Ci form a path, with C1 adjacent to (x, y, 0) and C2n−2

adjacent to (x, y, 1); finally, the Bi form a path with B0 coloured with the
value x (i.e., q(B0) = x) and B2n−1 adjacent to (x, y, 0).

Figure 2: A probe for {x, y} when ∂(x, y) is even
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Next, glue bipartite probes at every vertex other than (x, y, i), Bi and Ci to
insure that the values are contained in the corresponding 2-subset (note that
this is always possible: either one of the labels is u or the labels are at odd
distance in K0). Finally glue a bipartite probe at each Ci, Bi and (x, y, 0)
to insure that their values will lie in K0 (i.e., just add a vertex coloured by
u adjacent to it). Let R = (x, y, 0).

First we show that x and y are in the set S constructed by P : first con-
sider the map f which is the first projection on all tuples except f(x, y, 1) =
b1, f(Ci) = ci for all i, and f(Bi) = a1 if i is odd and f(Bi) = x otherwise.
It is straightforward to verify that f is a homomorphism. Thus x ∈ S.

Now consider the map g which is the second projection on all tuples
except g(x, y, 1) = u, g(Bi) = ci for all i and g(Ci) = y if i is even and
g(Ci) = b otherwise. It is easy to see that g is a homomorphism and extends
q so y ∈ S.

Next we show that no other element is in S. Suppose that there exists
an f from P to K with f(x, y, 0) = z different from x and y. Then certainly
z ∈ K0 so there exist i, j such that f(u, bj , 1) = u and f(ai, u, 1) = u,
which forces in turn f(bj , u, 0) = bj and f(u, ai, 0) = ai. Now each bj

is at even distance from each ai (in K0) so this forces f(y, a1) = y and
f(b1, x, 1) = x. This forces f(u, x, 0) = u and f(y, ai, 0) = ai for all i, which
forces f(x, y, 1) = x. But now we’ve got a path f(Ci) of odd length from x to
z and a path f(Bi) of even length from x to z, both in K0, a contradiction.

The last two families of graphs we shall consider are primitive and distance-
transitive graphs. Recall that a graph K is primitive if there exists no
non-trivial partition of the vertices of K which is invariant under all auto-
morphisms of K. A connected graph is distance-transitive if, for all vertices
a, b, c, d ∈ K such that ∂(a, b) = ∂(c, d) there exists an automorphism σ of
K such that σ(a) = c and σ(b) = d. The diameter of a connected graph
K is the maximum value of ∂(u, v) taken over all vertices u, v of K. For
our purposes, call a graph K directly indecomposable if K is not isomor-
phic to a product A × B where A and B are graphs (possibly with loops)
with more than one vertex. Notice that a projective graph must be directly
indecomposable: the so-called decomposition operation

((a1, b1), (a2, b2)) 7−→ (a1, b2)

is a non-trivial idempotent operation on the graph A×B.
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The proofs of the last two theorems will rely on some algebraic machinery
that has been developed in [8]. An (universal) algebra is a pair A = 〈A,F 〉
where A is a non-empty set called the universe of A and F is a set of
operations f : As → A on A called the basic operations of A. An algebra
is surjective if all its basic operations are surjective. A subalgebra of an
algebra A is a non-empty subset B of A invariant under all operations in F .
The algebra A is simple if there is no non- trivial partition of A invariant
under all operations in F (such a partition is called a congruence of A). A
term operation of A is an operation on A which can be obtained from the
operations in F and projections by composition. A Maltsev term is a 3-ary
operation f that satisfies

f(x, y, y) = f(y, y, x) = x

for all x, y. We shall require a result of A. Szendrei [15, Theorem 3.4] that
we reformulate slightly for our purposes.

Lemma 3.6. Let A be a finite, simple, surjective algebra with no proper
subalgebras. If A has no Maltsev term, then there exist an integer m ≥ 1, a
set X and a group of permutations S acting primitively on X such that

(i) A = Xm,
(ii) the s-ary idempotent term operations of A are precisely those of the

form

f((x1
1, . . . , x

1
m), (x2

1, . . . , x
2
m), . . . , (xs

1, . . . , x
s
m)) = (xi1

1 , . . . , xim
m )(1)

for some 1 ≤ i1, . . . , im ≤ s, and

(iii) the unary term operations of A are precisely those of the form

f((x1, . . . , xm)) = (σ1(xj1), . . . , σm(xjm))(2)

for some σi ∈ S and 1 ≤ j1, . . . , jm ≤ m.

Proof. By Szendrei’s theorem a finite, simple, surjective algebra with no
proper subalgebras either has a Maltsev term or is isomorphic to an algebra
term-equivalent to a matrix power of a primitive permutation group (see
[8]). The identities (1) and (2) follow directly from the definition of matrix
product.
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In what follows K shall denote a connected, non-bipartite, ramified vertex-
transitive graph without loops. We consider the algebra A(K) = 〈A, F 〉
where A is the vertex set of K, and F consists of all functions (of all
arities s) f : Ks → K that are surjective and admit at least one neighbour
in Es(K). Notice that for s = 1, these are precisely the automorphisms of
the graph. Notice also that the terms of A(K) are precisely its basic opera-
tions. Clearly A(K) is surjective, and since K is vertex-transitive A(K) has
no proper subalgebras.

Lemma 3.7. Let K be a connected, ramified, non-bipartite graph. Let s ≥ 3
and let f ∈ Es(K) that has at least one neighbour and satisfies

f(a1, . . . , as−2, x, x) = a1

for all ai ∈ K and all x ∈ K. Then f is a projection onto the first variable.
In particular, no function in E3(K) with a neighbour can be a Maltsev term.

Proof. Let P be the neighbourhood poset of K. Consider the operation f̂
defined on P by

f̂(X1, . . . , Xs) =
⋂

ai∈NXi

Nf(a1,...,as)

for all Xi ∈ P (see [7] Lemma 2.2) It is straightforward to see that f̂ satisfies
the identity

f̂(Y1, . . . , Ys−2, X, X) = Y1

for all Yi ∈ P and all X ∈ P . By Lemma 2.2 (Claim 3) in [7] it follows that
f̂ is the projection onto the first variable, and hence that f is the projection
onto the first variable.

Lemma 3.8. Let K be a connected, ramified, non-bipartite vertex-transitive
graph. If the algebra A(K) is simple, then there exists a primitive graph H
and an integer m ≥ 1 such that K is isomorphic to Hm.

Proof. Let A = A(K). By Lemma 3.6 there exist a set H and an integer
m ≥ 1 such that V (K) = Hm. We shall define the correct graph structure
on the set H. First we must prove that the terms of A are actually graph
homomorphisms. Let f be an idempotent term of the algebra A. Then
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f ∈ Is(K) and has a neighbour g. By Lemma 2.2 (2) g ∈ Is(K). We show
that f = g. By Lemma 3.6 f and g satisfy (1) so

f((x1
1, . . . , x

1
m), (x2

1, . . . , x
2
m), . . . , (xs

1, . . . , x
s
m)) = (xi1

1 , . . . , xim
m )

g((x1
1, . . . , x

1
m), (x2

1, . . . , x
2
m) . . . , (xs

1, . . . , x
s
m)) = (xj1

1 , . . . , xjm
m )

for some 1 ≤ i1, . . . , im, j1, . . . , jm ≤ s. Assume wlog that im 6= jm. Choose
2 vertices u = (x1

1, . . . , x
1
m) and v = (x2

1, . . . , x
2
m) of K that have the greatest

number of identical coordinates and are adjacent. Because the unary term
operations of A are automorphisms of K, and in view of Lemma 3.6 (iii),
permutation of the entries of m-tuples are automorphisms of K, and hence
we may assume that x1

m 6= x2
m.

Let u′ = f(u, . . . , u, v, u, . . . , u) where v is in position im and let v′ =
g(v, . . . , v, u, v, . . . , v) where u is in position im. Notice that these vertices are
adjacent. It is easy to verify that, if u and v have the same l-th coordinate,
then u′ and v′ have the same l-th coordinate. Furthermore, it is clear that,
since im 6= jm, u′ and v′ also have the same last coordinate, contradicting
our choice of u and v.

Let h1, h2 ∈ H. Define a graph structure on H by stipulating that
h1 and h2 are adjacent if there exist (x1, . . . , xm) and (y1, . . . , ym) that are
adjacent in K such that xi = h1 and yi = h2 for some 1 ≤ i ≤ m. To
show that K = Hm, let u = (x1

1, . . . , x
1
m) and v = (x2

1, . . . , x
2
m) be tuples

such that x1
i is adjacent to x2

i in H for all i. We must show that u and
v are adjacent in K. Fix 1 ≤ i ≤ m. By definition of adjacency in H,
there exist ui = (y1

1, . . . , y
1
m) and vi = (y2

1, . . . , y
2
m) adjacent in K such that

y1
j = x1

i and y2
j = x2

i . By permuting the entries we may suppose that j = 1.
Now the following operation f is a term of A, and hence a homomorphism
f : Km → K:

f((z1
1 , . . . , z

1
m), (z2

1 , . . . , z
2
m), . . . , (zm

1 , . . . , zm
m)) = (z1

1 , z
2
1 , . . . , z

m
1 ).

We then have that u = f(u1, . . . , um) is adjacent to v = f(v1, . . . , vm) and
we are done.

Finally we prove that the group of permutations S that acts primitively
on H by virtue of Lemma 3.6 is precisely the group of automorphisms of H.
Let σ be an automorphism of H. Then

f((x1, . . . , xm)) = (σ(x1), x2, . . . , xm)
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is an automorphism of K and hence a term of A. By Lemma 3.6 (iii) it
follows that σ ∈ S. Conversely if σ ∈ S it is easy to see that σ is an
automorphism of H. It follows that H is a primitive graph.

Theorem 3.9. Let K be a directly indecomposable primitive graph on at
least 3 vertices. Then K is strongly projective. In particular, Kneser graphs
are strongly projective.

Proof. Let K be a directly indecomposable primitive graph with 3 or more
vertices. Clearly connected components are blocks of an invariant partition,
so K must be connected. K cannot be bipartite, for otherwise the colour
classes would form the blocks of an invariant partition. Now suppose that
there exist vertices a and b such that Na ⊆ Nb. Since K is vertex-transitive,
it is regular so we must have that Na = Nb. Define a partition ρ on K
as follows: (x, y) ∈ ρ if Nx = Ny. It is obvious that ρ is an equivalence
relation and is preserved by all automorphisms. Since ρ contains at least
one non-trivial pair and K is primitive, it follows that ρ must equal K2,
i.e., Nx = Ny for all x and y. This is obviously impossible if K contains an
edge. Hence, K is ramified. So we may construct the algebra A = A(K)
as above. Since K is primitive it follows that A is simple. By Lemma 3.8
we must have m = 1 and so by 3.6 (ii) the only idempotent terms of A are
projections. It follows that K is strongly projective.

The remainder of the section shall be devoted to proving the following result.

Theorem 3.10. Let K be a non-bipartite distance-transitive graph of diam-
eter at least 3. Then K is strongly projective.

Lemma 3.11. Let K be a non-bipartite distance-transitive graph of diame-
ter d ≥ 3. Then K is ramified and directly indecomposable.

Proof. Notice that if Nx ⊆ Ny for some x 6= y in K then by transitivity we
get that Nu = Nv for all vertices u and v with ∂(u, v) = 2. Let a, b ∈ K be
elements at distance at least 3 and let a = x0, x1, . . . , xn = b be a shortest
path in K from a to b. Then x3 is adjacent to x2 which is at distance 2 from
x0, hence x3 must be adjacent to x0, a contradiction.

It is known that we have unique factorisation into indecomposable fac-
tors for connected, non-bipartite ramified graphs, in the class of graphs with
loops (see [6], Theorem 5.42). So let

K ' Pm1
1 × Pm2

2 × · · ·Pmk
k
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where the Pi are pairwise non-isomorphic directly indecomposable graphs
(possibly with loops). The Pi are ramified, connected and non-bipartite.
Furthermore, the automorphism group of K is

Aut(K) = Aut(P1) o Sm1 × · · · ×Aut(Pk) o Smk
.

Case 1. Suppose some factor has loops at every vertex. Let P1, . . . , Pr be
the factors that have loops at every vertex (since K has no loops r ≤ k−1).
Since K is ramified, so is Pi, and it follows that Pi must contain vertices ui

and vi at distance 2. For r + 1 ≤ i ≤ k let ai and bi be distinct vertices of
Pi such that ai has no loop and such that there is a path of length 2 from
ai to bi (such elements must exist if Pi is connected and has more than 2
elements). Now consider the following elements of K: let α be the element
of K with ui in each coordinate corresponding to Pi for 1 ≤ i ≤ r and ai in
the coordinates corresponding to Pi with r + 1 ≤ i ≤ k; let β be obtained
from α by replacing each ui by vi. Let γ be obtained from β by replacing
each ai by bi. Then it is easy to see that ∂(α, β) = ∂(α, γ) = 2 but there is
no automorphism of K fixing α and mapping β to γ.

Case 2. Each factor has at least one loopless element, and there are at
least two non-isomorphic factors. Notice that some factor Pi has a pair of
elements at distance 2, otherwise each of these factors is a complete graph
(with no loops, since they must be ramified). But then K would have
diameter 2, a contradiction. So suppose that P1 has elements u and v at
distance 2, and for i ≥ 2 choose distinct elements ai and bi in Pi just as in
Case 1: ai has no loop and there is a path of length 2 from ai to bi. The
elements α, β and γ of K are defined in a manner similar to Case 1.

Case 3. K = Pn for some directly indecomposable graph P . We suppose
that n ≥ 2. Let a and b be elements of P such that ∂(a, b) = 2. Consider
the following elements of K: α = (a, b, b, . . . , b), β = (a, a, b, . . . , b) and
γ = (b, a, b, . . . , b). It is clear that ∂(α, β) = ∂(α, γ) = 2. It remains to show
that no automorphism of K can fix α and map β to γ: but this follows from
the fact that α and γ have two distinct coordinates, but α and β have only
one. By the structure of the automorphism group of K we conclude that
n = 1.

Let K be a non-bipartite distance-transitive graph of diameter d ≥ 3. By
the last lemma, we may construct the algebra A = A(K). If it is simple,
then by Lemmas 3.8 and 3.11 K is primitive and so it is strongly projective
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by Theorem 3.9. So assume that the algebra A is not simple. In particular,
this means that there exists a non-trivial partition θ of the vertices which
is invariant under all automorphisms of K. The following result of Smith
[14] will describe θ precisely. A graph K of diameter d is antipodal if the
following holds: for any vertices u, v, w such that ∂(u, v) = ∂(u,w) = d then
either v = w or ∂(v, w) = d. In other words, the relation ‘being at distance
d or equal’ is an equivalence relation.

Theorem 3.12 [14]. Let G be a non-bipartite distance-transitive graph of
diameter d ≥ 3. Then G is (i) an odd cycle, or (ii) primitive or (iii) an-
tipodal. Furthermore, in the last case, the only partition preserved by the
automorphisms is the antipodality relation.

We may assume that K is neither an odd cycle nor primitive. It follows that
the algebra A has a unique non-trivial congruence that we shall denote by
θ. Let B denote the quotient algebra A/θ, i.e., the algebra whose universe is
the set B = A/θ of blocks of the partition, and whose basic operations are
those induced by the basic operations of A, i.e., if f ∈ F , let f ′ be defined
by

f ′(a1/θ, . . . , as/θ) = f ′(a1, . . . , as)/θ

for all ai ∈ A.

Lemma 3.13. The algebra B is simple, surjective and has no proper subal-
gebras. Furthermore, it has no Maltsev term.

Proof. By the correspondence theorem (see [12], Theorem 4.12), and since
A has a unique non-trivial congruence, B is simple. Let f be a basic op-
eration of A. Then f is surjective, and hence the corresponding operation
f ′ of B is also surjective: if b/θ ∈ B then there exist ai ∈ A such that
f(a1, . . . , as) = b and so f ′(a1/θ, . . . , as/θ) = f(a1, . . . , as)/θ = b/θ. Let
a/θ and b/θ be distinct elements of B. Then there exists an operation
f ∈ F such that f(a) = b so f ′(a/θ) = b/θ. It follows that B cannot have
proper subalgebras.

Now we prove that B has no Maltsev term. We define a graph structure
K/θ on B as follows: two elements X and Y of B are adjacent if there
exist a ∈ X and b ∈ Y such that a and b are adjacent in K. Clearly
this relation is symmetric, and since θ is the antipodality relation of K the
graph K/θ has no loops. It is easy to see that K/θ is ramified, connected
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and non-bipartite, since K has these properties. Let φ be a term of B.
Since the set F of basic operations of A is closed under composition, it
follows that φ = f ′ is induced by some f ∈ F , which has a neighbour g in
Es(K). It is straightforward to verify that the operation g′ induced by g
is a neighbour of f ′: if X1, . . . , Xs are adjacent to Y1, . . . , Ys respectively,
then there exist ai ∈ Xi and bi ∈ Yi such that ai is adjacent to bi for all
i. Hence f ′(X1, . . . , Xs) = f(a1, . . . , as)/θ is adjacent to g(b1, . . . , bs)/θ =
g′(Y1, . . . , Ys). By Lemma 3.7, it follows that B has no Maltsev term.

Proof of Theorem 3.10. Let K be a non-bipartite distance-transitive
graph of diameter at least 3. By the above discussion we may assume that
the algebra A(K) has the unique congruence θ induced by the antipodality
relation. Define the algebra B as above, and the graph K/θ as in the proof
of Lemma 3.13. This graph is connected, ramified, non-bipartite and vertex-
transitive. In particular we may consider the algebra A(K/θ).

To show that K is strongly projective, it will suffice to prove the fol-
lowing: if f ∈ I2(K) has a neighbour, then it is a projection. Indeed, if this
holds then K is projective by Theorem 1.1 of [9]; by Lemma 2.2 (1), I2(K)
has only isolated vertices, and thus by 2.3 (3) K is strongly projective.

Let f ∈ I2(K) have a neighbour g (then g ∈ I2(K) by Lemma 2.2 (2)).
Let f ′ and g′ be the induced terms of B. Referring again to the proof of
Lemma 3.13, we see that f ′ and g′ are adjacent; and that every term of B is
a term of A(K/θ) which implies that this algebra is simple. We apply (the
proof of) Lemma 3.8 to obtain that B = Hm and

f ′((x1
1, . . . , x

1
m), (x2

1, . . . , x
2
m)) = (xi1

1 , . . . , xim
m )

for some 1 ≤ i1, . . . , im ≤ 2, and that f ′ = g′. Hence f ′ = g′ is a decompo-
sition operation, i.e., satisfies the identities

f ′(X, f ′(Y, Z)) = f ′(X,Z) = f ′(f ′(X, Y ), Z))

for all X,Y, Z ∈ B. It follows that f has the following property: for all
a, b, c ∈ K, the elements f(a, f(b, c)), f(a, c) and f(f(a, b), c)) are all in the
same block of θ. We shall show that in fact f is a decomposition operation.
Let a, b, c ∈ K. Since this graph is connected and non-bipartite, there
exists an integer n ≥ 1 and an element d ∈ K such that there are paths
of length n from d to each one of a, b, c. We use induction on n to prove
that f(a, f(b, c)) = f(a, c) (the other identity is similar). If n = 1, then
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f(a, f(b, c)) is adjacent to g(d, g(d, d)) = d and f(a, c) is adjacent to g(d, d) =
d. But since K has diameter at least 3, no two distinct elements of a
block can have a common neighbour. It follows that f(a, f(b, c)) = f(a, c),
and similarly for g. Now suppose the result holds for n, and that a =
x0, x1, . . . , xn+1 = d, b = y0, y1, . . . , yn+1 = d, c = z0, z1, . . . , zn+1 = d
are paths of length n + 1 from a, b, c to d. Then f(a, f(b, c)) is adjacent to
f(x1, f(y1, z1)), and f(a, c) is adjacent to f(x1, z1). By induction hypothesis
f(x1, f(y1, z1)) = f(x1, z1) and as before we conclude that f(a, f(b, c)) =
f(a, c).

Next we show that f = g. Indeed, if a and b are adjacent to c then both
g(a, b) and f(a, b) are adjacent to c. But since f ′ = g′, g(a, b) and f(a, b) are
in the same block of θ and hence must be equal. The rest follows as above
by an easy induction.

It is known (and straightforward to verify) that if f is a decomposition
operation on the set K, then there exists a (set-theoretic) decomposition
K = A × B such that f((a, b), (a′, b′)) = (a, b′) for all a, a′ ∈ A and all
b, b′ ∈ B [12, p. 162]. Define graph structures on A and B as follows: let a
and a′ be adjacent in A if there exist y, y′ ∈ B such that (a, y) and (a′, y′)
are adjacent in K, and similarly for B. We claim that K is isomorphic to the
(graph) product A×B. Indeed, let a and a′ be adjacent in A and let b and
b′be adjacent in B. Then there exist x, x′ ∈ A and y, y′ ∈ B such that (a, y)
and (a′, y′) are adjacent in K and (x, b) and (x′, b′) are adjacent in K. This
means that (a, b) = f((a, y), (x, b)) is adjacent to f((a′, y′), (x′, b′)) = (a′, b′).
By Lemma 3.11 the graph K is directly indecomposable, so one of A or B
has only one vertex. It follows immediately that f is a projection, and this
completes the proof of Theorem 3.10.
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