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Abstract

An additive hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphisms. Let P
and Q be additive hereditary properties of graphs. The generalized
chromatic number χQ(P) is defined as follows: χQ(P) = n iff P ⊆ Qn

but P 6⊆ Qn−1. We investigate the generalized chromatic numbers of
the well-known properties of graphs Ik, Ok, Wk, Sk and Dk.
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matic number.
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1. Introduction

Following [1] we denote the class of all finite simple graphs by I. A property
of graphs is a non-empty isomorphism-closed subclass of I. A property P
is called hereditary if G ∈ P and H ⊆ G implies H ∈ P; P is called additive
if G ∪H ∈ P whenever G ∈ P and H ∈ P.

Throughout the text we will call a component of a graph that is a
spanning supergraph of a path Pk of order k a k-component. Let G be a
graph and V1 ⊆ V (G). We say that a vertex v ∈ V (G) − V1 is adjacent to
a k-component of G[V1] if v is adjacent to a vertex of some k-component of
G[V1].
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Example. For a positive integer k we define the following well-known pro-
perties:
O = {G ∈ I : E(G) = ∅},
Ik = {G ∈ I : G does not contain Kk+2},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Wk = {G ∈ I : each path in G has at most k + 1 vertices},
Sk = {G ∈ I : the maximum degree of G is at most k},
Tk = {G ∈ I : G contains no subgraph homeomorphic to Kk+2 or

Kb k+3
2
c,d k+3

2
e},

Dk = {G ∈ I : G is k-degenerate, i.e., every subgraph of G has a vertex
of degree at most k}.

For every additive hereditary property P 6= I there is a smallest integer
c(P) such that Kc(P)+1 ∈ P but Kc(P)+2 6∈ P, called the completeness of
P. Note that all the properties in the above example, except O, are of
completeness k. The set F(P) of minimal forbidden subgraphs is defined by
{G ∈ I : G ∈ P and H ∈ P for all H ⊂ G}.

Let Q1,Q2, . . . ,Qn be arbitrary hereditary properties of graphs. A ver-
tex (Q1,Q2, . . . ,Qn)-partition of a graph G is a partition {V1, V2, . . . , Vn} of
V (G) such that for each i = 1, 2, . . . , n the induced subgraph G[Vi] has the
property Qi. The property R = Q1 ◦ Q2 ◦ · · · ◦ Qn is defined as the set of
all graphs having a vertex (Q1,Q2, . . . ,Qn)-partition. It is easy to see that
if Q1,Q2, . . . ,Qn are additive and hereditary, then R = Q1 ◦ Q2 ◦ · · · ◦ Qn

is additive and hereditary too. If Q1 = Q2 = · · · = Qn = Q, then we write
Qn = Q1 ◦ Q2 ◦ · · · ◦ Qn.

The generalized chromatic number χQ(P) is defined as follows: χQ(P) =
n iff P ⊆ Qn but P 6⊆ Qn−1.

As an example of the non-existence of χQ(P) we have χO(I1) since it
is well known that there exist triangle-free graphs of arbitrary chromatic
number. The following theorem, due to J. Nešetřil and V. Rödl (see [12]),
implies that for some additive hereditary properties P we have that χQ(P)
exists if and only if χQ(P) = 1. In particular, χQ(Ik) exists if and only
χQ(Ik) = 1.

Theorem 1.1 [12]. Let F(P) be a finite set of 2-connected graphs. Then
for every graph G ∈ P there exists a graph H ∈ P such that for any partition
{V1, V2} of V (H) there is an i, i = 1 or i = 2, for which G ≤ H[Vi].
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Corollary 1.2. If F(P) is a finite set of 2-connected graphs, then for any
additive hereditary property Q it follows that χQ(P) exists if and only if
P ⊆ Q.

The value of χQ(P) is known for various choices of P and Q. In the remain-
der of this section we mention some simple results, most of which are known
or follow immediately from well-known results. See for example [2] and [5].

It is easy to see that Oa+b+1 ⊆ Oa ◦ Ob and Da+b+1 ⊆ Da ◦ Db (see
for example [9]), which implies that χQ(Ok) =

⌈
k+1
n+1

⌉
for any property Q

of completeness n, and χDn(P) =
⌈

k+1
n+1

⌉
for any property P such that

Ok ⊆ P ⊆ Dk. Note that Corollary 1.2 implies that the latter equality does
not extend to c(P) = n.
The well-known theorem of Lovász states:

Theorem 1.3 [10]. Sa+b+1 ⊆ Sa ◦ Sb for all a, b ≥ 0.

This implies that χSn(Sk) =
⌈

k+1
n+1

⌉
. (See [5].)

It is also easy to see that if Ok ⊆ P ⊆ Ok+1, then χIn(P) =
⌈

k+1
n+1

⌉
.

The next result is interesting since it shows that the value of χSn(Dk)
is independent of n.

Theorem 1.4. For all k and n we have χSn(Dk) = k + 1.

Proof. Since Dk ⊆ Ok+1 ⊆ Sk+1
n we have the upper bound. We prove the

lower bound by induction on k. The result is true for k = 1 since D1 6⊆ Sn.
Assume, therefore, that Dk 6⊆ Sk

n and let H ∈ Dk such that H 6∈ Sk
n. Let

G = (n+1)H +K1. Since every subgraph of (n+1)H has a vertex of degree
at most k, every subgraph of G has a vertex of degree at most k + 1. Thus
G ∈ Dk+1.

Also, G 6∈ Sk+1
n : Suppose, to the contrary, that {V1, V2, . . . , Vk+1} is an

Sk+1
n -partition of V (G). Let v be the universal vertex of G and suppose,

without loss of generality, that v ∈ V1. Since G[V1] ∈ Sn it follows that
|V1| ≤ n + 1. Since there are n + 1 copies of H in G we have that for some
copy F of H, F ∩ V1 = ∅. This contradicts the fact that H 6∈ Sk

n.

The lattice of (additive) hereditary properties is discussed in [1] — we use
the supremum and infimum of properties in our next result without further
discussion.
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Theorem 1.5. Let P1,P2 and Q be additive hereditary properties such that
χQ(P1) and χQ(P2) are finite. The following hold:

(i) χQ(P1 ∪ P2) = χQ(P1 ∨ P2) = max{χQ(P1), χQ(P2)}.
(ii) χQ(P1 ∩ P2) ≤ min{χQ(P1), χQ(P2)}.
(iii) max{χQ(P1), χQ(P2)} ≤ χQ(P1 ◦ P2) ≤ χQ(P1) + χQ(P2).

We remark that the inequality in Theorem 1.5(ii) may be strict. For example
χO(T3) = 4 and χO(I1) is infinite but χO(T3 ∩ I1) = 3. (See [2].)

2. Results on Wk

In this section we investigate the value of χWn(Wk). The problem of deter-
mining it has been discussed in (or is related to problems in) several papers
(see for example [3], [4], [6], [7], [8] and [11]) and the following conjecture
has been made in at least three of them:

Conjecture 2.1 [3], [6], [7]. Wa+b+1 ⊆ Wa ◦Wb for all positive integers a
and b.

This conjecture implies the following for χWn(Wk):

Conjecture 2.2. For every n, k ≥ 1, the following holds:

χWn(Wk) =
⌈
k + 1
n + 1

⌉
.

In [6] the bound χWn(Wk) ≤ bk−n+1
2 c+ 2 is proved. The following theorem

will enable us to improve on this bound.

Theorem 2.3. Wd 2a
3
e+b+1 ⊆ Wa ◦Wb for all a ≥ 15 and b ≥ 1.

Proof. Consider any graph G in Wd 2a
3
e+b+1. Take V1 to be a maximal

subset of V (G) such that G[V1] is in Wa. Let V2 = V (G) − V1. Suppose
that there is a path P in G[V2] of length b + 1 and let v1 and v2 denote
the end-vertices of P . Since V1 is maximal in Wa it follows that there is
a path P1 of length a + 1 in G[V1 ∪ {v1}] and a path P2 of length a + 1
in G[V1 ∪ {v2}]. Note that if either v1 or v2 is an end-vertex of P1 or P2

respectively, then in both cases we get a path of length at least a + b + 3
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in G, a contradiction. Therefore the vertices v1 and v2 are not end-vertices
of their respective paths. Let P11 and P12 denote the paths on either side of
v1 such that P11∪{v1}∪P12 = P1. Similarly, let P21∪{v2}∪P22 = P2. Now
suppose, without loss of generality, that x = |E(P11)|+1 ≤ y = |E(P12)|+1,
so that x + y = a + 1.

It is easily seen that if y ≥ b2a+2
3 c+ 1, then by simply taking the path

P12∪P , we get a path of length at least b2a+2
3 c+1+b+1 ≥ 2a+2−2

3 +b+2 >
d2a

3 e+b+1 in G, a contradiction. Therefore da+1
2 e ≤ y ≤ b2a+2

3 c. Moreover,
each Pij , i, j ∈ {1, 2} has length at least ba−5

3 c, since x = a + 1 − y ≥
a− b2a+2

3 c+ 1 ≥ a− 2a+5
3 = a−5

3 ≥ ba−5
3 c.

Note that P11 and P12 are neccessarily disjoint as are P21 and P22, and
that v1 and v2 are not on any of these paths.

P12 must intersect both P21 and P22: Firstly, P12 must intersect the
longer of P21 and P22 since otherwise we get a too long path in G; containing
the two longer paths and P . Furthermore, if P12 does not intersect the
shorter of P21 and P22, then we get a path of length at least da+1

2 e+ b+1+
ba−5

3 c ≥ a+1
2 + a−7

3 + b + 1 = 5
6(a − 1) > d2a

3 e + 1 + b (since a ≥ 15) in G;
containing P12, P and the shorter of P21 and P22, a contradiction. Similarly,
the longer of P21 and P22 must intersect both P11 and P12.

Note that since P11 and P12 are disjoint and P21 and P22 are disjoint,
P2i, i ∈ {1, 2} can only intersect one of P11 and P12 first and vice-versa.

Suppose that both P21 and P22 intersect P12 first. Then we obtain a
path of length at least x + b + 1 + 1 + by

2c ≥ a + 1 − y + y−1
2 + b + 2 ≥

a− 1
2b2a+2

3 c+ 5
2 + b ≥ a− 1

2(2a+2
3 ) + 5

2 + b = 2a
3 + 13

6 + b > d2a
3 e+ 1 + b in

G; containing P11, P , at least one edge of either P21 or P22 and at least a
half of P12, a contradiction.

Now, suppose that P21 or P22 intersects P11 first, say P21. Then we
obtain a path of length at least y+bx

2 c+b+1+1 = y+b1
2(a+1−y)c+b+2 ≥

y+ a+1−y−1
2 +b+2 = y

2 + a
2 +b+2 ≥ 1

2da+1
2 e+ a

2 +b+2 ≥ 3a+9
4 +b > d2a

3 e+1+b
in G; containing P12, P , at least one edge of P21 and at least a half of P11,
a contradiction.

Theorem 2.4. χWn(Wk) ≤
⌈

3k
2n+3

⌉
for all n ≥ 15 and k ≥ 1.

Proof.Wcd 2n+3
3
e ⊆ Wc

n for all positive integers c and n: the proof is by
induction on c. The result holds for c = 1. Suppose now that the result holds
for c. Note that W(c+1)d 2n+3

3
e = Wd 2n

3
e+1+cd 2n+3

3
e which by Theorem 2.3 is
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contained in Wn ◦Wcd 2n+3
3
e which by the induction hypothesis is contained

in Wn ◦Wc
n = Wc+1

n .
Now, with c = d 3k

2n+3e, since k ≤ d 3k
2n+3ed2n+3

3 e we have that Wk ⊆ Wcd 2n+3
3
e

⊆ Wc
n.
This result is close to the bound χWn(Wk) ≤

⌈
3(k−n)
2n+2

⌉
+ 1 presented in

[7] but our method of proof is completely different.

3. Results Relating Sk and Wn

Theorem 3.1. For positive integers n and k we have that
⌈
k + 1
n + 1

⌉
≤ χWn(Sk) ≤

⌈
k + 1

2

⌉
.

Proof. The left inequality holds since Kk+1 ∈ Sk. The right inequality
follows as a corollary to Theorem 1.3.

The first inequality in Theorem 3.1 may be strict, for example χW2(S2) =
2 > d2+1

2+1e (since S2 6⊆ W2). Equality in both the inequalities may be

achieved, for example, by Theorem 1.3 we have that χSn(Sk) =
⌈

k+1
n+1

⌉
and

therefore χW1(Sk) =
⌈

k+1
2

⌉
.

Note that whether or not the second inequality proved in Theorem 3.1
may be strict still remains an open problem.

We now start working towards bounds on χSn(Wk).

Theorem 3.2. W4 ⊆ S2 ◦ S1.

Proof. Consider any graph G in W4. Take V1 to be a subset of V (G) such
that, in order of priority:

(i) G[V1] is in S2,
(ii) G[V1] contains a maximum number of 4-components,
(iii) G[V1] contains a maximum number of components isomorphic to K3,
(iv) G[V1] contains a maximum number of 2-components and
(v) G[V1] contains a maximum number of isolated vertices.

(In other words, we consider all subsets V of V (G) such that G[V ] ∈ S2.
Amongst these we consider all subsets V for which G[V ] has a maximum
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number of 4-components. Amongst these we consider all subsets inducing a
maximum number of components isomorphic to K3 etc.)
Let V2 = V (G) − V1. We will show that G[V2] ∈ S1. Suppose, to the
contrary, that G[V2] 6∈ S1 and let v be a vertex in G[V2] of degree at least
two with u and w two of its neighbours in G[V2]. Note that by choice of V1

every component in G[V1] is a 4-component, K3, K2 or K1.
Moreover, by (v) it follows that u, v and w each have at least one

neighbour in V1. Furthermore, v is adjacent to a nontrivial component in
G[V1]: If this is not the case, then we can replace the vertices in V1 that
are adjacent to v with a 2-component; still satisfying (i) through (iii) but
contradicting (iv). Similarly, u and w are adjacent to nontrivial components
in G[V1].

Suppose that v is adjacent to a triangle in G[V1]. Note that neighbours
of both u and w in V1 can only lie on this triangle, otherwise we obtain at
least a P6 in G. However then we obtain a P6 in G; containing all three
vertices of the triangle in G[V1] as well as the P3 formed by u, v and w. Thus
v cannot be adjacent to a triangle in G[V1].

Furthermore, v cannot be adjacent to a 4-component in G[V1]. This
case is analogous to the above case since a 4-component will also contribute
three vertices to give a P6 in G. Moreover, neither u nor w are adjacent to
4-components or triangles in G[V1], since otherwise we obtain at least a P6

in G.
Therefore v must be adjacent to a K2 in G[V1]. Note that u and w must

each have at least one neighbour on the K2 adjacent to v in G[V1], otherwise
we obtain a P6 in G. If v is adjacent to both vertices on the K2 in G[V1],
then we can replace the components in G[V1] that are adjacent to u, v and
w with a triangle; still satisfying (i) and (ii), but contradicting (iii).

Thus v has only one neighbour on any K2 in G[V1]. If u or w is adjacent
to the same vertex as v on the K2 adjacent to v in G[V1], then once again we
can replace the components in G[V1] that are adjacent to u, v and w with
a triangle; still satisfying (i) and (ii), but contradicting (iii). Therefore,
both u and w are adjacent to the vertex on the K2 in G[V1] that is not
adjacent to v. However, then we can replace the components in G[V1] that
are adjacent to u, v and w with a 4-component; containing the K2 in G[V1]
and the vertices v and either u or w; still satisfying (i), but contradicting
(ii). Therefore G[V2] ∈ S1.

Corollary 3.3. For all n ≥ 2 and k, we have that χSn(Wk) ≤ 2
⌈

k+1
5

⌉
.
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Proof. It is known that W4+k+1 ⊆ W4 ◦Wk (see [3]). Similar to the proof

of Theorem 1.3 it follows that Wk ⊆ Wd k+1
5 e

4 . The result now follows from
Theorem 3.2.

The inequality in Corollary 3.3 may be strict, for example χS2(W1) = 1 <
2 = 2d2

5e. Equality may also be obtained, for example χS2(W2) = 2 = 2d3
5e.

Having proved Corollary 3.3 we naturally ask: Can this bound be im-
proved and if so under what conditions? Corollary 3.5 gives us an answer
for n ≥ 5 and Theorem 3.7 for n ≥ 9.

Theorem 3.4. For an additive hereditary property Q with c(Q) ≥ 5, the
following holds: Wk ⊆ Qd k

3e ◦ O.

Proof. Let c =
⌈

k
3

⌉
. Consider any graph G in Wk. Take V1 to be a subset

of V (G) such that, in order of priority:
(i) G[V1] is in Q,
(ii) G[V1] contains a maximum number of 6-components,
(iii) G[V1] contains a maximum number of 4-components,
(iv) G[V1] contains a maximum number of 2-components and
(v) G[V1] contains a maximum number of isolated vertices.

Now, for 2 ≤ i ≤ c take Vi to be a subset of V (G) − ⋃i−1
j=1 Vj such that for

each i, G[Vi] satisfies the above list. Let S = V (G)−⋃c
j=1 Vj . We will show

that G[S] ∈ O. Suppose, to the contrary, that G[S] 6∈ O and let v be a
vertex in G[S] of degree at least one and u be a neighbour of v in G[S].
Suppose that v is not an end-vertex of a P4 in G[Vc ∪ {v}] and that u is not
an end-vertex of a P5 in G[Vc ∪ {u}]. Note that for every i, the choice of Vi

gives that every component in G[Vi] is a 6-component, a 4-component, K2

or K1. Moreover, by (v) it follows that u and v have at least one neighbour
in Vc each and by (iv) both u and v are adjacent to nontrivial components
in G[Vc]. Since v is not an end-vertex of a P4 in G[Vc ∪ {v}] it follows that
v is not adjacent to a 6-component or a 4-component in G[Vc]. Similarly, u
is not adjacent to a 6-component in G[Vc].

Suppose that u is adjacent to a 4-component in G[Vc]. Then, since v is
not adjacent to a 4-component in G[Vc], we can replace the components in
G[Vc] that are adjacent to u and v with a 6-component; still satisfying (i)
since K6 ∈ Q, but contradicting (ii), since neither u nor v is adjacent to a
6-component in G[Vc].
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Therefore u is adjacent to a 2-component in G[Vc]. However, then we can
replace the components in G[Vc] that are adjacent to u and v with a 4-
component; satisfying (i) and (ii) but contradicting (iii).

Therefore, u is an end-vertex of a P5 in G[Vc∪{u}] or v is an end-vertex
of a P4 in G[Vc∪{v}]. In both cases it follows that there is a path P of length
four in G[S ∪ Vc]. Let x be the end-vertex of P in Vc and y the neighbour
of x on P . By repeating this argument it follows that x is an end-vertex
of a P4 in G[Vc−1 ∪ {x}] or y is an end-vertex of a P5 in G[Vc−1 ∪ {y}].
Continuing in this way we obtain a path of length at least 3c + 1 ≥ k + 1 in
G, a contradiction. Therefore, G[S] ∈ O.

Corollary 3.5. For an additive hereditary property Q with c(Q) ≥ 5, the
following holds: χQ(Wk) ≤

⌈
k
3

⌉
+ 1.

The inequality in Corollary 3.5 may be strict, for example we have that
χI5(Wk) = dk+1

6 e < k+3
3 ≤ dk

3e+1 with K6 ∈ I5 and K7 6∈ I5. Equality can
also be obtained: In Theorem 3.8 (still to follow) we prove that χSn(Wk) ≥
blog2(k + 2)c thus for all n we have that χSn(W6) ≥ 3 and by Corollary 3.5
we have χSn(W6) ≤ d6

3e+ 1 = 3.

Theorem 3.6. For an additive hereditary property Q with c(Q) ≥ 9, the
following holds: Wk ⊆ Qd k−1

4 e ◦ S1.

Proof. Let c =
⌈

k−1
4

⌉
. Consider any graph G in Wk. Take V1 to be a

subset of V (G) such that, in order of priority:

(i) G[V1] is in Q,
(ii) G[V1] contains a maximum number of 10-components,
(iii) G[V1] contains a maximum number of 8-components,
(iv) G[V1] contains a maximum number of 6-components,
(v) G[V1] contains a maximum number of 4-components,
(vi) G[V1] contains a maximum number of 2-components and
(vii) G[V1] contains a maximum number of isolated vertices.

Now, for 2 ≤ i ≤ c take Vi to be a subset of V (G) − ⋃i−1
j=1 Vj such that for

each i, G[Vi] satisfies the above list. Let S = V (G)−⋃c
j=1 Vj . We will show

that G[S] ∈ S1. Suppose, to the contrary, that G[S] 6∈ S1 and let v be a
vertex in G[S] of degree at least two with u and w neighbours of v in G[S].
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Suppose that u is not an end-vertex of a P7 in G[Vc ∪{u}] and that v is not
an end-vertex of a P6 in G[Vc ∪ {v}] and that w is not an end-vertex of a
P5 in G[Vc ∪ {w}]. Note that for every i, the choice of Vi gives that every
component in G[Vi] is a 10-component, an 8-component, a 6-component,
a 4-component, K2 or K1. Moreover, by (vii) it follows that u, v and w
have at least one neighbour in Vc each and by (vi) each of u, v and w is
adjacent to a nontrivial component in G[Vc]. Since u is not an end-vertex
of a P7 in G[Vc ∪{u}] it follows that u is not adjacent to a 10-component in
G[Vc]. Similarly, v is not adjacent to a 10-component or an 8- component
in G[Vc] and w is not adjacent to a 10-component, an 8- component or a
6-component in G[Vc].

Suppose that u is adjacent to an 8-component in G[Vc]. Then, since
neither v nor w are adjacent to an 8-component in G[Vc], we can replace the
components in G[Vc] that are adjacent to u, v and w with a 10-component;
still satisfying (i) but contradicting (ii).

Suppose that v is adjacent to a 6-component in G[Vc]. Then, since w is
not adjacent to a 6-component in G[Vc], we can replace the components in
G[Vc] that are adjacent to u, v and w with an 8-component; still satisfying
(i) and (ii) but contradicting (iii), since none of u, v and w is adjacent to a
10-component or an 8-component in G[Vc], Similarly, u is not adjacent to a
6-component in G[Vc].

Suppose that v is adjacent to a 4-component in G[Vc]. Note that since u,
v and w are not adjacent to 6-components in G[Vc] it follows that neither u
nor w is adjacent to a 4-component in G[Vc] — otherwise we can replace the
components in G[Vc] that are adjacent to u, v and w with a 6-component;
satisfying (i) through (iii) but contradicting (iv). Therefore, since u and w
are not adjacent to 4-components in G[Vc], we can replace the components
in G[Vc] that are adjacent to u, v and w with a 6-component; containing
three vertices of the 4-component, u and its neighbour in Vc.

Therefore v is adjacent to a 2-component in G[Vc]. However, then we
can replace the components in G[Vc] that are adjacent to u, v and w with a
4-component; satisfying (i) through (iv) but contradicting (v).

Therefore, u is an end-vertex of a P7 in G[Vc∪{u}] or v is an end-vertex
of a P6 in G[Vc ∪ {v}] or w is an end-vertex of a P5 in G[Vc ∪ {w}]. In each
case it follows that there is a path P of length 6 in G[S ∪ Vc]. Let z be the
end-vertex of P in Vc, y the neighbour of z on P and x the other neighbour of
y on P . By repeating the above argument it follows that z is an end-vertex
of a P5 in G[Vc−1 ∪ {z}] or y is an end-vertex of a P6 in G[Vc−1 ∪ {y}] or x
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is an end-vertex of a P7 in G[Vc−1 ∪ {x}]. Continuing in this way we obtain
a path of length at least 4c + 2 ≥ k + 1 in G, a contradiction. Therefore,
G[S] ∈ S1.

Theorem 3.7. For n ≥ 9, the following holds:

⌈
k + 1
n + 1

⌉
≤ χSn(Wk) ≤

⌈
k − 1

4

⌉
+ 1.

Proof. The left inequality holds since Kk+1 ∈ Wk. The right inequality
follows as a corollary of Theorem 3.6 since K10 ∈ Sn for each n ≥ 9.

Our next result improves on the lower bound in Theorem 3.7 for large values
of n.

Theorem 3.8 For all positive integers k and n, χSn(Wk) ≥ blog2(k + 2)c.

Proof. We first prove, by induction on m, that for all positive integers
m and n, W2m+1−2 6⊆ Sm

n : For the case where m = 1 the result holds
since W2 6⊆ Sn. Assume therefore that the result holds for m − 1, thus
there exists a graph H such that H ∈ W2m−2 and H 6∈ Sm−1

n . Now let
G = (n + 1)H + K1. Clearly G ∈ W2(2m−2)+2 = W2m+1−2. As in the proof
of Theorem 1.4 G 6∈ Sm

n .
Now, let k and n be any positive integers. We have that Wk ⊇

W2blog2(k+2)c−2 6⊆ Sblog2(k+2)c−1
n and the result follows.

Corollary 3.5 and Theorem 3.7 seem to suggest that for every k and m we

can get Wk ⊆ Sd
k
me+1

n for all n sufficiently large. However, Theorem 3.8

implies that W6 6⊆ Sd
6
6e+1

n for all n since χSn(W6) ≥ blog2(8)c = 3. The
method of proof in Theorem 3.6 does not extend. If we try to maximize
with respect to 12-components, 10-components etc. the argument fails, and
assuming that k is large makes no difference.
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