Discussiones Mathematicae Graph Theory 22 (2002) 233–246

TREES WITH UNIQUE MINIMUM TOTAL DOMINATING SETS

TERESA W. HAYNES

Department of Mathematics East Tennessee State University Johnson City, TN 37614 USA

AND

MICHAEL A. HENNING¹

Department of Mathematics University of Natal Private Bag X01 Pietermaritzburg, 3209 South Africa

Abstract

A set S of vertices of a graph G is a *total dominating set* if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.

Keywords: domination, total domination.

2000 Mathematics Subject Classification: 05C069.

1. Introduction

For notation and graph theory terminology, we in general follow [1, 7]. Specifically, let G = (V, E) be a graph. For a vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V \mid uv \in E\}$, and its closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$ and its closed neighborhood is

¹Research supported by the South African National Research Foundation and the University of Natal.

the set $N[S] = N(S) \cup S$. The private neighborhood pn(v, S) of $v \in S$ is defined by $pn(v, S) = N(v) - N(S - \{v\})$. Equivalently, $pn(v, S) = \{u \in V \mid v \in V\}$ $N(u) \cap S = \{v\}\}$. Each vertex in pn(v, S) is called a *private neighbor* of v. The external private neighborhood epn(v, S) of v with respect to S consists of those private neighbors of v in V-S, while the *internal private neighbor*hood ipn(v, S) of v with respect to S consists of those private neighbors of v in S. Thus, $epn(v, S) = pn(v, S) \cap (V - S)$ and $ipn(v, S) = pn(v, S) \cap S$, while $pn(v, S) = epn(v, S) \cup ipn(v, S)$. If G has no isolated vertices, then the set S is a *total dominating set* if every vertex in V is adjacent to a vertex in S, that is, N(S) = V. Every graph without isolated vertices has a total dominating set, since S = V is such a set. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of any total dominating set of G. A total dominating set of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set. Note that every $\gamma_t(G)$ -set is also a dominating set of G, and so $\gamma(G) \leq \gamma_t(G)$. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well studied in graph theory (see, for example, [4] and [9]).

The literature on domination and its variations in graphs has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [7, 8]. Gunther, Hartnell, Markus, and Rall [5] studied graphs with unique minimum dominating sets, and Hopkins and Staton [10] and Gunther, Hartnell, and Rall [6] studied graphs with unique maximum independent sets. We investigate graphs G with unique minimum total dominating sets, that is, unique $\gamma_t(G)$ -sets. A graph G will be called a *unique total domination graph*, or just a UTD-graph, if G has a unique $\gamma_t(G)$ -set.

Observe that the graph mK_2 has its vertex set as its unique minimum total dominating set. For other examples of UTD-graphs, consider the paths P_n with $n \equiv 0 \pmod{4}$. Apart from a few minor results on UTD-graphs in general, we study UTD-trees. For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted) tree T, we let C(v) and D(v)denote the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . A vertex of degree one is called an *endvertex* or a *leaf* and its neighbor is called a *support* vertex. The set of leaves in Tis denoted by L(T) and the set of support vertices by S(T). We define a *branch vertex* as a vertex of degree at least 3. The set of branch vertices of T is denoted by B(T). A tree T is a *double star* if it contains exactly two vertices that are not leaves.

2. Known Results

We shall need the following properties of minimal total dominating sets established in [2] and [9].

Theorem 1 (Cockayne et al. [2]). If S is a minimal total dominating set of a connected graph G, then $|\operatorname{epn}(v, S)| \ge 1$ or $|\operatorname{ipn}(v, S)| \ge 1$ for each $v \in S$.

Theorem 2 (Henning [9]). If $G \neq K_n$ is a connected graph of order $n \geq 3$, then there exists a $\gamma_t(G)$ -set S where for every vertex $v \in S$, $|\operatorname{epn}(v, S)| \geq 1$ or there exists a vertex $u \in \operatorname{ipn}(v, S)$ with $|\operatorname{epn}(u, S)| \geq 1$.

Cockayne, Henning, and Mynhardt [3] characterized the set of vertices of a tree that are contained in all, or in no, respectively, minimum total dominating sets of the tree. To state this characterization, we introduce the following notation. We define the sets $\mathcal{A}_t(G)$ and $\mathcal{N}_t(G)$ of a graph G by

$$\mathcal{A}_t(G) = \{ v \in V(G) \mid v \text{ is in every } \gamma_t(G) \text{-set} \}, \text{ and}$$
$$\mathcal{N}_t(G) = \{ v \in V(G) \mid v \text{ is in no } \gamma_t(G) \text{-set} \}.$$

Let T be a tree rooted at a vertex v. The set of leaves in $T = T_v$ distinct from v we denote by L(v), that is, $L(v) = D(v) \cap L(T)$. For j = 0, 1, 2, 3, we define

$$L^{j}(v) = \{ u \in L(v) \mid d(u, v) \equiv j \pmod{4} \}.$$

We next describe a technique called *tree pruning*, which will allow us to characterize the sets $\mathcal{A}_t(T)$ and $\mathcal{N}_t(T)$ for an arbitrary tree T.

Let T be a tree and let v be a vertex of T that is not a support vertex. The pruning of T is performed with respect to the root. Hence suppose T is rooted at v, that is, $T = T_v$. If deg $u \leq 2$ for each $u \in V(T_v) - \{v\}$, then let $\overline{T}_v = T$. Otherwise, let u be a branch vertex at maximum distance from v; note that $|C(u)| \geq 2$ and deg $x \leq 2$ for each $x \in D(u)$. We now apply the following pruning process:

- If $|L^2(u)| \ge 1$, then delete D(u) and attach a path of length 2 to u.
- If $|L^1(u)| \ge 1$, $L^2(u) = \emptyset$ and $|L^3(u)| \ge 1$, then delete D(u) and attach a path of length 2 to u.
- If $|L^1(u)| \ge 1$ and $L^2(u) = L^3(u) = \emptyset$, then delete D(u) and attach a path of length 1 to u.

- If $L^1(u) = L^2(u) = \emptyset$ and $|L^3(u)| \ge 1$, then delete D(u) and attach a path of length 3 to u.
- If $L^1(u) = L^2(u) = L^3(u) = \emptyset$, then delete D(u) and attach a path of length 4 to u.

This step of the pruning process, where all the descendants of u are deleted and a path of length 1, 2, 3, or 4 is attached to u to give a tree in which uhas degree 2, is called a *pruning of* T_v *at* u. Repeat the above process until a tree \overline{T}_v is obtained with deg $u \leq 2$ for each $u \in V(\overline{T}_v) - \{v\}$. Then, \overline{T}_v is called a *pruning* of T_v . The tree \overline{T}_v is unique. Thus, to simplify notation, we write $\overline{L}^j(v)$ instead of $L^j_{\overline{T}_v}(v)$. The following characterization of the sets $\mathcal{A}_t(T)$ and $\mathcal{N}_t(T)$ for an arbitrary tree T is presented in [3].

Theorem 3 (Cockayne et al. [3]). Let v be a vertex of a tree T. Then, (a) $v \in \mathcal{A}_t(T)$ if and only if v is a support vertex or $|\overline{L}^1(v) \cup \overline{L}^2(v)| \ge 2$, (b) $v \in \mathcal{N}_t(T)$ if and only if $\overline{L}^1(v) \cup \overline{L}^2(v) = \emptyset$.

3. Preliminary Results

We first consider induced subgraphs of UTD-graphs. In particular, we show that any graph G without isolated vertices is an induced subgraph of a UTDgraph. The *corona* cor(G) of a graph G is that graph obtained from G by adding a pendant edge to each vertex of G. Obviously, the graph G is an induced subgraph of cor(G) and if G has no isolated vertices, then V(G) is the unique $\gamma_t(cor(G))$ -set. Therefore every graph without isolated vertices is an induced subgraph of a UTD-graph, and hence there does not exist a forbidden subgraph characterization of the class of UTD-graphs.

Every endvertex is uniquely dominated by the support vertex adjacent to it, and so any total dominating set contains every support vertex.

Observation 4. Every support vertex of G is in every $\gamma_t(G)$ -set.

Observation 5. A path P_n is a UTD-graph if and only if $n \in \{2, 5\}$ or $n \equiv 0 \pmod{4}$.

Lemma 6. If a graph G has a unique $\gamma_t(G)$ -set S, then every vertex $v \in S$ is a support vertex or satisfies $|pn(v, S)| \ge 2$.

Proof. By Theorem 1, $|pn(v, S)| \ge 1$ for each $v \in S$. Suppose that $v \in S$ is not a support vertex and |pn(v, S)| = 1. If |epn(v, S)| = 1 (and so |ipn(v, S)| = 0), then let $u \in epn(v, S)$ and let $w \in N(u) - \{v\}$. Then, $w \in V(G) - S$ and $(S - \{v\}) \cup \{w\}$ is a $\gamma_t(G)$ -set, contradicting the uniqueness of S. On the other hand, if |ipn(v, S)| = 1 (and so |epn(v, S)| = 0), then, by Theorem 2, there exists a vertex $u \in ipn(v, S)$ with $|epn(u, S)| \ge 1$. Let $w \in epn(u, S)$. Then, $(S - \{v\}) \cup \{w\}$ is a $\gamma_t(G)$ -set, contradicting the uniqueness of S. Hence, $|pn(v, S)| \ge 2$.

As an immediate consequence of Lemma 6 we have the following observation.

Observation 7. Let G be a connected graph of order $n \ge 3$. If any endvertex u of G is in a $\gamma_t(G)$ -set, then G is not a UTD-graph.

The converse of Lemma 6 is not true in general. For example, if G is the 8-cycle $v_1, v_2, \ldots, v_8, v_1$, then $S = \{v_2, v_3, v_6, v_7\}$ is a $\gamma_t(G)$ -set; however, S is not a unique $\gamma_t(G)$ -set.

Recall that S(G) is the set of support vertices of G.

Lemma 8. If a graph G is a UTD-graph with $\gamma_t(G)$ -set S, then $\gamma_t(G-v) \ge \gamma_t(G)$ for every $v \in S - S(G)$.

Proof. Let G be a UTD-graph with $\gamma_t(G)$ -set S, and assume to the contrary that $\gamma_t(G-v) < \gamma_t(G)$ for some $v \in S - S(G)$. Let R be a $\gamma_t(G-v)$ -set. Since $|R| < \gamma_t(G)$, R does not dominate v. Furthermore, since G has no isolates, v has a neighbor, say u, in V-R. Then $R \cup \{u\}$ is a total dominating set of G that does not contain v. Hence, $R \cup \{u\} \neq S$, contradicting the uniqueness of S.

Lemma 9. If a graph G has a $\gamma_t(G)$ -set S for which $\gamma_t(G-v) > \gamma_t(G)$ for every $v \in S - S(G)$, then S is the unique $\gamma_t(G)$ -set of G.

Proof. Suppose there exists a $\gamma_t(G)$ -set D that is different from S. Let $v \in S - D$. By Observation 4, v is not a support vertex. In particular, G - v contains no isolated vertex. Since D is a total dominating set of G - v, $\gamma_t(G) = |D| \ge \gamma_t(G - v)$, a contradiction. Hence, S is the unique $\gamma_t(G)$ -set.

The converse of Lemma 9 is not true in general. For example, the set $\{v, x, y\}$ is the unique $\gamma_t(G)$ -set for the graph G in Figure 1, and $\gamma_t(G-v) = \gamma_t(G)$.

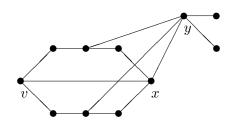


Figure 1: A graph G with the unique $\gamma_t(G)$ -set $\{v, x, y\}$

4. Trees

4..1 Equivalent Conditions for UTD-Trees

Our aim in this section is to provide three equivalent conditions for a tree to have a unique minimum total domination set. We begin with the following lemmas.

Lemma 10. Let T_1 and T_2 be vertex disjoint trees, and let $v \in \mathcal{A}_t(T_1)$. Let T be a tree obtained from $T_1 \cup T_2$ by joining v to a vertex of T_2 . Then, $v \in \mathcal{A}_t(T)$.

Proof. Since $v \in \mathcal{A}_t(T_1)$, Theorem 3 implies that v_1 is a support vertex of T_1 or $|\overline{L}^1(v_1) \cup \overline{L}^2(v_1)| \ge 2$ in T_1 . So, certainly, v_1 is a support vertex of T or $|\overline{L}^1(v_1) \cup \overline{L}^2(v_1)| \ge 2$ in T. Thus, by Theorem 3, $v \in \mathcal{A}_t(T)$.

Notice that if a vertex v in a tree T belongs to some but not all $\gamma_t(T)$ -sets, then clearly T does not have a unique minimum total domination set. Hence we have the following observation.

Observation 11. A tree T is a UTD-tree if and only if $v \in \mathcal{A}_t(T) \cup \mathcal{N}_t(T)$ for every vertex $v \in V(T)$.

As an immediate consequence of Theorem 3 and Observation 11, we have the following characterization of UTD-trees.

Theorem 12. A tree T is a UTD-tree if and only if for every vertex $v \in V(T)$, v is a support vertex or $|\overline{L}^{1}(v) \cup \overline{L}^{2}(v)| \neq 1$.

We now establish three equivalent conditions for a tree to be a UTD-tree.

Theorem 13. Let T be a tree of order $n \ge 2$. Then the following conditions are equivalent:

- (i) T is a UTD-tree.
- (ii) T has a $\gamma_t(T)$ -set S for which every vertex $v \in S$ is a support vertex or satisfies $|pn(v, S)| \ge 2$.
- (iii) T has a $\gamma_t(T)$ -set S for which $\gamma_t(T-v) > \gamma_t(T)$ for every $v \in S S(T)$.
- (iv) For every vertex $v \in V(T)$, v is a support vertex or $|\overline{L}^{1}(v) \cup \overline{L}^{2}(v)| \neq 1$.

Proof. By Theorem 12, (i) \Leftrightarrow (iv). By Lemma 6, (i) \Rightarrow (ii), and by Lemma 9, (iii) \Rightarrow (i). Hence it suffices to prove that (ii) \Rightarrow (iii). Suppose, then, that T has a $\gamma_t(T)$ -set S for which every vertex $v \in S$ is a support vertex or satisfies $|\operatorname{pn}(v, S)| \geq 2$. We show that condition (iii) holds. We proceed by induction on the order n of the tree T.

If every vertex of S is a support vertex, then condition (iii) is vacuously true. In particular, the base case when n = 2 is true. Assume that for all trees of order less than n, where $n \ge 3$, that (ii) \Rightarrow (iii). Let T be a tree of order n that satisfies condition (ii). We may assume that $S \ne S(T)$, for otherwise condition (iii) is vacuously true. Let $v \in S - S(T)$. We show that $\gamma_t(T - v) > \gamma_t(T)$.

Since v is not a support vertex, $|pn(v, S)| \ge 2$. In particular, deg $v \ge 2$. Let A = epn(v, S), $B = N(v) - (A \cup S)$, C = ipn(v, S) and $D = N(v) \cap (S - C)$. Since S is a total dominating set of T, $|C \cup D| \ge 1$. Let $N(v) = \{v_1, v_2, \ldots, v_m\}$, where the subscripts are indexed so that if $v_i \in A$, $v_j \in B$, $v_k \in C$ and $v_\ell \in D$, then $i < j < k < \ell$.

Let T be rooted at v. For i = 1, 2, ..., m, let $T_i = T_{v_i}$ (so T_i is the subtree of T induced by $D[v_i]$), and let $S_i = S \cap V(T_i)$. Since v is not a support vertex, each component T_i of the forest T - v is a nontrivial tree. Let R be a $\gamma_t(T - v)$ -set. For i = 1, 2, ..., m, let $R_i = R \cap V(T_i)$. Then, R_i is a $\gamma_t(T_i)$ -set for each i. We proceed further by proving four claims.

Claim 1. If $v_i \in A$, then $|R_i| = |S_i| + 1$.

Proof. Suppose $v_i \in A$. Then, S_i does not contain v_i or any child of v_i . Note that since $v_i \notin S_i$, v_i is not a support vertex implying that each component of $T_i - v_i$ is a nontrivial tree. We show first that S_i is the unique $\gamma_t(T_i - v_i)$ -set. The set S_i is a total dominating set of $T_i - v_i$. If S_i is

not a $\gamma_t(T_i - v_i)$ -set, then replacing S_i in S by a $\gamma_t(T_i - v_i)$ -set produces a total dominating set of T of cardinality less than $|S| = \gamma_t(T)$, which is impossible. Hence, S_i is a $\gamma_t(T_i - v_i)$ -set. Furthermore, every vertex $v \in S_i$ is a support vertex in $T_i - v_i$ or satisfies $|\operatorname{pn}(v, S)| \geq 2$ in $T_i - v_i$. Applying the inductive hypothesis to each component of $T_i - v_i$, each component of $T_i - v_i$ satisfies condition (iii). Since (iii) \Rightarrow (i), it follows that S_i is the unique $\gamma_t(T_i - v_i)$ -set.

Since R_i is a $\gamma_t(T_i)$ -set, R_i contains a child of v_i , and so $S_i \neq R_i$. If $|R_i| < |S_i|$, then $(S - S_i) \cup R_i$ is a total dominating set of T of cardinality less than $|S| = \gamma_t(T)$, which is impossible. Hence, $|R_i| \ge |S_i|$.

If $v_i \in \mathcal{A}_t(T_i)$, then, by Lemma 10, $v_i \in \mathcal{A}_t(T)$ contradicting the fact that S is a $\gamma_t(T)$ -set not containing v_i . Hence, $v_i \notin \mathcal{A}_t(T_i)$. We may assume therefore that R_i is chosen so that $v_i \notin R_i$. But then R_i is also a total dominating set of $T_i - v_i$. Since R_i is a $\gamma_t(T_i)$ -set, R_i contains a child of v_i , and so $S_i \neq R_i$. Thus, since S_i is the unique $\gamma_t(T_i - v_i)$ -set, R_i is not a $\gamma_t(T_i - v_i)$ -set, and so $|R_i| \geq |S_i| + 1$. Since $S_i \cup \{v'_i\}$ is a total dominating set of T_i where $v'_i \in C(v_i)$, $|S_i| + 1 \leq |R_i| = \gamma_t(T_i) \leq |S_i| + 1$. Consequently, $|R_i| = |S_i| + 1$.

Claim 2. If $v_i \in B$, then $|R_i| = |S_i|$.

Proof. Suppose $v_i \in B$. Then, S_i is a total dominating set of T_i , and so $\gamma_t(T_i) \leq |S_i|$. If $|R_i| < |S_i|$, then $(S - S_i) \cup R_i$ is a total dominating set of T of cardinality less than $|S| = \gamma_t(T)$, which is impossible. Hence, $|S_i| \leq |R_i| = \gamma_t(T_i) \leq |S_i|$. Consequently, $|R_i| = |S_i|$.

Claim 3. If $v_i \in C$, then $|R_i| = |S_i| + 1$.

Proof. Suppose $v_i \in C$. Then, $v_i \in S_i$ but S_i does not contain any child of v_i . Let H be the tree obtained from T_i by joining v to v_i and to a new vertex u. Then, H is a tree of order less than n in which the vertex v is a support vertex and therefore belongs to every $\gamma_t(H)$ -set.

The set $S_i \cup \{v\}$ is a total dominating set of H. If $S_i \cup \{v\}$ is not a $\gamma_t(H)$ set, then replacing $S_i \cup \{v\}$ in S by a $\gamma_t(H)$ -set (which necessarily contains v) produces a total dominating set of T of cardinality less than $|S| = \gamma_t(T)$, which is impossible. Hence, $S_i \cup \{v\}$ is a $\gamma_t(H)$ -set. Furthermore, every vertex $w \in S_i \cup \{v\}$ is a support vertex in H or satisfies $|pn(w, S)| \ge 2$ in H. Applying the inductive hypothesis to H, the tree H satisfies condition (iii). Since (iii) \Rightarrow (i), it follows that $S_i \cup \{v\}$ is the unique $\gamma_t(H)$ -set.

We show now that $v_i \notin \mathcal{N}_t(T_i)$. Since $S_i \cup \{v\}$ is the unique $\gamma_t(H)$ -set, we know by Observation 11 that $v_i \in \mathcal{A}_t(H)$. Hence, by Theorem 3, v_i is a support vertex of H or $|\overline{L}^1(v_i) \cup \overline{L}^2(v_i)| \ge 2$ in the tree H. If v_i is a support vertex in H, then, since v is not a leaf, v_i is also a support vertex in T_i , and so in the tree $T_i, |\overline{L}^1(v_i)| \ge 1$ and therefore $|\overline{L}^1(v_i) \cup \overline{L}^2(v_i)| \ge 1$ in T_i . On the other hand, if $|\overline{L}^1(v_i) \cup \overline{L}^2(v_i)| \ge 2$ in the tree H, then $|\overline{L}^1(v_i) \cup \overline{L}^2(v_i)| \ge 1$ in the tree T_i . In any event, $|\overline{L}^1(v_i) \cup \overline{L}^2(v_i)| \ge 1$ in the tree T_i . Hence, by Theorem 3, $v_i \notin \mathcal{N}_t(T_i)$.

Since $v_i \notin \mathcal{N}_t(T_i)$, there exists a $\gamma_t(T_i)$ -set that contains v_i . We may assume that R_i is chosen so that $v_i \in R_i$. The desired result now follows as in the proof of Claim 1.

Claim 4. If $v_i \in D$, then $|R_i| = |S_i|$.

Proof. Suppose $v_i \in D$. Then, $v_i \in S_i$ and S_i contains a child of v_i . Let H be defined as in Claim 3. Then, as shown in Claim 3, $v_i \notin \mathcal{N}_t(T)$ and we may assume that $v_i \in R_i$. The desired result now follows as in the proof of Claim 2.

We now return to our proof of Theorem 13. Since $|\operatorname{pn}(v, S)| \geq 2$, $|A| + |C| = |\operatorname{epn}(v, S)| + |\operatorname{ipn}(v, S)| = |\operatorname{pn}(v, S)| \geq 2$. By Claims 1, 2, 3 and 4, $|R| = \sum_{i=1}^{m} |R_i| \geq 2 + \sum_{i=1}^{m} |S_i| = 2 + (|S| - 1) = |S| + 1$. Thus, $\gamma_t(T-v) = |R| > |S| = \gamma_t(T)$. Since v is an arbitrary vertex of S - S(T), the set S satisfies condition (iii). Hence, (ii) \Rightarrow (iii) as desired.

4..2 Combining UTD-Trees

Our aim in this section is to provide a constructive characterization of UTDtrees. For this purpose, we introduce the following notation. Let T be a UTD-tree of order at least 4 and let S be the unique $\gamma_t(T)$ -set. Let the vertices of T be partitioned into sets S_A , S_B , S_C , S_D , and S_E as follows:

$$\begin{split} S_A &= \{ v \in S \mid v \in \operatorname{ipn}(w, S) \text{ for some } w \in S - S(T) \text{ with } |\operatorname{pn}(w, S)| = 2 \}, \\ S_B &= S - S_A, \\ S_C &= \{ v \in V - S \mid \operatorname{pn}(w, S) = \{ v \} \text{ for some } w \in S \}, \\ S_D &= \{ v \in V - S \mid v \in \operatorname{pn}(w, S) \text{ for some } w \in S - S(T - v) \text{ with } \\ &|\operatorname{pn}(w, S)| = 2 \}, \\ S_E &= (V - S) - (S_C \cup S_D). \end{split}$$

Note that if $v \in S_C$, then $v \in L(T)$. We say that the vertices of S_X have status X where $X \in \{A, B, C, D, E\}$.

The following lemma will prove to be useful.

Lemma 14. Let T_1 and T_2 be vertex disjoint trees, and let $v \in \mathcal{A}_t(T_1)$. Let T be a tree obtained from $T_1 \cup T_2$ by joining v to a vertex of T_2 . Let D be a $\gamma_t(T)$ -set. If T_1 is a UTD-tree of order at least 3, then $|D \cap V(T_1)| \ge \gamma_t(T_1)$.

Proof. Let S_1 be the unique $\gamma_t(T_1)$ -set and let $D_1 = D \cap V(T_1)$. If D_1 is a total dominating set of T_1 , then $|D_1| \ge \gamma_t(T_1)$, as desired. Suppose, then, that D_1 is not a total dominating set of T_1 . Then, D_1 contains no neighbor of v. Now, $D_1 \cup \{v'\}$ is a total dominating set of T_1 for any neighbor v'of v in T_1 . Suppose in the tree T_1 , $N(v) \subset S_1$. Then, v cannot be a support vertex (since no leaf belongs to S_1), and so deg $v \ge 2$. Thus, since $D_1 \cup \{v'\}$ contains only one neighbor of v, the uniqueness of S_1 implies that $D_1 \cup \{v'\}$ is not a $\gamma_t(T_1)$ -set. Hence, $|D_1| + 1 \ge \gamma_t(T_1) + 1 = |S_1| + 1$, and so $|D_1| \ge |S_1|$. On the other hand, if in the tree T_1 , $N(v) \not\subset S_1$, then we choose $v' \in N(v) - S_1$. Since $D_1 \cup \{v'\} \ne S_1$, the uniqueness of S_1 once again implies that $|D_1| \ge |S_1|$. The result follows.

In what follows, we shall adopt the following notation. Let T_1 and T_2 be two vertex disjoint UTD-trees each of order at least 4. For $i \in \{1, 2\}$, let S_i denote the unique $\gamma_t(T_i)$ -set. Then, S_i consists of the vertices of status Aand B. We now present three operations which allow us to link up T_1 and T_2 to produce a new UTD-tree T.

Operation \mathcal{T}_1 . Join a vertex u_1 of status D or E in \mathcal{T}_1 to a vertex u_2 of status D or E in \mathcal{T}_2 .

Operation \mathcal{T}_2 . Join a vertex u_1 of S_1 to a vertex u_2 of status E in \mathcal{T}_2 .

Operation \mathcal{T}_3 . Join a vertex u_1 of status B in T_1 to a vertex u_2 of status B in T_2 .

In the next lemma, for the tree T obtained from $T_1 \cup T_2$ using one of these three operations, let D be a $\gamma_t(T)$ -set, and let $D_i = D \cap V(T_i)$ for $i \in \{1, 2\}$.

Lemma 15. $S_1 \cup S_2$ is the unique $\gamma_t(T)$ -set of T produced by Operation \mathcal{T}_1 , \mathcal{T}_2 or \mathcal{T}_3 .

Proof. (i) Suppose T is produced by Operation \mathcal{T}_1 . We show first that $S_1 \cup S_2$ is a $\gamma_t(T)$ -set. The set $S_1 \cup S_2$ is a total dominating set of T, and so

 $\gamma_t(T) \leq |S_1| + |S_2|$. If $|D_1| + |D_2| \geq |S_1| + |S_2|$, then $\gamma_t(T) \geq |S_1| + |S_2|$ and consequently $\gamma_t(T) = |S_1| + |S_2|$. Hence it suffices to show that $|D_1| + |D_2| \geq |S_1| + |S_2|$.

Suppose $u_1, u_2 \notin D$. Then D_i is a total dominating set of T_i , and so $|D_i| \ge \gamma_t(T_i) = |S_i|$. Thus, $|D_1| + |D_2| \ge |S_1| + |S_2|$.

Suppose $u_1 \in D$ and $u_2 \notin D$. Then, D_1 is a total dominating set of T_1 . Since S_1 is the unique $\gamma_t(T_1)$ -set and $u_1 \notin S_1$, $|D_1| \ge |S_1| + 1$. Also, $D_2 \cup \{u'_2\}$ is a total dominating set of T_2 where u'_2 is any neighbor of u_2 in T_2 . Thus, $|D_2| + 1 \ge \gamma_t(T_2) = |S_2|$. Hence, $|D_1| + |D_2| \ge |S_1| + |S_2|$. Similarly, if $u_1 \notin D$ and $u_2 \in D$, then $|D_1| + |D_2| \ge |S_1| + |S_2|$.

Suppose $u_1, u_2 \in D$. Then, for $i \in \{1, 2\}$, $D_i \cup \{u'_i\}$ is a total dominating set of T_i where u'_i is any neighbor of u_i in T_i . Since S_i is the unique $\gamma_t(T_i)$ set, $D_i \cup \{u'_i\}$ is not a $\gamma_t(T_i)$ -set, and so $|D_i| + 1 \ge \gamma_t(T_i) + 1 = |S_i| + 1$. Hence, $|D_i| \ge |S_i|$ for each *i*. Thus, $|D_1| + |D_2| \ge |S_1| + |S_2|$. Hence, $S_1 \cup S_2$ is a $\gamma_t(T)$ -set.

Since u_1 and u_2 are vertices of status D or E in T_1 and T_2 , respectively, in the tree T every vertex $v \in S_1 \cup S_2$ is a support vertex or satisfies $|pn(v, S_1 \cup S_2)| \geq 2$. Thus, since $S_1 \cup S_2$ is a $\gamma_t(T)$ -set, it follows from Theorem 13 that T is a UTD-tree and $S_1 \cup S_2$ is the unique $\gamma_t(T)$ -set.

(ii) Suppose T is produced by Operation \mathcal{T}_2 . We show that $|D_i| \geq |S_i|$ for each *i*. It follows from Lemma 14 that $|D_1| \geq |S_1|$. If D_2 is a total dominating set of T_2 , then $|D_2| \geq |S_2|$ as desired. Suppose D_2 is not a total dominating set of T_2 . Then D_2 contains no neighbor of u_2 and $D_2 \cup \{u'_2\}$ is a total dominating set of T_2 for any neighbor u'_2 of u_2 in T_2 . If $D_2 \cup \{u'_2\} = S_2$, then since u_2 has status E in T_2 , $|pn(u_2, S_2)| \geq 2$, contradicting the fact that $D_2 = S_2 - \{u'_2\}$ is a total dominating set of T_2 -near total dominating set of T_2 has status Z in T_2 . If $D_2 \cup \{u'_2\} = S_2$, then since u_2 has status E in T_2 , $|pn(u_2, S_2)| \geq 2$, contradicting the fact that $D_2 = S_2 - \{u'_2\}$ is a total dominating set of $T_2 - u_2$. Hence, $D_2 \cup \{u'_2\} \neq S_2$. Since S_2 is the unique $\gamma_t(T_2)$ -set, $|D_2| + 1 \geq \gamma_t(T_2) + 1 = |S_2| + 1$, and so $|D_2| \geq |S_2|$. Thus, $|D_i| \geq |S_i|$ for each *i*.

The set $S_1 \cup S_2$ is a total dominating set of T, and so $\gamma_t(T) \leq |S_1| + |S_2|$. However, $\gamma_t(T) = |D| = |D_1| + |D_2| \geq |S_1| + |S_2|$. Consequently, $\gamma_t(T) = |S_1| + |S_2|$.

Since $u_1 \in S_1$ and u_2 is a vertex of status E in T_2 , in the tree T every vertex $v \in S_1 \cup S_2$ is a support vertex or satisfies $|pn(v, S_1 \cup S_2)| \ge 2$. Thus, since $S_1 \cup S_2$ is a $\gamma_t(T)$ -set, it follows from Theorem 13 that T is a UTD-tree and $S_1 \cup S_2$ is the unique $\gamma_t(T)$ -set.

(iii) Suppose T is produced by Operation \mathcal{T}_3 . It follows from Lemma 14 that $|D_i| \geq |S_i|$ for each *i* and therefore that $S_1 \cup S_2$ is a $\gamma_t(T)$ -set. Since $u_i \in S_i$ has status B in T_i for $i \in \{1, 2\}$, in the tree T every vertex $v \in I$

 $S_1 \cup S_2$ is a support vertex or satisfies $|pn(v, S_1 \cup S_2)| \ge 2$. It follows from Theorem 13 that T is a UTD-tree and $S_1 \cup S_2$ is the unique $\gamma_t(T)$ -set.

Let \mathcal{T} be the family of trees T with $V(T) = L(T) \cup S(T)$, $|S(T)| \ge 2$. Let \mathcal{F} be the family of trees that can be obtained from a star T with at least two leaves by adding at least one leaf adjacent to each leaf of T (so each leaf of T is a support vertex in the resulting tree). We are now in a position to present a constructive characterization of UTD-trees.

Theorem 16. Let T be a tree of order at least 4. Then T is a UTD-tree if and only if T can be constructed from disjoint trees in $T \cup \mathcal{F}$ by a sequence of Operations \mathcal{T}_1 , \mathcal{T}_2 , and \mathcal{T}_3 .

Proof. Each tree in $\mathcal{T} \cup \mathcal{F}$ is a UTD-tree, and so the sufficiency follows from Lemmas 15. To prove the neccessity, we proceed by induction on $\gamma_t(T)$. If $\gamma_t(T) = 2$, then T is a double star, and so $T \in \mathcal{T}$. Hence the base case holds. Assume the result is true for all UTD-trees T' with $\gamma_t(T') < m$, where $m \geq 3$. Let T = (V, E) be a UTD-tree with $\gamma_t(T) = m$. Let S be the unique $\gamma_t(T)$ -set.

Let u_1u_2 be an edge of T, and let T_1 and T_2 be the components of $T-u_1u_2$ containing u_1 and u_2 , respectively. For $i \in \{1, 2\}$, let $S_i = S \cap V(T_i)$ and let D_i be a $\gamma_t(T_i)$ -set. We proceed further by proving three claims.

Claim 5. For $i \in \{1, 2\}$, if S_i is a total dominating set of T_i , then S_i is the unique $\gamma_t(T_i)$ -set.

Proof. For $i \in \{1, 2\}$, $|D_i| \leq |S_i|$. Now, $D_1 \cup D_2$ is a total dominating set of T, and so $|S_1| + |S_2| \geq |D_1| + |D_2| \geq \gamma_t(T) = |S_1| + |S_2|$. Hence $|D_i| = |S_i|$ for each i. Thus, $D_1 \cup D_2$ is a $\gamma_t(T)$ -set. The uniqueness of S implies that $D_1 \cup D_2 = S$, and therefore $D_i = S_i$ for each i. Hence, T_i is a UTD-tree and S_i is the unique $\gamma_t(T_i)$ -set.

Claim 6. If $u_1, u_2 \in V - S$, then T can be constructed as claimed.

Proof. Since S_i is a total dominating set of T_i for $i \in \{1, 2\}$, T_i is a UTDtree and S_i is the unique $\gamma_t(T_i)$ -set by Claim 5. Applying the inductive hypothesis to T_i , each T_i can be constructed from disjoint trees in $\mathcal{T} \cup \mathcal{F}$ by a sequence of Operations \mathcal{T}_1 , \mathcal{T}_2 , and \mathcal{T}_3 . Since $u_i \notin S_i$, u_i has status C, D or E in T_i . If u_i has status C in T_i , then in the tree T_i , u_i is a leaf and $pn(w, S_i) = \{u_i\}$ for some $w \in S_i$. Thus in T, |pn(w, S)| = 1 and $w \in S - S(T)$, contradicting Theorem 13. Hence, u_i has status D or E in T_i , and T can be obtained from $T_1 \cup T_2$ by Operation \mathcal{T}_1 . The result follows.

Claim 7. If $u_1 \in S$ and if $u_2 \in V - S$ is not an external private neighbor of any vertex in S, then T can be constructed as claimed.

Proof. Since S_i is a total dominating set of T_i for $i \in \{1, 2\}$, T_i is a UTDtree and S_i is the unique $\gamma_t(T_i)$ -set by Claim 5. Applying the inductive hypothesis to T_i , each T_i can be constructed from disjoint trees in $\mathcal{T} \cup \mathcal{F}$ by a sequence of Operations \mathcal{T}_1 , \mathcal{T}_2 , and \mathcal{T}_3 .

We show next that u_2 has status E in T_2 . Since $u_2 \notin S_2$, u_2 has status C, D or E in T_2 . If u_2 has status C in T_2 , then $pn(w, S_2) = \{u_2\}$ for some $w \in S_2$. Thus in T, |pn(w, S)| = 0, contradicting Theorem 1. If u_2 has status D in T_2 , then in the tree T_2 , $u_2 \in pn(w, S_2)$ where w is adjacent to no leaf except possibly u_2 and $|pn(w, S_2)| = 2$. Thus in T, |pn(w, S)| = 1 and $w \in S - S(T)$, contradicting Theorem 13. Hence, u_2 has status E in T_2 . Thus, T can be obtained from $T_1 \cup T_2$ by Operation T_2 . The result follows.

We now return to the proof of Theorem 16. By Claim 6, we may assume that no edge joins two vertices of V - S and by Claim 7, we may assume that each vertex in V - S is the external private neighbor of some vertex in S. Hence, each vertex in V - S is a leaf in T. If S = S(T), then $T \in \mathcal{T}$. Hence, we may assume that $S \neq S(T)$.

Let $u_1 \in S - S(T)$. By assumption, $N(u_1) \subseteq S$. Hence, by Theorem 13, $|\operatorname{ipn}(u_1, S)| \geq 2$. For each $w \in \operatorname{ipn}(u_1, S)$, $N(w) \cap S = \{u_1\}$ and $w \in S(T)$. If $S = N[u_1]$, then $T \in \mathcal{F}$. Hence we may assume that some neighbor u_2 of u_1 is not an internal private neighbor of u_1 .

For $i \in \{1, 2\}$, let T_i , S_i , and D_i be as defined earlier. Since S_i is a total dominating set of T_i for $i \in \{1, 2\}$, T_i is a UTD-tree and S_i is the unique $\gamma_t(T_i)$ -set by Claim 5. Applying the inductive hypothesis to T_i , each T_i can be constructed from disjoint trees in $\mathcal{T} \cup \mathcal{F}$ by a sequence of Operations \mathcal{T}_1 , \mathcal{T}_2 , and \mathcal{T}_3 .

In the tree T_1 , $|\operatorname{ipn}(u_1, S_1)| \geq 2$, and so $u_1 \notin \operatorname{ipn}(w, S_1)$ for any $w \in S_1$. Thus, u_1 has status B in T_1 . In the tree T_2 , if u_2 has status A, then $u_2 \in \operatorname{ipn}(w, S_2)$ for some $w \in S_2 - S(T)$ where $|\operatorname{pn}(w, S_2)| = 2$. But then in the tree $T, w \in S - S(T)$ and $|\operatorname{pn}(w, S)| = 1$, contradicting Theorem 13. Hence, u_2 has status B in T_2 . Thus, T can be obtained from $T_1 \cup T_2$ by Operation T_3 .

References

- G. Chartrand and L. Lesniak, Graphs & Digraphs, third edition (Chapman & Hall, London, 1996).
- [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, *Total domination in graphs*, Networks **10** (1980) 211–219.
- [3] E. Cockayne, M.A. Henning and C.M. Mynhardt, *Vertices contained in every* minimum total dominating set of a tree, to appear in Discrete Math.
- [4] O. Favaron, M.A. Henning, C.M. Mynhardt and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (2000) 9–19.
- [5] G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.
- [6] G. Gunther, B. Hartnell and D. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167–172.
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
- [9] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000) 21–45.
- [10] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245–251.

Received 10 February 2001 Revised 6 November 2001