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Abstract

An additive hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphisms. Let P
and @ be additive hereditary properties of graphs. The generalized
chromatic number xo(P) is defined as follows: xo(P) =niff P C Q"
but P ¢ Q"~!. We investigate the generalized chromatic numbers of
the well-known properties of graphs Z, Ok, Wy, Sk and Dy.
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matic number.

2000 Mathematics Subject Classification: 05C15.

1. Introduction

Following [1] we denote the class of all finite simple graphs by Z. A property
of graphs is a non-empty isomorphism-closed subclass of Z. A property P
is called hereditary if G € P and H C G implies H € P; P is called additive
if GUH € P whenever G € P and H € P.

Throughout the text we will call a component of a graph that is a
spanning supergraph of a path Py of order k a k-component. Let G be a
graph and Vi C V(G). We say that a vertex v € V(G) — V; is adjacent to
a k-component of G[V1] if v is adjacent to a vertex of some k-component of
GVl
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Example. For a positive integer k& we define the following well-known pro-
perties:
O ={GeT:EG) =0},
T, ={G €T : G does not contain Kj o},
Or = {G € T : each component of G has at most k + 1 vertices},
Wy, ={G € T : each path in G has at most k + 1 vertices},
Sk = {G € T : the maximum degree of G is at most k},
7 ={G € 7 : G contains no subgraph homeomorphic to Ky or
K i) regaghs
Dy ={G €7 :G is k-degenerate, i.e., every subgraph of G has a vertex
of degree at most k}.

For every additive hereditary property P # Z there is a smallest integer
c(P) such that K.p);1 € P but K. p);o & P, called the completeness of
P. Note that all the properties in the above example, except O, are of
completeness k. The set F(P) of minimal forbidden subgraphs is defined by
{GeI:GePand HePforal HCGY}.

Let O1, Qo, ..., Q, be arbitrary hereditary properties of graphs. A ver-
tex (Q1, Qa, ..., Qpn)-partition of a graph G is a partition {V1, Va,...,V,,} of
V(G) such that for each i = 1,2,...,n the induced subgraph G[V;] has the
property Q;. The property R = Q10 Qs0---0 Q,, is defined as the set of
all graphs having a vertex (Q1, Qa, ..., Q,)-partition. It is easy to see that
if Q1,Qo,...,09, are additive and hereditary, then R = Q10 Qs0---0 9,
is additive and hereditary too. If Q1 = Qs = --- = Q,, = O, then we write
Q"=0Q10Q30:--0Q,.

The generalized chromatic number x o(P) is defined as follows: xo(P) =
niff P C Q" but P ¢ Q"1

As an example of the non-existence of xo(P) we have yo(Z1) since it
is well known that there exist triangle-free graphs of arbitrary chromatic
number. The following theorem, due to J. Nesetfil and V. Rédl (see [12]),
implies that for some additive hereditary properties P we have that xo(P)
exists if and only if xo(P) = 1. In particular, xo(Zy) exists if and only

xo(Zy) = 1.

Theorem 1.1 [12]. Let F(P) be a finite set of 2-connected graphs. Then
for every graph G € P there exists a graph H € P such that for any partition
{V1,Va} of V(H) there is an i, i =1 or i = 2, for which G < H[V}]. |
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Corollary 1.2. If F(P) is a finite set of 2-connected graphs, then for any
additive hereditary property Q it follows that xo(P) exists if and only if
P C Q. [}

The value of xo(P) is known for various choices of P and Q. In the remain-
der of this section we mention some simple results, most of which are known
or follow immediately from well-known results. See for example [2] and [5].

It is easy to see that Ogipr1 € Oy 0 Op and Dyipy1 € Dy 0 Dy (see

for example [9]), which implies that xo(Ok) = “%ﬂ for any property Q
of completeness n, and xp,(P) = M—ﬂw for any property P such that

O C P C Dg. Note that Corollary 1.2 implies that the latter equality does
not extend to ¢(P) = n.
The well-known theorem of Lovasz states:

Theorem 1.3 [10]. Syip11 €S, 08, for all a,b > 0. [ |
This implies that xs, (Sk) = “%H . (See [5].)
It is also easy to see that if O C P C OFFL, then xz, (P) = M—iﬂ

The next result is interesting since it shows that the value of xs, (Dx)
is independent of n.

Theorem 1.4. For all k and n we have xs, (Di) =k + 1.

Proof. Since D C OF! C S¥+1 we have the upper bound. We prove the
lower bound by induction on k. The result is true for k = 1 since D; € S,,.
Assume, therefore, that Dy ¢ S¥ and let H € Dy, such that H ¢ S¥. Let
G = (n+1)H + K;. Since every subgraph of (n+1)H has a vertex of degree
at most k, every subgraph of G has a vertex of degree at most k + 1. Thus
G e Dk+1.

Also, G ¢ Sk*1. Suppose, to the contrary, that {V;,Va,..., Viy1} is an
Skt partition of V(G). Let v be the universal vertex of G and suppose,
without loss of generality, that v € Vi. Since G[Vi] € S, it follows that
V1] < n+ 1. Since there are n + 1 copies of H in G we have that for some
copy F of H, FNV; = (. This contradicts the fact that H ¢ S*. |

The lattice of (additive) hereditary properties is discussed in [1] — we use
the supremum and infimum of properties in our next result without further
discussion.
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Theorem 1.5. Let P1, Py and Q be additive hereditary properties such that
xo(P1) and xo(P2) are finite. The following hold:
(i) xo(P1UP2) = xo(P1V Pa) = max{xo(P1), xo(P2)}
(ii) xo(P1NP2) < min{xo(P1), xo(P2)}
(iii) max{xo(P1),xa(P2)} < xa(P1oP2) < xa(P1) + xo(P2). u

We remark that the inequality in Theorem 1.5(ii) may be strict. For example
X0 (73) = 4 and xo(Z1) is infinite but xo (73 NZ1) = 3. (See [2].)

2. Results on W,

In this section we investigate the value of x, (W)). The problem of deter-
mining it has been discussed in (or is related to problems in) several papers
(see for example [3], [4], [6], [7], [8] and [11]) and the following conjecture
has been made in at least three of them:

Conjecture 2.1 [3], [6], [T]. Watbr1 € Wa oW, for all positive integers a
and b.

This conjecture implies the following for xyy, Wk):

Conjecture 2.2. For everyn,k > 1, the following holds:

X, We) = VJF 1} :

n+1

In [6] the bound xy, W) < [ E=2+L | 42 is proved. The following theorem
will enable us to improve on this bound.

Theorem 2.3. W[Q—;Hbﬂ CWyaoW, foralla > 15 and b > 1.

Proof. Consider any graph G in W(%a]_wrl. Take V7 to be a maximal
subset of V(G) such that G[Vi] is in W,. Let Vo = V(G) — V1. Suppose
that there is a path P in G[V3] of length b+ 1 and let v; and vy denote
the end-vertices of P. Since Vj is maximal in W, it follows that there is
a path P, of length a + 1 in G[V; U {v1}] and a path P, of length a + 1
in G[V1 U {v2}]. Note that if either vy or v is an end-vertex of P; or Py
respectively, then in both cases we get a path of length at least a + b + 3
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in GG, a contradiction. Therefore the vertices v1 and v are not end-vertices
of their respective paths. Let P;; and P2 denote the paths on either side of
v1 such that Pj; U {’Ul}UPlQ = P;. Similarly, let P> U {’Ug} U Py = P. Now
suppose, without loss of generality, that z = |[E(P11)|+1 <y = |E(P12)|+1,
sothat t +y=a+ 1.

It is easily seen that if y > L%J + 1, then by simply taking the path
PiaUP, we get a path of length at least | 252 | +14+b+1 > 204224 p 42 >
[2¢]4+b+1in G, a contradiction. Therefore [¢51] <y < [2%2]. Moreover,
each Pj;, i,7 € {1,2} has length at least VLT_5J7 sincex =a+1—y >
o= [252] + 12020 = agd > |952),

Note that P;; and Pjo are neccessarily disjoint as are Po; and Pso, and
that v1 and vy are not on any of these paths.

P12 must intersect both P»; and Pso: Firstly, Pjo must intersect the
longer of P»; and Pso since otherwise we get a too long path in G; containing
the two longer paths and P. Furthermore, if Pj» does not intersect the
shorter of Py; and Pso, then we get a path of length at least [‘1%11 +b+1+
1952 >t T 4 h+1=2(a—1) > [2] +1+0b (since a > 15) in G;
containing Pjo, P and the shorter of P»; and Pso, a contradiction. Similarly,
the longer of P»; and Pss must intersect both P;; and Pio.

Note that since P;; and Pjo are disjoint and P»; and Ps are disjoint,
Py;, i € {1,2} can only intersect one of Pj; and Pj first and vice-versa.

Suppose that both P»; and Pso intersect Pjo first. Then we obtain a
path of length at least # + b+ 1+ 1+ 4] >a+1—-y+ 5L +b0+2>

— PR+ a— 5+ S+ =F + P 0> [F]+1+0bin
G; containing Pp1, P, at least one edge of either P»; or Py and at least a
half of Pjo, a contradiction.

Now, suppose that Py or Pss intersects Pjj first, say P»;. Then we
obtain a path of length at least y+ | % | +b+14+1=y+|3(a+1—y)|+b+2 >
Y+ b2 = L4 24b+2 > SIS +54+0+2 > 2504 h > [28] 414
in G; containing P9, P, at least one edge of P»; and at least a half of Py,
a contradiction. [

Theorem 2.4. xyy, (W) < [%W for allm > 15 and k > 1.
Proof. WC(M] C We for all positive integers ¢ and n: the proof is by
3

induction on ¢. The result holds for ¢ = 1. Suppose now that the result holds
for ¢. Note that W, 2nt37 = Wion 2n+37 which by Theorem 2.3 is
(c+1)[ =55 [+ 14l =55
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contained in W,, o WC[M] which by the induction hypothesis is contained
3

in W, 0 WE = Wt

Now, with ¢ = [22—1115}’ since k < [QSiﬂ [223] we have that W), C Wc[%}

CW;r. [ ]
This result is close to the bound xy, W) < P(k_n)

2n+2
[7] but our method of proof is completely different.

W + 1 presented in

3. Results Relating S, and W,

Theorem 3.1. For positive integers n and k we have that

"k+1 k+1-‘
n+1 '

l < X (Sk) < {

Proof. The left inequality holds since K, € Si. The right inequality
follows as a corollary to Theorem 1.3. [

The first inequality in Theorem 3.1 may be strict, for example xw,(S2) =

2 > [%} (since So Z Ws). Equality in both the inequalities may be

achieved, for example, by Theorem 1.3 we have that xs, (Sk) = “%H and
therefore xw, (Sk) = [% .

Note that whether or not the second inequality proved in Theorem 3.1
may be strict still remains an open problem.

We now start working towards bounds on ys, (Wk).

Theorem 3.2. W4 C S308;.

Proof. Consider any graph G in Wy. Take V; to be a subset of V(G) such
that, in order of priority:
(i) G[V4] is in S,
(ii) G[Vi] contains a maximum number of 4-components,
(iii) G[V1] contains a maximum number of components isomorphic to K3,
(iv) Gf
) Gl

(v

(In other words, we consider all subsets V' of V(G) such that G[V] € Sa.
Amongst these we consider all subsets V' for which G[V] has a maximum

]
]

V1] contains a maximum number of 2-components and
]

V1] contains a maximum number of isolated vertices.
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number of 4-components. Amongst these we consider all subsets inducing a
maximum number of components isomorphic to K3 etc.)

Let V2 = V(G) — V4. We will show that G[V2] € S;. Suppose, to the
contrary, that G[Va] € S; and let v be a vertex in G[V3] of degree at least
two with u and w two of its neighbours in G[V3]. Note that by choice of V;
every component in G[V1] is a 4-component, K3, Ky or Kj.

Moreover, by (v) it follows that u, v and w each have at least one
neighbour in V;. Furthermore, v is adjacent to a nontrivial component in
G[V1]: If this is not the case, then we can replace the vertices in V; that
are adjacent to v with a 2-component; still satisfying (i) through (iii) but
contradicting (iv). Similarly, v and w are adjacent to nontrivial components
in G[V1].

Suppose that v is adjacent to a triangle in G[V;]. Note that neighbours
of both v and w in V; can only lie on this triangle, otherwise we obtain at
least a Ps in G. However then we obtain a Py in G; containing all three
vertices of the triangle in G[V1] as well as the Ps formed by u, v and w. Thus
v cannot be adjacent to a triangle in G[V;].

Furthermore, v cannot be adjacent to a 4-component in G[V;]. This
case is analogous to the above case since a 4-component will also contribute
three vertices to give a Ps in G. Moreover, neither u nor w are adjacent to
4-components or triangles in G[V;], since otherwise we obtain at least a Pg
in G.

Therefore v must be adjacent to a K in G[V;]. Note that v and w must
each have at least one neighbour on the K» adjacent to v in G[V1], otherwise
we obtain a Ps in G. If v is adjacent to both vertices on the Ky in G[Vi],
then we can replace the components in G[V;] that are adjacent to u,v and
w with a triangle; still satisfying (i) and (ii), but contradicting (iii).

Thus v has only one neighbour on any Ks in G[V1]. If u or w is adjacent
to the same vertex as v on the Ky adjacent to v in G[V;], then once again we
can replace the components in G[V;] that are adjacent to u,v and w with
a triangle; still satisfying (i) and (ii), but contradicting (iii). Therefore,
both u and w are adjacent to the vertex on the Ky in G[V;] that is not
adjacent to v. However, then we can replace the components in G[V;] that
are adjacent to u,v and w with a 4-component; containing the Ky in G[V]]
and the vertices v and either u or w; still satisfying (i), but contradicting
(ii). Therefore G[V3] € Si. u

Corollary 3.3. For all n > 2 and k, we have that xs, (W) < 2 [%W
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Proof.1t is known that Wy 11 € Wy o Wy (see [3]). Similar to the proof
k41
of Theorem 1.3 it follows that W, C W, ° 1 The result now follows from

Theorem 3.2. [ ]

The inequality in Corollary 3.3 may be strict, for example ys,(W1) =1 <
2= 2[%] Equality may also be obtained, for example xs,(Ws2) =2 = 2[%]

Having proved Corollary 3.3 we naturally ask: Can this bound be im-
proved and if so under what conditions? Corollary 3.5 gives us an answer
for n > 5 and Theorem 3.7 for n > 9.

Theorem 3.4. For an additive hereditary property Q with ¢(Q) > 5, the
following holds: Wy, C Q%w 0 0.

Proof.Let ¢ = %W Consider any graph G in W;. Take V] to be a subset

of V(G) such that, in order of priority:
(i) G[V4]isin Q,

(ii) G[V1] contains a maximum number of 6-components,

)
(iii) G[V1] contains a maximum number of 4-components,
(iv)
(v)
Now, for 2 < i < ¢ take V; to be a subset of V(G) — ;;11 V; such that for
each i, G[V;] satisfies the above list. Let S = V(G) —Uj—; V;. We will show
that G[S] € O. Suppose, to the contrary, that G[S] € O and let v be a
vertex in G[S] of degree at least one and u be a neighbour of v in G[S].
Suppose that v is not an end-vertex of a Py in G[V. U {v}] and that w is not
an end-vertex of a Ps in G[V. U {u}|. Note that for every 4, the choice of V;
gives that every component in G[V;] is a 6-component, a 4-component, K»
or Kj. Moreover, by (v) it follows that u and v have at least one neighbour
in V. each and by (iv) both u and v are adjacent to nontrivial components
in G[V¢]. Since v is not an end-vertex of a Py in G[V, U {v}] it follows that
v is not adjacent to a 6-component or a 4-component in G[V,]. Similarly, u
is not adjacent to a 6-component in G[V,].

Suppose that u is adjacent to a 4-component in G[V,]. Then, since v is
not adjacent to a 4-component in G[V,], we can replace the components in
G[V.] that are adjacent to u and v with a 6-component; still satisfying (i)
since K¢ € Q, but contradicting (ii), since neither u nor v is adjacent to a
6-component in G[V.].

W]
(1]
[V1] contains a maximum number of 2-components and
\a

V1] contains a maximum number of isolated vertices.
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Therefore u is adjacent to a 2-component in G[V.]. However, then we can
replace the components in G[V;| that are adjacent to u and v with a 4-
component; satisfying (i) and (ii) but contradicting (iii).

Therefore, u is an end-vertex of a Ps in G[V.U{u}] or v is an end-vertex
of a Py in G[V,U{v}]. In both cases it follows that there is a path P of length
four in G[S U V,]. Let = be the end-vertex of P in V. and y the neighbour
of x on P. By repeating this argument it follows that x is an end-vertex
of a Py in G[V.—1 U{z}] or y is an end-vertex of a Ps in G[V.—1 U {y}].
Continuing in this way we obtain a path of length at least 3c+1 > k41 in
G, a contradiction. Therefore, G[S] € O. u

Corollary 3.5. For an additive hereditary property Q with ¢(Q) > 5, the
following holds: xo(Wk) < %1 + 1. |

The inequality in Corollary 3.5 may be strict, for example we have that
Xz, (Wi) = [EEL] < B3 < [5] 41 with K¢ € Z5 and K7 ¢ 5. Equality can
also be obtained: In Theorem 3.8 (still to follow) we prove that xs, (Wi) >
|logy(k + 2)] thus for all n we have that xs, (Ws) > 3 and by Corollary 3.5
we have xs, (Ws) < [$]+1=3.

Theorem 3.6. For an additive hereditary property Q with ¢(Q) > 9, the
following holds: Wy C Q1" T 1 0.8,.

Proof.Let ¢ = [%W Consider any graph G in Wy. Take Vi to be a
subset of V(G) such that, in order of priority:

(ii)
(iii)
(iv)
(v) contains a maximum number of 4-components,
(vi)

(vii) G[V4] contains a maximum number of isolated vertices.

contains a maximum number of 2-components and

Now, for 2 < i < ¢ take V; to be a subset of V(G) — ;;11 V; such that for
each i, G[Vj] satisfies the above list. Let S = V(G) —Uj=; V;. We will show
that G[S] € S1. Suppose, to the contrary, that G[S] ¢ S and let v be a
vertex in G[S] of degree at least two with u and w neighbours of v in G[S].
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Suppose that u is not an end-vertex of a P7 in G[V. U {u}| and that v is not
an end-vertex of a Pg in G[V, U {v}] and that w is not an end-vertex of a
Ps in G[V. U {w}]. Note that for every i, the choice of V; gives that every
component in G[V;] is a 10-component, an 8-component, a 6-component,
a 4-component, Ky or K;. Moreover, by (vii) it follows that u,v and w
have at least one neighbour in V. each and by (vi) each of u, v and w is
adjacent to a nontrivial component in G[V.]. Since u is not an end-vertex
of a Py in G[V.U{u}] it follows that u is not adjacent to a 10-component in
G[V.]. Similarly, v is not adjacent to a 10-component or an 8- component
in G[V,] and w is not adjacent to a 10-component, an 8- component or a
6-component in G[V,].

Suppose that u is adjacent to an 8-component in G[V.]. Then, since
neither v nor w are adjacent to an 8-component in G[V,], we can replace the
components in G[V,] that are adjacent to u,v and w with a 10-component;
still satisfying (i) but contradicting (ii).

Suppose that v is adjacent to a 6-component in G[V,]. Then, since w is
not adjacent to a 6-component in G[V.], we can replace the components in
G[V.] that are adjacent to u,v and w with an 8-component; still satisfying
(i) and (ii) but contradicting (iii), since none of u,v and w is adjacent to a
10-component or an 8-component in G[V.], Similarly, u is not adjacent to a
6-component in G[V.].

Suppose that v is adjacent to a 4-component in G[V.]. Note that since u,
v and w are not adjacent to 6-components in G[V,] it follows that neither u
nor w is adjacent to a 4-component in G[V,| — otherwise we can replace the
components in G[V,] that are adjacent to u,v and w with a 6-component;
satisfying (i) through (iii) but contradicting (iv). Therefore, since u and w
are not adjacent to 4-components in G[V,], we can replace the components
in G[V,] that are adjacent to u,v and w with a 6-component; containing
three vertices of the 4-component, v and its neighbour in V.

Therefore v is adjacent to a 2-component in G[V.]. However, then we
can replace the components in G[V.] that are adjacent to u,v and w with a
4-component; satisfying (i) through (iv) but contradicting (v).

Therefore, u is an end-vertex of a Py in G[V,U{u}] or v is an end-vertex
of a Ps in G[V, U {v}] or w is an end-vertex of a P5 in G[V. U {w}]. In each
case it follows that there is a path P of length 6 in G[S U V,|. Let z be the
end-vertex of P in V., y the neighbour of z on P and x the other neighbour of
y on P. By repeating the above argument it follows that z is an end-vertex
of a P5 in G[V.—1 U {z}] or y is an end-vertex of a Ps in G[V.—1 U{y}] or =



GENERALIZED CHROMATIC NUMBERS AND ... 269

is an end-vertex of a Py in G[V,—; U {z}]. Continuing in this way we obtain
a path of length at least 4c +2 > k + 1 in G, a contradiction. Therefore,
G[9] € Si. n

Theorem 3.7. For n > 9, the following holds:

k+1 k—1
< < | — 1.
MJ < xsn(We) < [ 1 W "
Proof. The left inequality holds since Kji11 € Wy. The right inequality
follows as a corollary of Theorem 3.6 since K19 € S, for each n > 9. [}

Our next result improves on the lower bound in Theorem 3.7 for large values
of n.

Theorem 3.8 For all positive integers k and n, xs, Wi) > [logy(k +2)].

Proof. We first prove, by induction on m, that for all positive integers
m and n, Wom+1_o € S For the case where m = 1 the result holds
since Wy € S,,. Assume therefore that the result holds for m — 1, thus
there exists a graph H such that H € Waom_5 and H ¢ ST !. Now let
G = (n+1)H + K;. Clearly G € Wyom_gy49 = Wam+1_5. As in the proof
of Theorem 1.4 G & S

Now, let £ and n be any positive integers. We have that W, DO
Wlloga(k+2)) _o € S%log?(kﬂ)kl and the result follows. [ |

Corollary 3.5 and Theorem 3.7 seem to suggest that for every k and m we

k
can get Wy, C S,[ wl+ for all n sufficiently large. However, Theorem 3.8

6
implies that W € Sr[ﬂ ™ for all n since xs, Ws) > |logy(8)] = 3. The
method of proof in Theorem 3.6 does not extend. If we try to maximize
with respect to 12-components, 10-components etc. the argument fails, and
assuming that k is large makes no difference.
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