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Abstract

In this paper we define total magic cordial (TMC) and total se-
quential cordial (TSC) labellings which are weaker versions of magic
and simply sequential labellings of graphs. Based on these definitions
we have given several results on TMC and TSC graphs.
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1. Introduction

After Cahit [3] the meaning of cordiality in the graph labelling problems is
well understood and studied [4], [5], [11]. Let G(m,n) (or simply G) be a
graph with m = |E(G)| edges and n = |V (G)| vertices. A binary vertex
labelling f : V → {0, 1} induces an edge labelling f : E → {0, 1} defined by
f({u, v}) = |f(u) − f(v)|. We call such a labelling cordial if the conditions
|vf (1) − vf (0)| ≤ 1 and |ef (1) − ef (0)| ≤ 1 are satisfied, where vf (i) and
ef (i), i = 0, 1, is the number of vertices and edges of G, respectively, with
label i. A graph is called cordial if it admits a cordial labelling.

In this work we have investigated another two well-known graph la-
bellings on the ground of cordial labellings. These are the magic graphs of
Kotzig and Rosa [6] – [9] and simply sequential graphs of Bange, Barkauskas
and Slater [1], [2], [10]. Note that many problems in these areas are still
open [5].
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Definition 1 (A). A graph G(m, n) is said to have a magic labelling with
constant C if there exists a 1:1 mapping f : V (G)∪E(G) → {1, 2, . . . ,m+n}
such that f(a) + f(b) + f({a, b}) = C for all {a, b} ∈ E(G).

Definition 2 (B). A graph G with |V (G)∪E(G)| = m+n is called simply
sequential if there is a bijection f : V (G) ∪ E(G) → {1, 2, . . . , m + n} such
that for each edge e = {ab} ∈ E(G) one has f(e) = |f(a)− f(b)|.

We modify these definitions as follows:

Definition 3 (A′). A graph G(m,n) is said to have a totally magic cordial
(TMC) labelling with constant C if there exists a mapping f : V (G)∪E(G) →
{0, 1} such that f(a) + f(b) + f({a, b}) = C (mod 2) for all {a, b} ∈ E(G)
provided the condition |f(0)− f(1)| ≤ 1 is hold, where f(0) = vf (0) + ef (0)
and f(1) = vf (1) + ef (1) and vf (i), ef (i), i ∈ {0, 1} are, respectively, the
number of vertices and edges labelled with i.

Definition 4 (B′). A graph G with |V (G)∪E(G)| = m + n is called total
sequential cordial (TSC) if there is a total mapping f : V (G)∪E(G) → {0, 1}
such that for each edge e = {a, b}, f(e) = |f(a) − f(b)| and the condition
|f(0)− f(1)| ≤ 1 holds.

2. Totally Magic Cordial Graphs

Theorem 5. The complete bipartite graph Km,n is TMC for all m,n > 1.

Proof. Let us denote vertex bipartition of Km,n as V = U ∪ W , U =
{u1, u2, . . . , um} and W = {w1, w2, . . . , wn}.

Case a. m = n. The proof of the theorem is by construction of a special
(0,1)-matrix M = [mi,j ]n×n, where (i, j) entry of M corresponds to the edge
label mi,j = f(ui, wj).

(a1) If n is even then the edge label mi,j can be rewritten to

mi,j =





0 if i ≤ n

2
, j ≤ n

2
and i >

n

2
, j >

n

2

1 if i ≤ n

2
, j >

n

2
and i >

n

2
, j ≤ n

2
.
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and label the vertices of Kn,n as f(ui) = f(wi) = 1, i = 1, 2, . . . , n
2 , f(ui) =

f(wi) = 0, i = n
2 + 1, n

2 + 2, . . . , n. The labelling is TMC labelling of Kn,n

with C = 0.

(a2) If n is odd, along with the vertex and edge labels of Case (a1),
(i.e., Kn−1,n−1, n − 1 = even) add new vertices un ∈ U and wn ∈ W
with labels f(vn) = 0 and f(wn) = 1 and the new edges {un, wi}, {ui, wn},
i = 1, 2, . . . , n− 1 with

f({un, wi}) = 0, i = 1, 2, . . . , n−1
2 ,

f({un, wi}) = 1, i = n−1
2 + 1, n−1

2 + 2, . . . , n− 1,
f({ui, wn}) = 1, i = 1, 2, . . . , n−1

2 ,
f({ui, wn}) = 0, i = n−1

2 + 1, n−1
2 + 2, . . . , n− 1.

Now it is not difficult to see that the labelling is TMC with C = 0.

Case b. n > m. Label the sub-complete bipartite graph Km,m using
the labelling techniques of Case (a1) or (a2). Let f be the partial TMC
labelling of Km,n. Consider the set of unlabeled vertices W̄ = {wn−m+1,
wn−m+2, . . . , wn} in Km,n. Label dn−m

2 e of vertices in W̄ with 1 and the
other bn−m

2 c vertices in W̄ with 0. Label the edges between W̄ and U as
follows:

For every wj ∈ W̄ , (n−m) ≤ j ≤ n,

f(ui, wj) =

{
0 if f(ui) = 1, f(wj) = 1 or f(ui) = 0, f(wj) = 0,

1 if f(ui) = 1, f(wj) = 0 or f(ui) = 0, f(wj) = 1.

It can be verified that the labelling f results in C = 0 and |f(0)−f(1)| ≤ 1.
Hence f is TMC labelling of Km,n when m 6= n.

Theorem 6. All trees are TMC.

Proof. For any n-vertex tree Tn, |V (Tn) ∪ E(Tn)| ≡ 1 (mod 2). Verify
TMC labelling of small trees i.e., say, up to 5 vertices and assume that all
n-vertex trees are TMC. Then for an TMC labelling f of an n-vertex tree
Tn we have either

(a) f(0) = f(1) + 1 and C = 0 or
(b) f(0) = f(1) + 1 and C = 1 or
(c) f(1) = f(0) + 1 and C = 0 or
(d) f(1) = f(0) + 1 and C = 1.
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For the general induction step we consider each cases separately: Let v ∈
V (Tn) and w 6∈ V (Tn). That is w ∈ V (Tn+1).

(a) If f(v) = 1 then put either f({v, w}) = 0 and f(w) = 1 or put
f({v, w}) = 1 and f(w) = 0 to maintain C = 0 for the Tn+1. For Tn+1

we have f(0) = f(1) + 1 again. If f(v) = 0 then put f({v, w}) = 1 and
f(w) = 1. For Tn+1 we have C = 0 and f(1) = f(0) + 1 again.

(b) If f(v) = 1 then put f({v, w}) = 1 and f(w) = 1 to maintain C = 1
with f(1) = f(0)+1 for Tn+1. If f(v) = 0 then put either f({v, w}) = 1 and
f(w) = 0 or f({v, w}) = 0 and f(w) = 1. We have C = 1 and f(0) = f(1)+1
for Tn+1.

(c) If f(v) = 1 then put either f({v, w}) = 1 and f(w) = 0 or f({v, w})
= 0 and f(w) = 1 to maintain C = 0 and f(1) = f(0) + 1 for Tn+1. If
f(v) = 0 then put f({v, w}) = 0 and f(w) = 0. Then for Tn+1 we have
C = 0 and f(0) = f(1) + 1.

(d) If f(v) = 1 then put f({v, w}) = 0 and f(w) = 0 to maintain C = 1
and f(0) = f(1)+1 for Tn+1. If f(v) = 0 then put either f({v, w}) = 1 and
f(w) = 0 or f({v, w}) = 0 and f(w) = 1. We have C = 1 and f(1) = f(0)+1
for Tn+1.

Definition A
′
can be generalized in the following way

Definition 7. A graph G(m,n) is said to have a totally m3-cordial (or
k-TMC) with constant C if there exists a mapping f : V (G) ∪ E(G) →
{0, 1, 2, . . . , k − 1} such that f(a) + f(b) + f({a, b}) = C (mod k) for all
(a, b) ∈ E(G) provided for i 6= j |f(i)− f(j)| ≤ 1, i, j ∈ {0, 1, 2, . . . , k − 1},
where f(x) = vf (x) + ef (x), x = 0, 1, 2, . . . , k − 1.

We give some basic results on 3-TMC labellings of trees. For any k k-TMC
labellings appear to be quite difficult e.g., see for example [4], [11] for the
analogy of the problem with k-equitable labellings.

Lemma 8. The star Sn is 3-TMC with constant C = 0.

Proof. Let Sn denote an star with n + 1 vertices. Label the central vertex
of Sn with 1.

(a) If n ≡ 0 (mod 3) label the first b2n
3 c + 1 edges with 0 and their

end-vertices with 2 and label the other unlabeled edges and vertices with
1’s. This results in f(0) = f(2) = b2n

3 c+ 1 and f(1) = b2n
3 c.
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(b) If n ≡ 1 (mod 3) add to the star of Case (a) an extra edge la-
belled with 0 and label its end-vertex with 2. Then we have f(0) = f(1) =
f(2) = 2n

3 .
(c) If n ≡ 2 (mod 3) add to the star of Case (b) an extra edge labelled

with 0 and label its end-vertex with 2. Then we have f(0) = f(2) = 2n
3 + 2

and f(1) = 2n
3 + 1.

Lemma 9. The path Pn is 3-TMC for all n ≥ 2 with C = 0.

Proof. Let us denote the path Pn by the set of alternating vertices and
edges as {v1, e1, v2, e2, v3, e3, . . . , vn−1, en−1, vn}. If n ≡ 2 (mod 3) then label
the vertices and edges of Pn with 0, 1, 2, 0, 1, 2, 0, 1, 2, . . .. The labelling f
satisfies f(0) = f(1) = f(2) with the constant C = 0. Hence f is a 3-TMC
labelling of Pn. We can obtain 3-TMC labelling of Pn, n ≡ 1 (mod 3), n ≥ 4
by deleting the last edge and vertex labels from the 3-TMC labelling of
Pn, n ≡ 2 (mod 3). That is the labelling of Pn, n ≡ 1 (mod 3) would be
0, 1, 2, 0, 1, 2, 0, 1, 2, . . . , 0, 1, 2, 0 and we have f(0) = f(1) − 1 = f(2) − 1
with C = 0. Similarly we can obtain 3-TMC of Pn, n ≡ 0 (mod 3), n ≥ 3
by adding an extra edge to the end-vertex (with label 2) to the 3-TMC
labelling of Pn, n ≡ 2 (mod 3). Then label the newly added edge and its
end-vertex with 1 and 0. The resulting labelling is again a 3-TMC labelling
of Pn, n ≡ 0 (mod 3) that satisfies f(0) = f(1) = f(2)− 1 with C = 0.

The statement of the next theorem which is exactly same as the magic
labellings of complete graphs but it differs in the length of the proof e.g.,
see [7], [8].

Theorem 10. The complete graph Kn is TMC iff n ∈ {2, 3, 5, 6}.

Proof. Assume that f is TMC labelling of Kn and w.l.o.g. assume C = 1.
That is for any edge e = (u, v) ∈ E(Kn) we have either f({u, v}) = f(u) =
f(v) = 1 or f({u, v}) = f(u) = 0 and f(v) = 1 or f({u, v}) = f(v) = 0 and
f(u) = 1 or f(u) = f(v) = 0 and f({u, v}) = 1. That is under the labelling
f the complete graph Kn can be decomposed as Kn = Kp∪Kr ∪Kp,r where
Kp is the sub-complete graph those its vertices and edges are all labelled with
1’s, Kp is the sub-complete graph whose its vertices labelled with 0’s and
but its edges labelled with 1’s and Kp,r is the complete bipartite subgraph
of Kn with the bipartitions V (Kp)∪V (Kr) which its edges labelled with all
0’s. For any total binary labelling f of Kn we can write
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(∗) f(0) + f(1) ≡
{

0 (mod 2) if n ≡ 0, 3 (mod 4)

1 (mod 2) if n ≡ 1, 2 (mod 4)

Case (i). n ≡ 0, 3 (mod 4), n > 2.
That is for any TMC labelling we must have f(0) = f(1). With the constant
C = 1 in TMC and using the above decomposition of Kn we write the
following:

f(1) = p +
p(p− 1)

2
+

r(r − 1)
2

and f(0) = r + pr.

From f(1) = f(0) we get the quadratic equation

1
2
p2 −

(
r − 1

2

)
p +

r

2
(r − 3) = 0.

Solving this quadratic for p we obtain

p1,2 =
(

r − 1
2

)
± 1

2
√

2r2 − 2r + 1.

The term
√

2r2 − 2r + 1 has an integer value only if r = 1 and 4. But
for r = 1, we have p = 1 which leads to p + r = 2 6≡ 0, 3 (mod 4) and
for r = 4 we have p = 1 or p = 6 for which respectively leads to p +
r = 5, 10 6≡ 0, 3 (mod 4). Thus for n ≡ 0, 3 (mod 4) there exists no TMC
labelling of Kn.

Case (ii). n ≡ 1, 2 (mod 4).
In this case there are two possibilities i.e., f(1) = f(0)+1 or f(0) = f(1)+1.
Again using exactly the same arguments as used in Case (i) we obtain

(a) p1,2 =
(

r − 1
2

)
± 1

2
√

2r2 − 2r + 5 for f(1) = f(0) + 1 and

(b) p1,2 =
(

r − 1
2

)
± 1

2
√

2r2 − 2r − 3 for f(0) = f(1) + 1.

In case (a)
√

2r2 − 2r + 5 has an integer value only for r = 2 which leads to
n = p + r = 3 + 2 = 5 and in case (b)

√
2r2 − 2r − 3 has an integer value

only for r = 2, 3 which leads to n = p + r = 1, 2, 6. For n = 2, 3 label the
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vertices of K2 and K3 with 0’s and the edges with 1’s. For the other feasible
values of n, i.e., 5 and 6 use the labelling described in the decomposition.

3. Totally Sequential Cordial Graphs

The following simple theorem will show that cordial labellings [3] is stronger
than TSC labellings. Cordial labelling f of G is a mapping f : V (G) → {0, 1}
so that when the induced edge labels computed by f({u, v}) = |f(u)−f(v)|,
for all {u, v} ∈ E(G) the conditions |vf (0)−vf (1)| ≤ 1 and |ef (0)−ef (1)| ≤ 1
are satisfied.

Theorem 11. Every cordial graph is TSC.

Proof. Let G be a cordial graph with n vertices and m edges. Let f be
a cordial labelling of G. If either m or n or both are even then the cordial
labelling f is necessarily also TSC since either vf (0) = vf (1) or ef (0) = ef (1)
or both are hold. Now assume w.l.o.g. that m, n are odd and for the cordial
labelling f we have

vf (1) = vf (0) + 1, ef (1) = ef (0) + 1 =⇒ f(1)− f(0) = 2

where f(0) = vf (0) + ef (0) and f(1) = vf (1) + ef (1). Since under the
complementary cordial labelling f̄ , i.e., f̄(v) = 1− f(v) for all v ∈ V (G) of
G the edge labels are invariant we may take f̄ so that

vf̄ (0)− vf̄ (1) + ef̄ (0)− ef̄ (1) = f(0)− f(1) = 0

is satisfied. Hence cordial labelling f̄ of G is also TSC labelling.

Theorem 12. The complete graph Kn is TSC iff
(a)

√
k has an integer value for n = 4k + 1, k ≤ 1,

(b)
√

4k + 1 has an integer value for n = 4k + 2,

(c)
√

4k + 1 has an integer value for n = 4k,

(d)
√

k + 1 has an integer value for n = 4k + 3.

Proof. From expression (∗) in Theorem 10 we have f(0) + f(1) = n(n+1)
2

which is even if n ≡ 0, 3 (mod 4) and is odd if n ≡ 1, 2 (mod 4). Again we
consider two cases:
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Case (i). f(0) + f(1) ≡ 0 (mod 2).
If f is TSC labelling of Kn then f(0) = f(1). Let Kp be the labelled sub-
complete graph of Kn whose vertices labelled with 1 and Kr be the labelled
sub-complete graph of Kn whose vertices labelled with 0, where n = p + r.
Clearly for the labelling f we write

f(1) = rp + p

and

f(0) =
r(r − 1)

2
+ r +

p(p− 1)
2

and using f(1) = f(0)
(r − p)2 − 3p + r = 0.

Putting p = n− r in the above expression we get

4r2 − 4(n− 1)r + n2 − 3n = 0.

Solving this for r we obtain

r1,2 =
(n− 1)±√n + 1

2
.

Since r1,2 will represent the order of sub-complete graph Kr, it can easily
be seen that for n = 4k, k ≥ 1, Kn is TSC only if

√
4k + 1 is an integer and

for n = 4k + 3, k ≥ 0, Kn is TSC only if
√

k + 1 is an integer.

Case (ii). f(0) + f(1) ≡ 1 (mod 2).
That is n ≡ 1, 2 (mod 4). If f is a TSC labelling of Kn we may assume
w.l.o.g. that f(1) > f(0) i.e., f(1) = f(0) + 1 and same decomposition of
Case (i). Therefore we write, by using

f(1) = pr + p, f(0) =
p(p− 1)

2
+ r +

r(r − 1)
2

and
p = n− r

the following quadratic equation

4r2 − 4(n− 1)r + n2 − 3n + 2 = 0
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is obtained which has the roots

r1,2 =
(n− 1)±√n− 1

2
.

Again, in order to have integer values for r1,2 for n = 4k + 1 and 4k + 2
respectively

√
k and

√
4k + 1 must be integer.

Theorem 13. The cycle Cn is TSC for all n > 2.

Proof. If n ≡ 0 (mod 4) then label the vertices of Cn with 11001100 . . . 00.
If n ≡ 1 (mod 4) then label the vertices of Cn with 111001100 . . . 00. If
n ≡ 2 (mod 4) then label the vertices of Cn with 1111001100 . . . 00. Finally
if n ≡ 3 (mod 4) then label the vertices of Cn with 10011001100 . . . 00. All
these vertex binary-labellings are TSC since f(0) = f(1) = n holds for any
n > 2, where f(0) = vf (0) + ef (0) and f(1) = vf (1) + ef (1).

Theorem 14. Trees are TSC.

Proof. It is well known that trees are cordial cf. [3]. That is there exists
binary vertex labelling f satisfying |ef (0)−ef (1)| ≤ 1 and |vf (0)−vf (1)| ≤ 1,
where induce edge labels computed by f(e) = |f(u) − f(v)|, for all e =
{u, v} ∈ E. Let f be a cordial labelling of an n-vertex tree Tn. We have two
cases to consider:

(i) n ≡ 0 (mod 2) ⇒ m ≡ 1 (mod 2) ⇒ n + m ≡ 1 (mod 2). That is
|ef (0)− ef (1)| = 1 and vf (0) = vf (1).

Assume w.l.o.g. that ef (1) > ef (0). Clearly we have ef (1) + vf (1) −
ef (0)− vf (0) = 1.

Hence f(1)−f(0) = 1 and cordial labelling f of Tn is also TSC labelling.
(ii) n ≡ 1 (mod 2) ⇒ m ≡ 0 (mod 2) ⇒ n + m ≡ 1 (mod 2). Then

for any f cordial labelling of Tn we have ef (0) = ef (1) and if we assume
vf (0) = vf (1) + 1 then f(0)− f(1) = 1 and if we assume vf (1) = vf (0) + 1
then f(1)− f(0) = 1. That is cordial labelling f is also TSC labelling.

Theorem 15. The wheel Wn is TSC for all n > 3.

Proof. Let Wn denote the wheel with n + 1 vertices.
(a) n ≡ 0 (mod 4). Consider the TSC labellings of n-vertex cycle given

in Theorem 12, e.g., 001100 . . . 11. Label the central vertex of Wn by 0.
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Then, together with the induce edge labels of Wn, it can easily be verified
that

f(0) = ef (0) + vf (0) = n +
n

2
+ 1 =

3n

2
+ 1

and
f(1) = ef (1) + vf (1) = n +

n

2
=

3n

2
.

(b) If n ≡ 1 (mod 4) then insert a new vertex with label 1 between any
edge in Cn of Case (a) with label 1. Then f(0) = f(1).

(c) If n ≡ 2 (mod 4) then use the TSC labelling of Cn and label the
central vertex with 0. Then f(1) = f(0) + 1.

(d) Let n ≡ 3 (mod 4). Since W3 = K4 (see Theorem 5) is not TSC,
assume n > 3. Consider again TSC labelling f of Cn (n ≡ 3 (mod 4)) i.e.,
100110011 . . . 00. Label this time the central vertex of Wn with 1. Then it
can easily be verified that f satisfies f(0) = f(1) = 3n+1

2 . Hence Wn is TSC
for all n > 3.

Note that a conjecture asserts that the wheel Wn is simply sequential iff
4 6 | n [1].

Theorem 16. The complete bipartite graph Km,n is TSC for all m,n ≥ 1.

Proof. Use cordial labellings of Km,n, (cf. Theorem 3, [3]).

The friendship graph Fn, (n ≥ 1) consists of n triangles with a common
vertex.

Theorem 17. The friendship graph Fn is TSC for all n ≥ 1.

Proof. Label dn
2 e triangles with (0, 0, 1) and bn

2 c triangles with (0, 1, 1)
where the central vertex of Fn is labelled by 1. Then we have

f(0) =

{
f(1) if n ≡ 0, 1 (mod 3),

f(1) + 1 if n ≡ 2 (mod 3).

TSC labelling of cubic graphs i.e., regular graphs of degree 3 is appear to
be interesting since K4 (Theorem 12, Case (c)) is not TSC, but we assert
the following:

Conjecture 18. Cubic graphs other than K4 are TSC.
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Final remark is that, not all Eulerian graphs are TSC as K7 shows by The-
orem 12. On the other hand unlike cf., Theorem 4 [3] that Eulerian graphs
with e ≡ 2 (mod 4) edges are not cordial but the Eulerian graph with 14
edges shown in Figure 1 is TSC with f(0) = f(1) = 11.

Figure 1
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