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Abstract

Let V1, V2 be a partition of the vertex set in a graph G, and let γi

denote the least number of vertices needed in G to dominate Vi. We
prove that γ1 + γ2 ≤ 4

5 |V (G)| for any graph without isolated vertices
or edges, and that equality occurs precisely if G consists of disjoint
5-paths and edges between their centers. We also give upper and lower
bounds on γ1 + γ2 for graphs with minimum valency δ, and conjecture
that γ1 + γ2 ≤ 4

δ+3 |V (G)| for δ ≤ 5. As δ gets large, however, the
largest possible value of (γ1 + γ2)/|V (G)| is shown to grow with the
order of log δ

δ .
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1. Introduction

Let V1, V2 be a partition of the vertices in a graph G, let γ denote the
domination number of G and let γi denote the least number of vertices
needed in G to dominate Vi. Seager ([5]) has proven that γ+γ1+γ2 ≤ |V (G)|
for a graph with minimum valency at least 2. Hartnell and Vestergaard ([1])
have proven that for a tree γ + γ1 + γ2 ≤ 5

4 |V (G)|. We prove here that
γ1 + γ2 ≤ 4

5 |V (G)| for any graph without isolated vertices or edges and that
equality occurs precisely if G consists of disjoint 5-paths and edges between
their centers. We also prove γ1 +γ2 ≤ δ+1

2δ |V (G)| for a graph with minimum
valency δ, and conjecture that γ1 + γ2 ≤ 4

δ+3 |V (G)| for δ relatively small.
As δ gets large, however, the largest possible value of (γ1 + γ2)/|V (G)| is
shown to grow with the order of log δ

δ , its supremum (taken over all feasible
G for each δ) tending to 2 log δ

δ as δ →∞.

2. Notation and Definitions

By G we denote the complementary graph to G, i.e., V (G) = V (G) and two
vertices are adjacent in G precisely if they are nonadjacent in G. A k-path,
denoted Pk, is a path on k vertices. If G contains the edge vu2 and G−v has
a component Pk−1 = u2u3 . . . uk−1uk, k ≥ 2, we say that vu2u3 . . . uk is a
k-path pendant from v, or that vu2u3 . . . uk is attached to v. More generally,
attaching Pk = u1 . . . uk to v by ui (for some 1 ≤ i ≤ k) means that v and
ui get identified, i.e., if 1 6= i 6= k then both u1 . . . ui−1 and ui+1 . . . uk are
components in G− v. Furthermore, NG(v) denotes the set of neighbours to
v ∈ V (G) and we define NG[v] = {v} ∪ NG(v). For D ⊆ V (G) we define
NG(D) =

⋃{NG(v) | v ∈ D} and NG[D] =
⋃{NG[v] | v ∈ D} = D∪NG(D).

If for u ∈ D we have v ∈ NG[D], but v 6∈ NG[D − u], we call v a private
neighbour of u with respect to D in G, if e.g., u has no neighbour in D,
u by this definition is its own private neighbour. If X ⊆ V (G) satisfies
X ⊆ NG[D], we say that D dominates X in G. If, in particular, V (G) ⊆
NG[D], we call D a dominating set in G. The cardinality γ(G) of a smallest
dominating set is called the domination number of G, γ(G) = min{|D| |
NG[D] = V (G)}. Let V1, V2 be a partition of V (G) into two disjoint subsets,
V (G) = V1 ∪ V2, V1 ∩ V2 = ∅; {V1, V2} = {∅, V (G)} is permitted. Define
γG(∅) = 0 and for i = 1, 2 consider a smallest set of vertices Di in V (G)
which in G dominates Vi, γi = γG(Vi) = min{|Di| | Vi ⊆ NG[Di]}. Define
f by
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f(G) = max{γG(V1) + γG(V2) | V1 ∪ V2 = V (G), V1 ∩ V2 = ∅} .
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When superfluous, we may omit reference to G, e.g., writing γi for γG(Vi).
Since γ(G) ≤ |D1 ∪D2| ≤ γ1 + γ2, f(G) retains the same value whether or
not we in its definition allow one of V1, V2 to be empty. By δ = δ(G) we
denote the minimum valency of G.

For a graph G we wish to determine f(G) or at least to give an upper
bound and to indicate some families of graphs for which the number f(G)
can be given.

3. Tight Upper Bounds with δ Small

In this section we consider graph classes where no strong assumptions are
put on minimum valency.

Theorem 1. Let G be a graph with at least three vertices in each component.
Then

(1) f(G) ≤ 4
5 |V (G)|,

(2) Equality occurs in (1) precisely if G can be constructed from a graph H
by attaching to each vertex of H a 5-path by its central vertex.

Proof. We observe that

(i) f(G1 ∪G2) ≤ f(G1) + f(G2),
(ii) f(G) ≤ f(G− e), ∀e ∈ E(G).

Therefore it suffices by (i) to prove (1) for connected graphs and by (ii)
it suffices to prove (1) for a tree. Any tree T with diameter ≥ 5 contains
an edge e such that both components of T − e have at least three vertices.
Hence it suffices to prove (1) for trees with diameter two, three or four.

A tree with diameter two is a star K1,s, s ≥ 2, and satisfies (1) since
f(K1,s) = 2 < 4

5(s + 1). A tree G with diameter three is a double star,
namely two vertex-disjoint stars K1,s and K1,t, s, t ≥ 1, with center u and
v, respectively, together with the edge uv. For |V (G)| > 5 we see with
D1 = D2 = {u, v} that f(G) ≤ |D1| + |D2| = 4 < 4

5 |V (G)| as desired. For
|V (G)| = 5 G is a K1,3 with one edge subdivided and f(G) = 3 < 4

5 · 5. If
|V (G)| ≤ 4, necessarily s = t = 1 and G = P4, then f(P4) = 3 < 4

5 · 4. So
(1) holds with sharp inequality for trees with diameter two or three.

Let G be a tree with diameter four and let v1v2v3v4v5 be a longest
path in G. We may assume that every neighbour v of v3, in particular also
v2 and v4, has at most one valency-1 neighbour, otherwise G − vv3 would
have three or more vertices in both components and we could apply (i), (ii)
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and induction. Thus we may assume G is a star with some edges subdivided,
i.e., G−v3 consists of k K2’s, k ≥ 2, and possibly some isolated vertices. For
i = 1, 2 let Di consist of v3 and those vertices in Vi which are non-adjacent
to v3. Then Di dominates Vi, i = 1, 2, and f(G) ≤ 2 + k ≤ 4

5 |V (G)|, since
k ≥ 2 and |V (G)| ≥ 1 + 2k. Note that equality in (1) only holds if k = 2
and |V (G)| = 5, i.e., if G = P5. We have proven (1) for all graphs.

Obviously equality holds in (1) for the graph G constructed in (2) to-
gether with a partition V1, V2 of V (G), where for i = 1, 2, Vi from each
attached 5-path contains a neighbour and a non-neighbour to its central
vertex, which are at distance 3 apart, while the central vertices may be
partitioned arbitrarily. Conversely, let G be a graph with no isolated ver-
tex or edge and with f(G) = 4

5 |V (G)|. This equality implies that the edge
deletions described in the proof above for (1) result in components, all of
which are 5-paths. We shall now prove that the only way these 5-paths and
added edges can form the graph G, with equality in (1) preserved, is by
adding edges between central vertices of the 5-paths. Addition of any other
edge will cause f(G) < 4

5 |V (G)|. Let namely F consist of P5 = u1u2u3u4u5

and Q5 = v1v2v3v4v5 together with uivj , 1 ≤ i, j ≤ 5, i 6= 3. Place vj

in both D1 and D2. For any partition V1, V2 of V (F ) the contribution of
Q5−NQ5 [vj ] to γ1 +γ2 is at most three, because Q5−NQ5 [vj ] is a P3 or has
only two vertices. Also, P5 − ui is either a 4-path or a 3-path and an iso-
lated vertex. In both cases a vertex with valency two in P5− ui is placed in
both D1 and D2 while the non-dominated end vertex of the 4-path, respec-
tively the isolated vertex, if belonging to Vi, i = 1, 2, is placed in Di. Thus
f(F ) ≤ |D1|+ |D2| = 7 < 4

5 · 10 and hence by (i) and (ii) f(G) < 4
5 |V (G)|.

This proves the claim above and hence Theorem 1.

Seager has proven

Theorem 2 ([5]). Let G be any graph with minimum valency at least two.
Then for any partition V1, V2 of V (G),

γ(G) + γG(V1) + γG(V2) ≤ |V (G)| .

Using that we shall prove the following bound for f(G).

Theorem 3. Let G be any graph with minimum valency at least two. Then
f(G) ≤ 2

3 |V (G)|.
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Proof. Let V1, V2 be a partition of V (G). If γ(G) ≤ 1
3 |V (G)| we have

γG(Vi) ≤ γ(G) ≤ 1
3 |V (G)| for i = 1, 2, and γG(V1) + γG(V2) ≤ 2

3 |V (G)|
follows. Otherwise γ(G) > 1

3 |V (G)| and from Theorem 2 we obtain γG(V1)+
γG(V2) ≤ |V (G)| − γ(G) < 2

3 |V (G)|. This proves Theorem 3.

As one can see, f(G) = 2
3 |V (G)| implies that γ(G) = 1

3 |V (G)| and that there
exists a partition V1, V2 of V (G) such that γG(V1) = γG(V2) = 1

3 |V (G)|.
Circuits on 3k vertices satisfy f(C3k) = 2k. Let H be any graph and

denote by G = H◦K2 the graph obtained from H by adding for each vertex v
in H two new vertices v′, v′′ and three edges v′v′′, vv′, vv′′. With all v′ in V1,
all v′′ in V2 and V (H) partitioned arbitrarily we see that f(G) = 2

3 |V (G)|.
Based on the same principle, instead of triangles one can attach cycles of
any (possibly distinct) lengths divisible by 3 to the vertices of H.

More generally, one can apply the following recursive construction. For
i = 1, 2 let Gi be a graph with f(Gi) = 2

3 |V (Gi)| and let Di be a minimum
dominating set of Gi such that each v ∈ Di has both a private V1-neighbour
and a private V2-neighbour belonging to V (Gi) − Di. Then the graph G
obtained by joining G1 and G2 by any number of D1D2-edges has f(G) =
2
3 |V (G)|.

4. General Estimates on γ1 + γ2

In this section we investigate the situation when δ gets large. We begin with
a constructive general lower bound.

Theorem 4. For every δ > 0 there exists a graph with minimum valency δ
and a partition V1, V2 of its vertices such that

f(G) ≥ γG(V1) + γG(V2) =





4
δ + 3

|V (G)| for δ ≡ 1 (mod 4),

4
δ + 4

|V (G)| for δ 6≡ 1 (mod 4).

Proof. If δ ≡ 1 (mod 4), write δ = 4t − 3, t ≥ 1. Let G = C4t =
x1x2x3 . . . x4t and let V1, V2 consist of alternate vertex pairs on the circuit,
i.e.,

V1 = {x1, x2 ; x5, x6 ; x9, x10 ; . . . ; x4t−3, x4t−2},
while

V2 = {x3, x4 ; x7, x8 ; x11, x12 ; . . . ; x4t−1, x4t}.
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Then G = C4t has δ(G) = 4t − 3. In G no single vertex dominates V1 but
two neighbours do, so γG(V1) = γG(V2) = 2 and γG(V1) + γG(V2) = 4 =
4
4t4t = 4

δ+3 |V (G)| as desired.
If δ ≡ 0, 2 (mod 4), choose k even if δ ≡ 0 (mod 4) and choose k odd if

δ ≡ 2 (mod 4), and let G consist of two vertex-disjoint circuits x1x2x3 . . . xk

and y1y2y3 . . . yk together with the edges xiyi, 1 ≤ i ≤ k, and let V1 =
{x1, x2, . . . , xk}, V2 = {y1, y2, . . . , yk}. Then δ(G) = 2k − 4, γG(V1) =
γG(V2) = 2 and γG(V1) + γG(V2) = 4 = 4

2k2k = 4
δ+4 |V (G)| as desired.

If δ ≡ 3 (mod 4), let G consist of two circuits x1x2x3 . . . x2kx2k+1 and
y1y2 . . . y2ky2k+1 together with edges xiyi, 1 ≤ i ≤ 2k, and a vertex x2k+2

joined to x2k+1 and to y2k+1. Let V1 = {x1, x2, . . . , x2k, x2k+1, x2k+2}, V2 =
{y1, y2, . . . , y2k+1}. Then G has |V (G)| = 4k + 3, k ≥ 1, δ(G) = 4k − 1,
γG(V1) = γG(V2) = 2. We obtain γG(V1) + γG(V2) = 4 = 4

4k+3(4k + 3) =
4

δ+4 |V (G)| as desired and Theorem 4 is proven.

We conjecture the converse of Theorem 4 to be true for not too large δ.

Conjecture 1. For any graph G with minimum valency δ(G) = δ ≤ 5 we
have

f(G) ≤





4
δ + 3

|V (G)| for δ ≡ 1(mod 4),

4
δ + 4

|V (G)| for δ 6≡ 1(mod 4).

More generally, it would be interesting to determine the largest value of
δ for which the construction above is best possible and the formula in
Conjecture 1 is valid.

We cannot prove the conjecture, but we can prove a weaker statement.

Theorem 5. Let G be a graph with minimum valency δ and let V1 ∪ V2 =
V (G), V1 ∩ V2 = ∅ be a partition of V (G). Then γG(V1) + γG(V2) ≤
δ+1
2δ |V (G)|.

Remark. If 0 < d ≤ δ, it follows that γG(V1) + γG(V2) ≤ d+1
2d |V (G)|, since

δ+1
2δ ≤ d+1

2d .

First we need a lemma and some definitions.

A set of vertices S ⊆ V (G) is called distance-2 independent in G if
dG(u, v) > 2 for every pair of distinct vertices u, v from S. Define the
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distance-2 independence number relative to G of a vertex set X ⊆ V (G)
to be

α2(X) = max{|S| | S ⊆ X, dG(u, v) > 2 ∀u, v ∈ S} .

If X is the entire vertex set, we simply write α2(G) instead of α2(V (G)).

Lemma. For any graph G and for any subset of vertices X ⊆ V (G) we
have γG(X) ≤ 1

2(|X|+ α2(X)).

Proof. Consider the auxiliary graph G2[X] with vertex set X and with
two vertices x, x′ ∈ X adjacent in G2[X] if and only if 0 < dG(x, x′) ≤ 2.
Let ei = xix

′
i, 1 ≤ i ≤ m, be a maximal matching in G2[X]. By defi-

nition there exist vertices v1, v2, . . . , vm (not necessarily distinct) in V (G)
such that each vi dominates both xi and x′i. Moreover, the vertices in X
not incident with the ei are distance-2 independent by maximality of the
matching. Therefore, α2(X) ≥ |X| − 2m or −m ≤ 1

2(α2(X) − |X|) and
hence γ(X) ≤ m + (|X| − 2m) = |X| −m ≤ 1

2(|X| + α2(X)). This proves
the lemma.

Proof of Theorem 5. Applying the lemma in turn to V1, V2 and using
α2(Vi) ≤ α2(G) (since, also inside Vi, α2 is defined in terms of distances in
the entire G), we obtain

γG(V1) + γG(V2) ≤ 1
2
|V (G)|+ α2(G) .

For another inequality, let S be a largest distance-2 independent set of ver-
tices in G, |S| = α2(G). We observe that N [S] contains at least (δ+1)α2(G)
vertices, and thus V (G)−N [S] has at most |V (G)| − (δ + 1)α2(G) vertices.
For i = 1, 2 choose Di = S ∪ {(V (G)−NG[S]) ∩ Vi}; then Vi ⊆ NG[Di] and

γG(V1) + γG(V2) ≤ |D1|+ |D2| ≤ 2α2(G) + |V (G)| − (δ + 1)α2(G)

= |V (G)| − (δ − 1)α2(G) .

Combining the two inequalities yields the desired result that γG(V1)+γG(V2)
≤ max

α2(G)≥0
min{|V (G)| − (δ − 1)α2(G), 1

2 |V (G)|+ α2(G)} ≤ δ+1
2δ |V (G)|.

We conclude this section with asymptotically tight estimates on f(G) in
terms of minimum valency. Interestingly enough, both the lower and up-
per bounds are proved by probabilistic methods. Throughout, ‘log’ means
logarithm of base e.
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Theorem 6. There exists a sequence of positive reals εd, tending to 0 as
d →∞, such that

(1− εd)
2 log d

d
≤ sup

G: δ(G)≥d−1

f(G)
|V (G)| <

1 + 2 log d

d

holds for every natural number d.

Proof. Upper bound. Let V (G) = {v1, . . . , vn}. We begin with choosing a
set D0 ⊆ V (G) at random, by the rule

Prob(vi ∈ D0) =
log d

d

for each i = 1, . . . , n independently. Then we set

Dj = D0 ∪ {vi ∈ Vj | D0 ∩NG[vi] = ∅}
for j = 1, 2. Clearly, D1 dominates V1 and D2 dominates V2, moreover the
expected cardinality of D0 is log d

d n. Hence, by the additivity of expectation,
the upper bound will follow if we prove

Prob(vi | D0 ∩NG[vi] = ∅) <
1
d

.

Indeed, the closed neighbourhood N [vi] of vi contains at least d vertices
by the minimum-valency condition, and each of them is chosen into D0

independently with probability log d
d . Thus,

Prob(vi | D0∩NG[vi] = ∅) ≤ (1− log d
d )d =

(
(1− log d

d )
d

log d

)log d
< e− log d =

1
d

.

Lower bound. Assume, without loss of generality, that d is a large even
number. We let n = d2, fix two disjoint sets V1, V2 of cardinality d2/2 each,
and take a random graph G with edge probability 1/d on the vertex set
V1∪V2. For j = 1, 2 we will prove that, with probability 1− o(1) as d →∞,
γj := γG(Vj) ≥ (1 − o(1)) d log d holds. This will imply the lower bound of
the theorem, because the minimum valency of G is equal to d− o(d) almost
surely, by the properties of the binomial distribution.

Consider V1, and denote m := γ1. (For V2, the argument is analogous.)
If m ≥ d log d, then the proof is done. Hence, assume m < d log d. Let M
be an arbitrary fixed m-element subset of V (G). For any fixed v ∈ V1 \M ,

Prob(M does not dominate v) =
(

1− 1
d

)m

,
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therefore

Prob(M dominates v) = 1−
(

1− 1
d

)m

< 1− e−
m

d−1 .

Observe that these events are totally independent for the at least 1
2d2 −m

vertices of the entire set V1 \M . Consequently,

Prob(M dominates V1) <
(
1− e−

m
d−1

) 1
2
d2−m

.

Considering all the possible
(
d2

m

)
<

(
ed2

m

)m
choices of M , we obtain

Prob(some m-set dominates V1) <

(
ed2

m

)m (
1− e−

m
d−1

) 1
2
d2−m

= exp
(

m (1 + log d2 − log m) + (
1
2
d2 −m) log (1− e−

m
d−1 )

)
.

Since we assumed m = γ1, the probability equals 1, to be exceeded by
the last formula. Taking logarithm of the inequality and applying the fact
log(1− x) < −x,

m (1 + 2 log d− log m) >

(
1
2
d2 −m

)
e−

m
d−1

follows, or, equivalently,

e
m

d−1 >
d2 − 2m

2m (1 + 2 log d− log m)
.

Taking logarithm again, we conclude

m > (d− 1)
(
log(d2 − 2m)− log 2− log m− log(1 + 2 log d− log m)

)
.

By our assumptions, here log(d2 − 2m) = (2 − o(1)) log d, log m =
(1 + o(1)) log d, while the last term is just (1 + o(1)) log log d. Thus, m ≥
(1− o(1))d log d for d →∞, as claimed.

More generally, an analogous argument yields the following result.
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Theorem 7. Let d and k denote natural numbers. There exists a sequence
of positive reals εd (independent of k), tending to 0 as d →∞, such that

(1− εd)
k log d

d
≤ sup

γG(V1) + · · ·+ γG(Vk)
|V (G)| ≤ 1 + k log d

d

where the supremum is taken over all graphs G = (V, E) of minimum valency
at least d− 1 and over all vertex partitions V1 ∪ · · · ∪ Vk = V (G).

In the particular case of k = 1 the upper bound coincides with the one
known for the domination number of (non-partitioned) graphs [2, Theorem
2.18], and is asymptotically matched by the lower bound as d gets large.

5. Open Problems

In this concluding section we recall some problems that remain unsolved.
Table 1 summarizes bounds conjectured or proved. Define S and T by
S = lim supδ(G)→∞

γG(V1)+γG(V2)
|V (G)| and T = lim supδ(G)→∞

γ(G)+γG(V1)+γG(V2)
|V (G)|

where the supremum is taken over all graphs G with minimum valency δ
and all partitions V1, V2 of V (G). From [2, Theorem 2.18] which states that
any graph G with δ(G) = δ satisfies γ(G) ≤ 1+ln(δ+1)

δ+1 |V (G)|, follows that
S = T = 0.

Table 1. Upper bounds conjectured and proved

δ(G) Conjecture 1 Theorem 5 Comments

1 f(G) ≤ |V (G)| f(G) ≤ |V (G)| trivially true

2 f(G) ≤ 2
3 |V (G)| f(G) ≤ 3

4 |V (G)| Conj. proven in Th. 3

3 f(G) ≤ 4
7 |V (G)| f(G) ≤ 2

3 |V (G)|

4 f(G) ≤ 1
2 |V (G)| f(G) ≤ 5

8 |V (G)|

5 f(G) ≤ 1
2 |V (G)| f(G) ≤ 3

5 |V (G)|

≥ 6 f(G) ≤ δ+1
2δ |V (G)| f(G)

|V (G)| is “proportional” to
log δ

δ in the sense of Th. 6
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Define s(δ) and t(δ) by

s(δ) = lim sup
|V (G)|→∞

γG(V1) + γG(V2)
|V (G)| , t(δ) = lim sup

|V (G)|→∞

γ(G) + γG(V1) + γG(V2)
|V (G)|

where the supremum is taken over all graphs G with minimum valency δ and
over all partitions V1, V2 of V (G). Considering G = Kn we have s(0) = 1.
If we consider graphs with no isolated vertex we get from γ(Vi) ≤ γ(G) ≤
|V (G)|

2 , i = 1, 2, and the graphs G = kK2 that s(1) = 1. If only graphs
with δ(G) ≥ 2 are considered, Theorem 3 and f(C3k) = 2k yields s(2) = 2

3 .
What can we say if only graphs with δ(G) ≥ d are considered? Theorem 5
and its remark gives s(δ) ≤ d+1

2d . Will we have s(δ) = d+1
2d or s(δ) < d+1

2d for
d small?

Similarly t(0) = 2 for δ = 0 and t(1) = 3
2 for δ = 1. For connected graphs

we have t = 5
4 by [1, Theorem 2] while graphs with δ ≥ 2 by Theorem 2

have t(2) ≤ 1, and in fact t(2) = 1, as is seen from the circuits C3k.
Summing up, we ask the questions below.

Question 1. Which graphs G with minimum valency at least two attain
the equality f(G) = 2

3 |V (G)| in Theorem 3 ?

Question 2. For which values of δ is the construction of Theorem 4 optimal
for S ?

Question 3. Consider graphs G with δ(G) = 3 or δ(G) = 4. Is t(δ) equal
to 1 or strictly less than 1 ?

Bruce Reed has proven

Theorem 8 ([4]). If a graph G has minimum valency at least 3 then γ(G) ≤
3
8 |V (G)|.

We conjecture that t(3) < 1. This may be viewed as a weak version of
Conjecture 1 since t(3) < 1 would follow from the truth of Conjecture 1
giving γG(V1)+γG(V2)

|V (G)| ≤ 4
7 combined with Theorem 8.

If we conjecture t(d) to be strictly decreasing in d we shall have t(3) < 1
since we have earlier found that t(2) = 1. We only know that t(3) ≤ 25

24 , as
γG(V1)+γG(V2)

|V (G)| ≤ 2
3 by Theorem 4 and γ(G)

|V (G)| ≤ 3
8 by Theorem 8. By the same
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theorems t(4) ≤ 1, as γG(V1)+γG(V2)
|V (G)| ≤ 5

8 and γ(G)
|V (G)| ≤ 3

8 . We have t(5) < 1

since t(5) ≤ γG(V1)+γG(V2)
|V (G)| + γ(G)

|V (G)| ≤ 6
10 + 3

8 .

Finally, in connection with the case of δ = 5, we raise the following

Conjecture 2. In every 6-uniform 3-regular hypergraph on n vertices there
exists a set of at most n/4 vertices that meets all edges.

Note that the edge set of such a hypergraph consists of precisely n/2
6-tuples, i.e., the so-called transversal number should be proven not to ex-
ceed half of the number of edges.
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