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Abstract

A set S of vertices of a graph G is a total dominating set if every
vertex of V (G) is adjacent to some vertex in S. We provide three equiv-
alent conditions for a tree to have a unique minimum total dominating
set and give a constructive characterization of such trees.
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1. Introduction

For notation and graph theory terminology, we in general follow [1, 7].
Specifically, let G = (V,E) be a graph. For a vertex v ∈ V , the open
neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}, and its closed
neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , its open
neighborhood is the set N(S) = ∪v∈SN(v) and its closed neighborhood is

1Research supported by the South African National Research Foundation and the Uni-
versity of Natal.
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the set N [S] = N(S) ∪ S. The private neighborhood pn(v, S) of v ∈ S is
defined by pn(v, S) = N(v)−N(S−{v}). Equivalently, pn(v, S) = {u ∈ V |
N(u) ∩ S = {v}}. Each vertex in pn(v, S) is called a private neighbor of v.
The external private neighborhood epn(v, S) of v with respect to S consists
of those private neighbors of v in V −S, while the internal private neighbor-
hood ipn(v, S) of v with respect to S consists of those private neighbors of
v in S. Thus, epn(v, S) = pn(v, S) ∩ (V − S) and ipn(v, S) = pn(v, S) ∩ S,
while pn(v, S) = epn(v, S) ∪ ipn(v, S). If G has no isolated vertices, then
the set S is a total dominating set if every vertex in V is adjacent to a
vertex in S, that is, N(S) = V . Every graph without isolated vertices has
a total dominating set, since S = V is such a set. The total domination
number of G, denoted by γt(G), is the minimum cardinality of any total
dominating set of G. A total dominating set of cardinality γt(G) is called
a γt(G)-set. Note that every γt(G)-set is also a dominating set of G, and
so γ(G) ≤ γt(G). Total domination in graphs was introduced by Cockayne,
Dawes, and Hedetniemi [2] and is now well studied in graph theory (see, for
example, [4] and [9]).

The literature on domination and its variations in graphs has been sur-
veyed and detailed in the two books by Haynes, Hedetniemi, and Slater
[7, 8]. Gunther, Hartnell, Markus, and Rall [5] studied graphs with unique
minimum dominating sets, and Hopkins and Staton [10] and Gunther, Hart-
nell, and Rall [6] studied graphs with unique maximum independent sets.
We investigate graphs G with unique minimum total dominating sets, that
is, unique γt(G)-sets. A graph G will be called a unique total domination
graph, or just a UTD-graph, if G has a unique γt(G)-set.

Observe that the graph mK2 has its vertex set as its unique minimum
total dominating set. For other examples of UTD-graphs, consider the paths
Pn with n ≡ 0 (mod 4). Apart from a few minor results on UTD-graphs in
general, we study UTD-trees. For ease of presentation, we mostly consider
rooted trees. For a vertex v in a (rooted) tree T , we let C(v) and D(v)
denote the set of children and descendants, respectively, of v, and we define
D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T induced
by D[v], and is denoted by Tv. A vertex of degree one is called an endvertex
or a leaf and its neighbor is called a support vertex. The set of leaves in T
is denoted by L(T ) and the set of support vertices by S(T ). We define a
branch vertex as a vertex of degree at least 3. The set of branch vertices of
T is denoted by B(T ). A tree T is a double star if it contains exactly two
vertices that are not leaves.
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2. Known Results

We shall need the following properties of minimal total dominating sets
established in [2] and [9].

Theorem 1 (Cockayne et al. [2]). If S is a minimal total dominating set of
a connected graph G, then |epn(v, S)| ≥ 1 or |ipn(v, S)| ≥ 1 for each v ∈ S.

Theorem 2 (Henning [9]). If G 6= Kn is a connected graph of order n ≥ 3,
then there exists a γt(G)-set S where for every vertex v ∈ S, |epn(v, S)| ≥ 1
or there exists a vertex u ∈ ipn(v, S) with |epn(u, S)| ≥ 1.

Cockayne, Henning, and Mynhardt [3] characterized the set of vertices of a
tree that are contained in all, or in no, respectively, minimum total dom-
inating sets of the tree. To state this characterization, we introduce the
following notation. We define the sets At(G) and Nt(G) of a graph G by

At(G) = {v ∈ V (G) | v is in every γt(G)-set}, and

Nt(G) = {v ∈ V (G) | v is in no γt(G)-set}.

Let T be a tree rooted at a vertex v. The set of leaves in T = Tv distinct
from v we denote by L(v), that is, L(v) = D(v) ∩ L(T ). For j = 0, 1, 2, 3,
we define

Lj(v) = {u ∈ L(v) | d(u, v) ≡ j (mod 4)}.

We next describe a technique called tree pruning, which will allow us to
characterize the sets At(T ) and Nt(T ) for an arbitrary tree T .

Let T be a tree and let v be a vertex of T that is not a support vertex.
The pruning of T is performed with respect to the root. Hence suppose T
is rooted at v, that is, T = Tv. If deg u ≤ 2 for each u ∈ V (Tv)− {v}, then
let T v = T . Otherwise, let u be a branch vertex at maximum distance from
v; note that |C(u)| ≥ 2 and deg x ≤ 2 for each x ∈ D(u). We now apply the
following pruning process:
• If |L2(u)| ≥ 1, then delete D(u) and attach a path of length 2 to u.
• If |L1(u)| ≥ 1, L2(u) = ∅ and |L3(u)| ≥ 1, then delete D(u) and attach

a path of length 2 to u.
• If |L1(u)| ≥ 1 and L2(u) = L3(u) = ∅, then delete D(u) and attach a

path of length 1 to u.
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• If L1(u) = L2(u) = ∅ and |L3(u)| ≥ 1, then delete D(u) and attach a
path of length 3 to u.

• If L1(u) = L2(u) = L3(u) = ∅, then delete D(u) and attach a path of
length 4 to u.

This step of the pruning process, where all the descendants of u are deleted
and a path of length 1, 2, 3, or 4 is attached to u to give a tree in which u
has degree 2, is called a pruning of Tv at u. Repeat the above process until
a tree T v is obtained with deg u ≤ 2 for each u ∈ V (T v)− {v}. Then, T v is
called a pruning of Tv. The tree T v is unique. Thus, to simplify notation,
we write L

j(v) instead of Lj

T v
(v). The following characterization of the sets

At(T ) and Nt(T ) for an arbitrary tree T is presented in [3].

Theorem 3 (Cockayne et al. [3]). Let v be a vertex of a tree T . Then,

(a) v ∈ At(T ) if and only if v is a support vertex or |L1(v) ∪ L
2(v)| ≥ 2,

(b) v ∈ Nt(T ) if and only if L
1(v) ∪ L

2(v) = ∅.

3. Preliminary Results

We first consider induced subgraphs of UTD-graphs. In particular, we show
that any graph G without isolated vertices is an induced subgraph of a UTD-
graph. The corona cor(G) of a graph G is that graph obtained from G by
adding a pendant edge to each vertex of G. Obviously, the graph G is an
induced subgraph of cor(G) and if G has no isolated vertices, then V (G) is
the unique γt(cor(G))-set. Therefore every graph without isolated vertices
is an induced subgraph of a UTD-graph, and hence there does not exist a
forbidden subgraph characterization of the class of UTD-graphs.

Every endvertex is uniquely dominated by the support vertex adjacent
to it, and so any total dominating set contains every support vertex.

Observation 4. Every support vertex of G is in every γt(G)-set.

Observation 5. A path Pn is a UTD-graph if and only if n ∈ {2, 5} or
n ≡ 0 (mod 4).

Lemma 6. If a graph G has a unique γt(G)-set S, then every vertex v ∈ S
is a support vertex or satisfies |pn(v, S)| ≥ 2.
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Proof. By Theorem 1, |pn(v, S)| ≥ 1 for each v ∈ S. Suppose that v ∈ S
is not a support vertex and |pn(v, S)| = 1. If |epn(v, S)| = 1 (and so
|ipn(v, S)| = 0), then let u ∈ epn(v, S) and let w ∈ N(u) − {v}. Then,
w ∈ V (G)−S and (S−{v})∪{w} is a γt(G)-set, contradicting the unique-
ness of S. On the other hand, if |ipn(v, S)| = 1 (and so |epn(v, S)| = 0),
then, by Theorem 2, there exists a vertex u ∈ ipn(v, S) with |epn(u, S)| ≥ 1.
Let w ∈ epn(u, S). Then, (S − {v}) ∪ {w} is a γt(G)-set, contradicting the
uniqueness of S. Hence, |pn(v, S)| ≥ 2.

As an immediate consequence of Lemma 6 we have the following observation.

Observation 7. Let G be a connected graph of order n ≥ 3. If any endvertex
u of G is in a γt(G)-set, then G is not a UTD-graph.

The converse of Lemma 6 is not true in general. For example, if G is the
8-cycle v1, v2, . . . , v8, v1, then S = {v2, v3, v6, v7} is a γt(G)-set; however, S
is not a unique γt(G)-set.

Recall that S(G) is the set of support vertices of G.

Lemma 8. If a graph G is a UTD-graph with γt(G)-set S, then γt(G−v) ≥
γt(G) for every v ∈ S − S(G).

Proof. Let G be a UTD-graph with γt(G)-set S, and assume to the contrary
that γt(G − v) < γt(G) for some v ∈ S − S(G). Let R be a γt(G − v)-set.
Since |R| < γt(G), R does not dominate v. Furthermore, since G has no
isolates, v has a neighbor, say u, in V −R. Then R∪{u} is a total dominating
set of G that does not contain v. Hence, R ∪ {u} 6= S, contradicting the
uniqueness of S.

Lemma 9. If a graph G has a γt(G)-set S for which γt(G− v) > γt(G) for
every v ∈ S − S(G), then S is the unique γt(G)-set of G.

Proof. Suppose there exists a γt(G)-set D that is different from S. Let
v ∈ S−D. By Observation 4, v is not a support vertex. In particular, G−v
contains no isolated vertex. Since D is a total dominating set of G − v,
γt(G) = |D| ≥ γt(G− v), a contradiction. Hence, S is the unique γt(G)-set.

The converse of Lemma 9 is not true in general. For example, the set {v, x, y}
is the unique γt(G)-set for the graph G in Figure 1, and γt(G− v) = γt(G).
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Figure 1: A graph G with the unique γt(G)-set {v, x, y}

4. Trees

4..1 Equivalent Conditions for UTD-Trees

Our aim in this section is to provide three equivalent conditions for a tree to
have a unique minimum total domination set. We begin with the following
lemmas.

Lemma 10. Let T1 and T2 be vertex disjoint trees, and let v ∈ At(T1). Let
T be a tree obtained from T1 ∪ T2 by joining v to a vertex of T2. Then,
v ∈ At(T ).

Proof. Since v ∈ At(T1), Theorem 3 implies that v1 is a support vertex of
T1 or |L1(v1) ∪ L

2(v1)| ≥ 2 in T1. So, certainly, v1 is a support vertex of T

or |L1(v1) ∪ L
2(v1)| ≥ 2 in T . Thus, by Theorem 3, v ∈ At(T ).

Notice that if a vertex v in a tree T belongs to some but not all γt(T )-sets,
then clearly T does not have a unique minimum total domination set. Hence
we have the following observation.

Observation 11. A tree T is a UTD-tree if and only if v ∈ At(T ) ∪Nt(T )
for every vertex v ∈ V (T ).

As an immediate consequence of Theorem 3 and Observation 11, we have
the following characterization of UTD-trees.

Theorem 12. A tree T is a UTD-tree if and only if for every vertex v ∈
V (T ), v is a support vertex or |L1(v) ∪ L

2(v)| 6= 1.
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We now establish three equivalent conditions for a tree to be a UTD-tree.

Theorem 13. Let T be a tree of order n ≥ 2. Then the following conditions
are equivalent:
(i) T is a UTD-tree.
(ii) T has a γt(T )-set S for which every vertex v ∈ S is a support vertex or

satisfies |pn(v, S)| ≥ 2.
(iii) T has a γt(T )-set S for which γt(T−v) > γt(T ) for every v ∈ S−S(T ).

(iv) For every vertex v ∈ V (T ), v is a support vertex or |L1(v)∪L
2(v)| 6= 1.

Proof. By Theorem 12, (i) ⇔ (iv). By Lemma 6, (i) ⇒ (ii), and by
Lemma 9, (iii) ⇒ (i). Hence it suffices to prove that (ii) ⇒ (iii). Suppose,
then, that T has a γt(T )-set S for which every vertex v ∈ S is a support
vertex or satisfies |pn(v, S)| ≥ 2. We show that condition (iii) holds. We
proceed by induction on the order n of the tree T .

If every vertex of S is a support vertex, then condition (iii) is vacuously
true. In particular, the base case when n = 2 is true. Assume that for all
trees of order less than n, where n ≥ 3, that (ii) ⇒ (iii). Let T be a tree
of order n that satisfies condition (ii). We may assume that S 6= S(T ), for
otherwise condition (iii) is vacuously true. Let v ∈ S−S(T ). We show that
γt(T − v) > γt(T ).

Since v is not a support vertex, |pn(v, S)| ≥ 2. In particular, deg v ≥ 2.
Let A = epn(v, S), B = N(v) − (A ∪ S), C = ipn(v, S) and D = N(v) ∩
(S − C). Since S is a total dominating set of T , |C ∪D| ≥ 1. Let N(v) =
{v1, v2, . . . , vm}, where the subscripts are indexed so that if vi ∈ A, vj ∈ B,
vk ∈ C and v` ∈ D, then i < j < k < `.

Let T be rooted at v. For i = 1, 2, . . . , m, let Ti = Tvi (so Ti is the
subtree of T induced by D[vi]), and let Si = S ∩ V (Ti). Since v is not a
support vertex, each component Ti of the forest T − v is a nontrivial tree.
Let R be a γt(T − v)-set. For i = 1, 2, . . . ,m, let Ri = R ∩ V (Ti). Then, Ri

is a γt(Ti)-set for each i. We proceed further by proving four claims.

Claim 1. If vi ∈ A, then |Ri| = |Si|+ 1.

Proof. Suppose vi ∈ A. Then, Si does not contain vi or any child of
vi. Note that since vi 6∈ Si, vi is not a support vertex implying that each
component of Ti−vi is a nontrivial tree. We show first that Si is the unique
γt(Ti − vi)-set. The set Si is a total dominating set of Ti − vi. If Si is
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not a γt(Ti − vi)-set, then replacing Si in S by a γt(Ti − vi)-set produces
a total dominating set of T of cardinality less than |S| = γt(T ), which is
impossible. Hence, Si is a γt(Ti − vi)-set. Furthermore, every vertex v ∈ Si

is a support vertex in Ti − vi or satisfies |pn(v, S)| ≥ 2 in Ti − vi. Applying
the inductive hypothesis to each component of Ti − vi, each component of
Ti − vi satisfies condition (iii). Since (iii) ⇒ (i), it follows that Si is the
unique γt(Ti − vi)-set.

Since Ri is a γt(Ti)-set, Ri contains a child of vi, and so Si 6= Ri. If
|Ri| < |Si|, then (S − Si) ∪ Ri is a total dominating set of T of cardinality
less than |S| = γt(T ), which is impossible. Hence, |Ri| ≥ |Si|.

If vi ∈ At(Ti), then, by Lemma 10, vi ∈ At(T ) contradicting the fact
that S is a γt(T )-set not containing vi. Hence, vi /∈ At(Ti). We may assume
therefore that Ri is chosen so that vi /∈ Ri. But then Ri is also a total
dominating set of Ti − vi. Since Ri is a γt(Ti)-set, Ri contains a child of
vi, and so Si 6= Ri. Thus, since Si is the unique γt(Ti − vi)-set, Ri is not a
γt(Ti − vi)-set, and so |Ri| ≥ |Si|+ 1. Since Si ∪ {v′i} is a total dominating
set of Ti where v′i ∈ C(vi), |Si|+ 1 ≤ |Ri| = γt(Ti) ≤ |Si|+ 1. Consequently,
|Ri| = |Si|+ 1.

Claim 2. If vi ∈ B, then |Ri| = |Si|.

Proof. Suppose vi ∈ B. Then, Si is a total dominating set of Ti, and
so γt(Ti) ≤ |Si|. If |Ri| < |Si|, then (S − Si) ∪ Ri is a total dominating
set of T of cardinality less than |S| = γt(T ), which is impossible. Hence,
|Si| ≤ |Ri| = γt(Ti) ≤ |Si|. Consequently, |Ri| = |Si|.

Claim 3. If vi ∈ C, then |Ri| = |Si|+ 1.

Proof. Suppose vi ∈ C. Then, vi ∈ Si but Si does not contain any child
of vi. Let H be the tree obtained from Ti by joining v to vi and to a new
vertex u. Then, H is a tree of order less than n in which the vertex v is a
support vertex and therefore belongs to every γt(H)-set.

The set Si∪{v} is a total dominating set of H. If Si∪{v} is not a γt(H)-
set, then replacing Si∪{v} in S by a γt(H)-set (which necessarily contains v)
produces a total dominating set of T of cardinality less than |S| = γt(T ),
which is impossible. Hence, Si ∪ {v} is a γt(H)-set. Furthermore, every
vertex w ∈ Si ∪ {v} is a support vertex in H or satisfies |pn(w, S)| ≥ 2 in
H. Applying the inductive hypothesis to H, the tree H satisfies condition
(iii). Since (iii) ⇒ (i), it follows that Si ∪ {v} is the unique γt(H)-set.
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We show now that vi /∈ Nt(Ti). Since Si ∪ {v} is the unique γt(H)-set, we
know by Observation 11 that vi ∈ At(H). Hence, by Theorem 3, vi is a
support vertex of H or |L1(vi)∪L

2(vi)| ≥ 2 in the tree H. If vi is a support
vertex in H, then, since v is not a leaf, vi is also a support vertex in Ti, and
so in the tree Ti, |L1(vi)| ≥ 1 and therefore |L1(vi)∪L

2(vi)| ≥ 1 in Ti. On the
other hand, if |L1(vi)∪L

2(vi)| ≥ 2 in the tree H, then |L1(vi)∪L
2(vi)| ≥ 1

in the tree Ti. In any event, |L1(vi) ∪ L
2(vi)| ≥ 1 in the tree Ti. Hence, by

Theorem 3, vi /∈ Nt(Ti).
Since vi /∈ Nt(Ti), there exists a γt(Ti)-set that contains vi. We may

assume that Ri is chosen so that vi ∈ Ri. The desired result now follows as
in the proof of Claim 1.

Claim 4. If vi ∈ D, then |Ri| = |Si|.

Proof. Suppose vi ∈ D. Then, vi ∈ Si and Si contains a child of vi. Let
H be defined as in Claim 3. Then, as shown in Claim 3, vi /∈ Nt(T ) and we
may assume that vi ∈ Ri. The desired result now follows as in the proof of
Claim 2.

We now return to our proof of Theorem 13. Since |pn(v, S)| ≥ 2, |A| +
|C| = |epn(v, S)| + |ipn(v, S)| = |pn(v, S)| ≥ 2. By Claims 1, 2, 3 and
4, |R| =

∑m
i=1 |Ri| ≥ 2 +

∑m
i=1 |Si| = 2 + (|S| − 1) = |S| + 1. Thus,

γt(T − v) = |R| > |S| = γt(T ). Since v is an arbitrary vertex of S − S(T ),
the set S satisfies condition (iii). Hence, (ii) ⇒ (iii) as desired.

4..2 Combining UTD-Trees

Our aim in this section is to provide a constructive characterization of UTD-
trees. For this purpose, we introduce the following notation. Let T be a
UTD-tree of order at least 4 and let S be the unique γt(T )-set. Let the
vertices of T be partitioned into sets SA, SB, SC , SD, and SE as follows:

SA = {v ∈ S | v ∈ ipn(w,S) for some w ∈ S − S(T ) with |pn(w, S)| = 2},
SB = S − SA,

SC = {v ∈ V − S | pn(w, S) = {v} for some w ∈ S},
SD = {v ∈ V − S | v ∈ pn(w, S) for some w ∈ S − S(T − v) with

|pn(w, S)| = 2},
SE = (V − S)− (SC ∪ SD).
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Note that if v ∈ SC , then v ∈ L(T ). We say that the vertices of SX have
status X where X ∈ {A,B, C, D, E}.

The following lemma will prove to be useful.

Lemma 14. Let T1 and T2 be vertex disjoint trees, and let v ∈ At(T1). Let
T be a tree obtained from T1 ∪ T2 by joining v to a vertex of T2. Let D be a
γt(T )-set. If T1 is a UTD-tree of order at least 3, then |D∩V (T1)| ≥ γt(T1).

Proof. Let S1 be the unique γt(T1)-set and let D1 = D ∩ V (T1). If D1 is
a total dominating set of T1, then |D1| ≥ γt(T1), as desired. Suppose, then,
that D1 is not a total dominating set of T1. Then, D1 contains no neighbor
of v. Now, D1 ∪ {v′} is a total dominating set of T1 for any neighbor v′

of v in T1. Suppose in the tree T1, N(v) ⊂ S1. Then, v cannot be a
support vertex (since no leaf belongs to S1), and so deg v ≥ 2. Thus, since
D1 ∪{v′} contains only one neighbor of v, the uniqueness of S1 implies that
D1 ∪ {v′} is not a γt(T1)-set. Hence, |D1| + 1 ≥ γt(T1) + 1 = |S1| + 1, and
so |D1| ≥ |S1|. On the other hand, if in the tree T1, N(v) 6⊂ S1, then we
choose v′ ∈ N(v) − S1. Since D1 ∪ {v′} 6= S1, the uniqueness of S1 once
again implies that |D1| ≥ |S1|. The result follows.

In what follows, we shall adopt the following notation. Let T1 and T2 be
two vertex disjoint UTD-trees each of order at least 4. For i ∈ {1, 2}, let Si

denote the unique γt(Ti)-set. Then, Si consists of the vertices of status A
and B. We now present three operations which allow us to link up T1 and
T2 to produce a new UTD-tree T .

Operation T1. Join a vertex u1 of status D or E in T1 to a vertex u2 of
status D or E in T2.

Operation T2. Join a vertex u1 of S1 to a vertex u2 of status E in T2.

Operation T3. Join a vertex u1 of status B in T1 to a vertex u2 of status B
in T2.

In the next lemma, for the tree T obtained from T1 ∪ T2 using one of these
three operations, let D be a γt(T )-set, and let Di = D∩V (Ti) for i ∈ {1, 2}.

Lemma 15. S1 ∪S2 is the unique γt(T )-set of T produced by Operation T1,
T2 or T3.

Proof. (i) Suppose T is produced by Operation T1. We show first that
S1 ∪S2 is a γt(T )-set. The set S1 ∪S2 is a total dominating set of T , and so
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γt(T ) ≤ |S1|+ |S2|. If |D1|+ |D2| ≥ |S1|+ |S2|, then γt(T ) ≥ |S1|+ |S2| and
consequently γt(T ) = |S1|+ |S2|. Hence it suffices to show that |D1|+ |D2| ≥
|S1|+ |S2|.

Suppose u1, u2 /∈ D. Then Di is a total dominating set of Ti, and so
|Di| ≥ γt(Ti) = |Si|. Thus, |D1|+ |D2| ≥ |S1|+ |S2|.

Suppose u1 ∈ D and u2 /∈ D. Then, D1 is a total dominating set of
T1. Since S1 is the unique γt(T1)-set and u1 /∈ S1, |D1| ≥ |S1| + 1. Also,
D2 ∪ {u′2} is a total dominating set of T2 where u′2 is any neighbor of u2

in T2. Thus, |D2| + 1 ≥ γt(T2) = |S2|. Hence, |D1| + |D2| ≥ |S1| + |S2|.
Similarly, if u1 /∈ D and u2 ∈ D, then |D1|+ |D2| ≥ |S1|+ |S2|.

Suppose u1, u2 ∈ D. Then, for i ∈ {1, 2}, Di∪{u′i} is a total dominating
set of Ti where u′i is any neighbor of ui in Ti. Since Si is the unique γt(Ti)-
set, Di ∪ {u′i} is not a γt(Ti)-set, and so |Di| + 1 ≥ γt(Ti) + 1 = |Si| + 1.
Hence, |Di| ≥ |Si| for each i. Thus, |D1|+ |D2| ≥ |S1|+ |S2|. Hence, S1∪S2

is a γt(T )-set.
Since u1 and u2 are vertices of status D or E in T1 and T2, respectively, in

the tree T every vertex v ∈ S1∪S2 is a support vertex or satisfies |pn(v, S1∪
S2)| ≥ 2. Thus, since S1∪S2 is a γt(T )-set, it follows from Theorem 13 that
T is a UTD-tree and S1 ∪ S2 is the unique γt(T )-set.

(ii) Suppose T is produced by Operation T2. We show that |Di| ≥ |Si|
for each i. It follows from Lemma 14 that |D1| ≥ |S1|. If D2 is a total
dominating set of T2, then |D2| ≥ |S2| as desired. Suppose D2 is not a total
dominating set of T2. Then D2 contains no neighbor of u2 and D2∪{u′2} is a
total dominating set of T2 for any neighbor u′2 of u2 in T2. If D2∪{u′2} = S2,
then since u2 has status E in T2, |pn(u2, S2)| ≥ 2, contradicting the fact that
D2 = S2−{u′2} is a total dominating set of T2−u2. Hence, D2∪{u′2} 6= S2.
Since S2 is the unique γt(T2)-set, |D2| + 1 ≥ γt(T2) + 1 = |S2| + 1, and so
|D2| ≥ |S2|. Thus, |Di| ≥ |Si| for each i.

The set S1∪S2 is a total dominating set of T , and so γt(T ) ≤ |S1|+ |S2|.
However, γt(T ) = |D| = |D1| + |D2| ≥ |S1| + |S2|. Consequently, γt(T ) =
|S1|+ |S2|.

Since u1 ∈ S1 and u2 is a vertex of status E in T2, in the tree T every
vertex v ∈ S1∪S2 is a support vertex or satisfies |pn(v, S1∪S2)| ≥ 2. Thus,
since S1∪S2 is a γt(T )-set, it follows from Theorem 13 that T is a UTD-tree
and S1 ∪ S2 is the unique γt(T )-set.

(iii) Suppose T is produced by Operation T3. It follows from Lemma 14
that |Di| ≥ |Si| for each i and therefore that S1 ∪ S2 is a γt(T )-set. Since
ui ∈ Si has status B in Ti for i ∈ {1, 2}, in the tree T every vertex v ∈
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S1 ∪ S2 is a support vertex or satisfies |pn(v, S1 ∪ S2)| ≥ 2. It follows from
Theorem 13 that T is a UTD-tree and S1 ∪ S2 is the unique γt(T )-set.

Let T be the family of trees T with V (T ) = L(T ) ∪ S(T ), |S(T )| ≥ 2. Let
F be the family of trees that can be obtained from a star T with at least
two leaves by adding at least one leaf adjacent to each leaf of T (so each leaf
of T is a support vertex in the resulting tree). We are now in a position to
present a constructive characterization of UTD-trees.

Theorem 16. Let T be a tree of order at least 4. Then T is a UTD-tree if
and only if T can be constructed from disjoint trees in T ∪ F by a sequence
of Operations T1, T2, and T3.

Proof. Each tree in T ∪ F is a UTD-tree, and so the sufficiency follows
from Lemmas 15. To prove the neccessity, we proceed by induction on γt(T ).
If γt(T ) = 2, then T is a double star, and so T ∈ T . Hence the base case
holds. Assume the result is true for all UTD-trees T ′ with γt(T ′) < m,
where m ≥ 3. Let T = (V, E) be a UTD-tree with γt(T ) = m. Let S be the
unique γt(T )-set.

Let u1u2 be an edge of T , and let T1 and T2 be the components of
T−u1u2 containing u1 and u2, respectively. For i ∈ {1, 2}, let Si = S∩V (Ti)
and let Di be a γt(Ti)-set. We proceed further by proving three claims.

Claim 5. For i ∈ {1, 2}, if Si is a total dominating set of Ti, then Si is the
unique γt(Ti)-set.

Proof. For i ∈ {1, 2}, |Di| ≤ |Si|. Now, D1 ∪D2 is a total dominating set
of T , and so |S1|+ |S2| ≥ |D1|+ |D2| ≥ γt(T ) = |S1|+ |S2|. Hence |Di| = |Si|
for each i. Thus, D1 ∪D2 is a γt(T )-set. The uniqueness of S implies that
D1∪D2 = S, and therefore Di = Si for each i. Hence, Ti is a UTD-tree and
Si is the unique γt(Ti)-set.

Claim 6. If u1, u2 ∈ V − S, then T can be constructed as claimed.

Proof. Since Si is a total dominating set of Ti for i ∈ {1, 2}, Ti is a UTD-
tree and Si is the unique γt(Ti)-set by Claim 5. Applying the inductive
hypothesis to Ti, each Ti can be constructed from disjoint trees in T ∪ F
by a sequence of Operations T1, T2, and T3. Since ui /∈ Si, ui has status C,
D or E in Ti. If ui has status C in Ti, then in the tree Ti, ui is a leaf
and pn(w, Si) = {ui} for some w ∈ Si. Thus in T , |pn(w, S)| = 1 and
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w ∈ S − S(T ), contradicting Theorem 13. Hence, ui has status D or E in
Ti, and T can be obtained from T1∪T2 by Operation T1. The result follows.

Claim 7. If u1 ∈ S and if u2 ∈ V − S is not an external private neighbor
of any vertex in S, then T can be constructed as claimed.

Proof. Since Si is a total dominating set of Ti for i ∈ {1, 2}, Ti is a UTD-
tree and Si is the unique γt(Ti)-set by Claim 5. Applying the inductive
hypothesis to Ti, each Ti can be constructed from disjoint trees in T ∪F by
a sequence of Operations T1, T2, and T3.

We show next that u2 has status E in T2. Since u2 /∈ S2, u2 has
status C, D or E in T2. If u2 has status C in T2, then pn(w, S2) = {u2}
for some w ∈ S2. Thus in T , |pn(w,S)| = 0, contradicting Theorem 1.
If u2 has status D in T2, then in the tree T2, u2 ∈ pn(w, S2) where w is
adjacent to no leaf except possibly u2 and |pn(w, S2)| = 2. Thus in T ,
|pn(w,S)| = 1 and w ∈ S −S(T ), contradicting Theorem 13. Hence, u2 has
status E in T2. Thus, T can be obtained from T1∪T2 by Operation T2. The
result follows.

We now return to the proof of Theorem 16. By Claim 6, we may assume
that no edge joins two vertices of V − S and by Claim 7, we may assume
that each vertex in V −S is the external private neighbor of some vertex in
S. Hence, each vertex in V − S is a leaf in T . If S = S(T ), then T ∈ T .
Hence, we may assume that S 6= S(T ).

Let u1 ∈ S−S(T ). By assumption, N(u1) ⊆ S. Hence, by Theorem 13,
|ipn(u1, S)| ≥ 2. For each w ∈ ipn(u1, S), N(w) ∩ S = {u1} and w ∈ S(T ).
If S = N [u1], then T ∈ F . Hence we may assume that some neighbor u2 of
u1 is not an internal private neighbor of u1.

For i ∈ {1, 2}, let Ti, Si, and Di be as defined earlier. Since Si is a total
dominating set of Ti for i ∈ {1, 2}, Ti is a UTD-tree and Si is the unique
γt(Ti)-set by Claim 5. Applying the inductive hypothesis to Ti, each Ti can
be constructed from disjoint trees in T ∪F by a sequence of Operations T1,
T2, and T3.

In the tree T1, |ipn(u1, S1)| ≥ 2, and so u1 /∈ ipn(w, S1) for any w ∈ S1.
Thus, u1 has status B in T1. In the tree T2, if u2 has status A, then
u2 ∈ ipn(w, S2) for some w ∈ S2 − S(T ) where |pn(w, S2)| = 2. But then
in the tree T , w ∈ S − S(T ) and |pn(w, S)| = 1, contradicting Theorem 13.
Hence, u2 has status B in T2. Thus, T can be obtained from T1 ∪ T2 by
Operation T3.
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