DOMINATION IN PARTITIONED GRAPHS

Zsolt TuZA ${ }^{1}$
Computer and Automation Institute
Hungarian Academy of Sciences, Budapest
and
Department of Computer Science
University of Veszprém, Hungary
e-mail: tuza@sztaki.hu
AND
Preben Dahl Vestergaard
Department of Mathematics, Aalborg University Fredrik Bajers Vej 7E, DK-9220
Aalborg Ø, Denmark
e-mail: pdv@math.auc.dk

Abstract

Let V_{1}, V_{2} be a partition of the vertex set in a graph G, and let γ_{i} denote the least number of vertices needed in G to dominate V_{i}. We prove that $\gamma_{1}+\gamma_{2} \leq \frac{4}{5}|V(G)|$ for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5 -paths and edges between their centers. We also give upper and lower bounds on $\gamma_{1}+\gamma_{2}$ for graphs with minimum valency δ, and conjecture that $\gamma_{1}+\gamma_{2} \leq \frac{4}{\delta+3}|V(G)|$ for $\delta \leq 5$. As δ gets large, however, the largest possible value of $\left(\gamma_{1}+\gamma_{2}\right) /|V(G)|$ is shown to grow with the order of $\frac{\log \delta}{\delta}$.

Keywords: graph, dominating set, domination number, vertex partition.
2000 Mathematics Subject Classification: 05C35, 05C70 (primary), 05C75 (secondary).

[^0]
1. Introduction

Let V_{1}, V_{2} be a partition of the vertices in a graph G, let γ denote the domination number of G and let γ_{i} denote the least number of vertices needed in G to dominate V_{i}. Seager ([5]) has proven that $\gamma+\gamma_{1}+\gamma_{2} \leq|V(G)|$ for a graph with minimum valency at least 2. Hartnell and Vestergaard ([1]) have proven that for a tree $\gamma+\gamma_{1}+\gamma_{2} \leq \frac{5}{4}|V(G)|$. We prove here that $\gamma_{1}+\gamma_{2} \leq \frac{4}{5}|V(G)|$ for any graph without isolated vertices or edges and that equality occurs precisely if G consists of disjoint 5 -paths and edges between their centers. We also prove $\gamma_{1}+\gamma_{2} \leq \frac{\delta+1}{2 \delta}|V(G)|$ for a graph with minimum valency δ, and conjecture that $\gamma_{1}+\gamma_{2} \leq \frac{4}{\delta+3}|V(G)|$ for δ relatively small. As δ gets large, however, the largest possible value of $\left(\gamma_{1}+\gamma_{2}\right) /|V(G)|$ is shown to grow with the order of $\frac{\log \delta}{\delta}$, its supremum (taken over all feasible G for each δ) tending to $\frac{2 \log \delta}{\delta}$ as $\delta \rightarrow \infty$.

2. Notation and Definitions

By \bar{G} we denote the complementary graph to G, i.e., $V(\bar{G})=V(G)$ and two vertices are adjacent in \bar{G} precisely if they are nonadjacent in G. A k-path, denoted P_{k}, is a path on k vertices. If G contains the edge $v u_{2}$ and $G-v$ has a component $P_{k-1}=u_{2} u_{3} \ldots u_{k-1} u_{k}, k \geq 2$, we say that $v u_{2} u_{3} \ldots u_{k}$ is a k-path pendant from v, or that $v u_{2} u_{3} \ldots u_{k}$ is attached to v. More generally, attaching $P_{k}=u_{1} \ldots u_{k}$ to v by u_{i} (for some $1 \leq i \leq k$) means that v and u_{i} get identified, i.e., if $1 \neq i \neq k$ then both $u_{1} \ldots u_{i-1}$ and $u_{i+1} \ldots u_{k}$ are components in $G-v$. Furthermore, $N_{G}(v)$ denotes the set of neighbours to $v \in V(G)$ and we define $N_{G}[v]=\{v\} \cup N_{G}(v)$. For $D \subseteq V(G)$ we define $N_{G}(D)=\bigcup\left\{N_{G}(v) \mid v \in D\right\}$ and $N_{G}[D]=\bigcup\left\{N_{G}[v] \mid v \in D\right\}=D \cup N_{G}(D)$. If for $u \in D$ we have $v \in N_{G}[D]$, but $v \notin N_{G}[D-u]$, we call v a private neighbour of u with respect to D in G, if e.g., u has no neighbour in D, u by this definition is its own private neighbour. If $X \subseteq V(G)$ satisfies $X \subseteq N_{G}[D]$, we say that D dominates X in G. If, in particular, $V(G) \subseteq$ $N_{G}[D]$, we call D a dominating set in G. The cardinality $\gamma(G)$ of a smallest dominating set is called the domination number of $G, \gamma(G)=\min \{|D| \mid$ $\left.N_{G}[D]=V(G)\right\}$. Let V_{1}, V_{2} be a partition of $V(G)$ into two disjoint subsets, $V(G)=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset ;\left\{V_{1}, V_{2}\right\}=\{\emptyset, V(G)\}$ is permitted. Define $\gamma_{G}(\emptyset)=0$ and for $i=1,2$ consider a smallest set of vertices D_{i} in $V(G)$ which in G dominates $V_{i}, \quad \gamma_{i}=\gamma_{G}\left(V_{i}\right)=\min \left\{\left|D_{i}\right| \mid V_{i} \subseteq N_{G}\left[D_{i}\right]\right\}$. Define f by

$$
f(G)=\max \left\{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \mid V_{1} \cup V_{2}=V(G), V_{1} \cap V_{2}=\emptyset\right\} .
$$

When superfluous, we may omit reference to G, e.g., writing γ_{i} for $\gamma_{G}\left(V_{i}\right)$. Since $\gamma(G) \leq\left|D_{1} \cup D_{2}\right| \leq \gamma_{1}+\gamma_{2}, f(G)$ retains the same value whether or not we in its definition allow one of V_{1}, V_{2} to be empty. By $\delta=\delta(G)$ we denote the minimum valency of G.

For a graph G we wish to determine $f(G)$ or at least to give an upper bound and to indicate some families of graphs for which the number $f(G)$ can be given.

3. Tight Upper Bounds with δ Small

In this section we consider graph classes where no strong assumptions are put on minimum valency.

Theorem 1. Let G be a graph with at least three vertices in each component. Then
(1) $f(G) \leq \frac{4}{5}|V(G)|$,
(2) Equality occurs in (1) precisely if G can be constructed from a graph H by attaching to each vertex of H a 5-path by its central vertex.

Proof. We observe that
(i) $f\left(G_{1} \cup G_{2}\right) \leq f\left(G_{1}\right)+f\left(G_{2}\right)$,
(ii) $f(G) \leq f(G-e), \forall e \in E(G)$.

Therefore it suffices by (i) to prove (1) for connected graphs and by (ii) it suffices to prove (1) for a tree. Any tree T with diameter ≥ 5 contains an edge e such that both components of $T-e$ have at least three vertices. Hence it suffices to prove (1) for trees with diameter two, three or four.

A tree with diameter two is a star $K_{1, s}, s \geq 2$, and satisfies (1) since $f\left(K_{1, s}\right)=2<\frac{4}{5}(s+1)$. A tree G with diameter three is a double star, namely two vertex-disjoint stars $K_{1, s}$ and $K_{1, t}, s, t \geq 1$, with center u and v, respectively, together with the edge $u v$. For $|V(G)|>5$ we see with $D_{1}=D_{2}=\{u, v\}$ that $f(G) \leq\left|D_{1}\right|+\left|D_{2}\right|=4<\frac{4}{5}|V(G)|$ as desired. For $|V(G)|=5 G$ is a $K_{1,3}$ with one edge subdivided and $f(G)=3<\frac{4}{5}$. 5. If $|V(G)| \leq 4$, necessarily $s=t=1$ and $G=P_{4}$, then $f\left(P_{4}\right)=3<\frac{4}{5} \cdot 4$. So (1) holds with sharp inequality for trees with diameter two or three.

Let G be a tree with diameter four and let $v_{1} v_{2} v_{3} v_{4} v_{5}$ be a longest path in G. We may assume that every neighbour v of v_{3}, in particular also v_{2} and v_{4}, has at most one valency- 1 neighbour, otherwise $G-v v_{3}$ would have three or more vertices in both components and we could apply (i), (ii)
and induction. Thus we may assume G is a star with some edges subdivided, i.e., $G-v_{3}$ consists of $k \quad K_{2}$'s, $k \geq 2$, and possibly some isolated vertices. For $i=1,2$ let D_{i} consist of v_{3} and those vertices in V_{i} which are non-adjacent to v_{3}. Then D_{i} dominates $V_{i}, i=1,2$, and $f(G) \leq 2+k \leq \frac{4}{5}|V(G)|$, since $k \geq 2$ and $|V(G)| \geq 1+2 k$. Note that equality in (1) only holds if $k=2$ and $|V(G)|=5$, i.e., if $G=P_{5}$. We have proven (1) for all graphs.

Obviously equality holds in (1) for the graph G constructed in (2) together with a partition V_{1}, V_{2} of $V(G)$, where for $i=1,2, V_{i}$ from each attached 5-path contains a neighbour and a non-neighbour to its central vertex, which are at distance 3 apart, while the central vertices may be partitioned arbitrarily. Conversely, let G be a graph with no isolated vertex or edge and with $f(G)=\frac{4}{5}|V(G)|$. This equality implies that the edge deletions described in the proof above for (1) result in components, all of which are 5 -paths. We shall now prove that the only way these 5 -paths and added edges can form the graph G, with equality in (1) preserved, is by adding edges between central vertices of the 5 -paths. Addition of any other edge will cause $f(G)<\frac{4}{5}|V(G)|$. Let namely F consist of $P_{5}=u_{1} u_{2} u_{3} u_{4} u_{5}$ and $Q_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ together with $u_{i} v_{j}, 1 \leq i, j \leq 5, i \neq 3$. Place v_{j} in both D_{1} and D_{2}. For any partition V_{1}, V_{2} of $V(F)$ the contribution of $Q_{5}-N_{Q_{5}}\left[v_{j}\right]$ to $\gamma_{1}+\gamma_{2}$ is at most three, because $Q_{5}-N_{Q_{5}}\left[v_{j}\right]$ is a P_{3} or has only two vertices. Also, $P_{5}-u_{i}$ is either a 4 -path or a 3 -path and an isolated vertex. In both cases a vertex with valency two in $P_{5}-u_{i}$ is placed in both D_{1} and D_{2} while the non-dominated end vertex of the 4 -path, respectively the isolated vertex, if belonging to $V_{i}, i=1,2$, is placed in D_{i}. Thus $f(F) \leq\left|D_{1}\right|+\left|D_{2}\right|=7<\frac{4}{5} \cdot 10$ and hence by (i) and (ii) $f(G)<\frac{4}{5}|V(G)|$. This proves the claim above and hence Theorem 1.
Seager has proven
Theorem 2 ([5]). Let G be any graph with minimum valency at least two. Then for any partition V_{1}, V_{2} of $V(G)$,

$$
\gamma(G)+\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq|V(G)| .
$$

Using that we shall prove the following bound for $f(G)$.
Theorem 3. Let G be any graph with minimum valency at least two. Then $f(G) \leq \frac{2}{3}|V(G)|$.

Proof. Let V_{1}, V_{2} be a partition of $V(G)$. If $\gamma(G) \leq \frac{1}{3}|V(G)|$ we have $\gamma_{G}\left(V_{i}\right) \leq \gamma(G) \leq \frac{1}{3}|V(G)|$ for $i=1,2$, and $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq \frac{2}{3}|V(G)|$ follows. Otherwise $\gamma(G)>\frac{1}{3}|V(G)|$ and from Theorem 2 we obtain $\gamma_{G}\left(V_{1}\right)+$ $\gamma_{G}\left(V_{2}\right) \leq|V(G)|-\gamma(G)<\frac{2}{3}|V(G)|$. This proves Theorem 3.
As one can see, $f(G)=\frac{2}{3}|V(G)|$ implies that $\gamma(G)=\frac{1}{3}|V(G)|$ and that there exists a partition V_{1}, V_{2} of $V(G)$ such that $\gamma_{G}\left(V_{1}\right)=\gamma_{G}\left(V_{2}\right)=\frac{1}{3}|V(G)|$.

Circuits on $3 k$ vertices satisfy $f\left(C_{3 k}\right)=2 k$. Let H be any graph and denote by $G=H \circ K_{2}$ the graph obtained from H by adding for each vertex v in H two new vertices $v^{\prime}, v^{\prime \prime}$ and three edges $v^{\prime} v^{\prime \prime}, v v^{\prime}, v v^{\prime \prime}$. With all v^{\prime} in V_{1}, all $v^{\prime \prime}$ in V_{2} and $V(H)$ partitioned arbitrarily we see that $f(G)=\frac{2}{3}|V(G)|$. Based on the same principle, instead of triangles one can attach cycles of any (possibly distinct) lengths divisible by 3 to the vertices of H.

More generally, one can apply the following recursive construction. For $i=1,2$ let G_{i} be a graph with $f\left(G_{i}\right)=\frac{2}{3}\left|V\left(G_{i}\right)\right|$ and let D_{i} be a minimum dominating set of G_{i} such that each $v \in D_{i}$ has both a private V_{1}-neighbour and a private V_{2}-neighbour belonging to $V\left(G_{i}\right)-D_{i}$. Then the graph G obtained by joining G_{1} and G_{2} by any number of $D_{1} D_{2}$-edges has $f(G)=$ $\frac{2}{3}|V(G)|$.

4. General Estimates on $\gamma_{1}+\gamma_{2}$

In this section we investigate the situation when δ gets large. We begin with a constructive general lower bound.

Theorem 4. For every $\delta>0$ there exists a graph with minimum valency δ and a partition V_{1}, V_{2} of its vertices such that

$$
f(G) \geq \gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)= \begin{cases}\frac{4}{\delta+3}|V(G)| & \text { for } \delta \equiv 1(\bmod 4) \\ \frac{4}{\delta+4}|V(G)| & \text { for } \delta \not \equiv 1(\bmod 4)\end{cases}
$$

Proof. If $\delta \equiv 1(\bmod 4)$, write $\delta=4 t-3, t \geq 1$. Let $\bar{G}=C_{4 t}=$ $x_{1} x_{2} x_{3} \ldots x_{4 t}$ and let V_{1}, V_{2} consist of alternate vertex pairs on the circuit, i.e.,

$$
V_{1}=\left\{x_{1}, x_{2} ; x_{5}, x_{6} ; x_{9}, x_{10} ; \ldots ; x_{4 t-3}, x_{4 t-2}\right\}
$$

while

$$
V_{2}=\left\{x_{3}, x_{4} ; x_{7}, x_{8} ; x_{11}, x_{12} ; \ldots ; x_{4 t-1}, x_{4 t}\right\}
$$

Then $G=\overline{C_{4 t}}$ has $\delta(G)=4 t-3$. In G no single vertex dominates V_{1} but two neighbours do, so $\gamma_{G}\left(V_{1}\right)=\gamma_{G}\left(V_{2}\right)=2$ and $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)=4=$ $\frac{4}{4 t} 4 t=\frac{4}{\delta+3}|V(G)|$ as desired.

If $\delta \equiv 0,2(\bmod 4)$, choose k even if $\delta \equiv 0(\bmod 4)$ and choose k odd if $\delta \equiv 2(\bmod 4)$, and let \bar{G} consist of two vertex-disjoint circuits $x_{1} x_{2} x_{3} \ldots x_{k}$ and $y_{1} y_{2} y_{3} \ldots y_{k}$ together with the edges $x_{i} y_{i}, 1 \leq i \leq k$, and let $V_{1}=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. Then $\delta(G)=2 k-4, \gamma_{G}\left(V_{1}\right)=$ $\gamma_{G}\left(V_{2}\right)=2$ and $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)=4=\frac{4}{2 k} 2 k=\frac{4}{\delta+4}|V(G)|$ as desired.

If $\delta \equiv 3(\bmod 4)$, let \bar{G} consist of two circuits $x_{1} x_{2} x_{3} \ldots x_{2 k} x_{2 k+1}$ and $y_{1} y_{2} \ldots y_{2 k} y_{2 k+1}$ together with edges $x_{i} y_{i}, 1 \leq i \leq 2 k$, and a vertex $x_{2 k+2}$ joined to $x_{2 k+1}$ and to $y_{2 k+1}$. Let $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{2 k}, x_{2 k+1}, x_{2 k+2}\right\}, V_{2}=$ $\left\{y_{1}, y_{2}, \ldots, y_{2 k+1}\right\}$. Then G has $|V(G)|=4 k+3, k \geq 1, \delta(G)=4 k-1$, $\gamma_{G}\left(V_{1}\right)=\gamma_{G}\left(V_{2}\right)=2$. We obtain $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)=4=\frac{4}{4 k+3}(4 k+3)=$ $\frac{4}{\delta+4}|V(G)|$ as desired and Theorem 4 is proven.
We conjecture the converse of Theorem 4 to be true for not too large δ.
Conjecture 1. For any graph G with minimum valency $\delta(G)=\delta \leq 5$ we have

$$
f(G) \leq \begin{cases}\frac{4}{\delta+3}|V(G)| & \text { for } \delta \equiv 1(\bmod 4) \\ \frac{4}{\delta+4}|V(G)| & \text { for } \delta \not \equiv 1(\bmod 4)\end{cases}
$$

More generally, it would be interesting to determine the largest value of δ for which the construction above is best possible and the formula in Conjecture 1 is valid.

We cannot prove the conjecture, but we can prove a weaker statement.
Theorem 5. Let G be a graph with minimum valency δ and let $V_{1} \cup V_{2}=$ $V(G), V_{1} \cap V_{2}=\emptyset$ be a partition of $V(G)$. Then $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq$ $\frac{\delta+1}{2 \delta}|V(G)|$.

Remark. If $0<d \leq \delta$, it follows that $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq \frac{d+1}{2 d}|V(G)|$, since $\frac{\delta+1}{2 \delta} \leq \frac{d+1}{2 d}$.

First we need a lemma and some definitions.
A set of vertices $S \subseteq V(G)$ is called distance-2 independent in G if $d_{G}(u, v)>2$ for every pair of distinct vertices u, v from S. Define the
distance-2 independence number relative to G of a vertex set $X \subseteq V(G)$ to be

$$
\alpha_{2}(X)=\max \left\{|S| \mid S \subseteq X, d_{G}(u, v)>2 \forall u, v \in S\right\} .
$$

If X is the entire vertex set, we simply write $\alpha_{2}(G)$ instead of $\alpha_{2}(V(G))$.
Lemma. For any graph G and for any subset of vertices $X \subseteq V(G)$ we have $\gamma_{G}(X) \leq \frac{1}{2}\left(|X|+\alpha_{2}(X)\right)$.

Proof. Consider the auxiliary graph $G^{2}[X]$ with vertex set X and with two vertices $x, x^{\prime} \in X$ adjacent in $G^{2}[X]$ if and only if $0<d_{G}\left(x, x^{\prime}\right) \leq 2$. Let $e_{i}=x_{i} x_{i}^{\prime}, 1 \leq i \leq m$, be a maximal matching in $G^{2}[X]$. By definition there exist vertices $v_{1}, v_{2}, \ldots, v_{m}$ (not necessarily distinct) in $V(G)$ such that each v_{i} dominates both x_{i} and x_{i}^{\prime}. Moreover, the vertices in X not incident with the e_{i} are distance- 2 independent by maximality of the matching. Therefore, $\alpha_{2}(X) \geq|X|-2 m$ or $-m \leq \frac{1}{2}\left(\alpha_{2}(X)-|X|\right)$ and hence $\gamma(X) \leq m+(|X|-2 m)=|X|-m \leq \frac{1}{2}\left(|X|+\alpha_{2}(X)\right)$. This proves the lemma.

Proof of Theorem 5. Applying the lemma in turn to V_{1}, V_{2} and using $\alpha_{2}\left(V_{i}\right) \leq \alpha_{2}(G)$ (since, also inside V_{i}, α_{2} is defined in terms of distances in the entire G), we obtain

$$
\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq \frac{1}{2}|V(G)|+\alpha_{2}(G) .
$$

For another inequality, let S be a largest distance-2 independent set of vertices in $G,|S|=\alpha_{2}(G)$. We observe that $N[S]$ contains at least $(\delta+1) \alpha_{2}(G)$ vertices, and thus $V(G)-N[S]$ has at most $|V(G)|-(\delta+1) \alpha_{2}(G)$ vertices. For $i=1,2$ choose $D_{i}=S \cup\left\{\left(V(G)-N_{G}[S]\right) \cap V_{i}\right\}$; then $V_{i} \subseteq N_{G}\left[D_{i}\right]$ and

$$
\begin{gathered}
\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right) \leq\left|D_{1}\right|+\left|D_{2}\right| \leq 2 \alpha_{2}(G)+|V(G)|-(\delta+1) \alpha_{2}(G) \\
=|V(G)|-(\delta-1) \alpha_{2}(G) .
\end{gathered}
$$

Combining the two inequalities yields the desired result that $\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)$ $\leq \max _{\alpha_{2}(G) \geq 0} \min \left\{|V(G)|-(\delta-1) \alpha_{2}(G), \frac{1}{2}|V(G)|+\alpha_{2}(G)\right\} \leq \frac{\delta+1}{2 \delta}|V(G)|$.
We conclude this section with asymptotically tight estimates on $f(G)$ in terms of minimum valency. Interestingly enough, both the lower and upper bounds are proved by probabilistic methods. Throughout, 'log' means logarithm of base e.

Theorem 6. There exists a sequence of positive reals ϵ_{d}, tending to 0 as $d \rightarrow \infty$, such that

$$
\left(1-\epsilon_{d}\right) \frac{2 \log d}{d} \leq \sup _{G: \delta(G) \geq d-1} \frac{f(G)}{|V(G)|}<\frac{1+2 \log d}{d}
$$

holds for every natural number d.
Proof. Upper bound. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. We begin with choosing a set $D_{0} \subseteq V(G)$ at random, by the rule

$$
\operatorname{Prob}\left(v_{i} \in D_{0}\right)=\frac{\log d}{d}
$$

for each $i=1, \ldots, n$ independently. Then we set

$$
D_{j}=D_{0} \cup\left\{v_{i} \in V_{j} \mid D_{0} \cap N_{G}\left[v_{i}\right]=\emptyset\right\}
$$

for $j=1,2$. Clearly, D_{1} dominates V_{1} and D_{2} dominates V_{2}, moreover the expected cardinality of D_{0} is $\frac{\log d}{d} n$. Hence, by the additivity of expectation, the upper bound will follow if we prove

$$
\operatorname{Prob}\left(v_{i} \mid D_{0} \cap N_{G}\left[v_{i}\right]=\emptyset\right)<\frac{1}{d} .
$$

Indeed, the closed neighbourhood $N\left[v_{i}\right]$ of v_{i} contains at least d vertices by the minimum-valency condition, and each of them is chosen into D_{0} independently with probability $\frac{\log d}{d}$. Thus,
$\operatorname{Prob}\left(v_{i} \mid D_{0} \cap N_{G}\left[v_{i}\right]=\emptyset\right) \leq\left(1-\frac{\log d}{d}\right)^{d}=\left(\left(1-\frac{\log d}{d}\right)^{\frac{d}{\log d}}\right)^{\log d}<e^{-\log d}=\frac{1}{d}$.
Lower bound. Assume, without loss of generality, that d is a large even number. We let $n=d^{2}$, fix two disjoint sets V_{1}, V_{2} of cardinality $d^{2} / 2$ each, and take a random graph G with edge probability $1 / d$ on the vertex set $V_{1} \cup V_{2}$. For $j=1,2$ we will prove that, with probability $1-o(1)$ as $d \rightarrow \infty$, $\gamma_{j}:=\gamma_{G}\left(V_{j}\right) \geq(1-o(1)) d \log d$ holds. This will imply the lower bound of the theorem, because the minimum valency of G is equal to $d-o(d)$ almost surely, by the properties of the binomial distribution.

Consider V_{1}, and denote $m:=\gamma_{1}$. (For V_{2}, the argument is analogous.) If $m \geq d \log d$, then the proof is done. Hence, assume $m<d \log d$. Let M be an arbitrary fixed m-element subset of $V(G)$. For any fixed $v \in V_{1} \backslash M$,

$$
\operatorname{Prob}(M \text { does not dominate } v)=\left(1-\frac{1}{d}\right)^{m}
$$

therefore

$$
\operatorname{Prob}(M \text { dominates } v)=1-\left(1-\frac{1}{d}\right)^{m}<1-e^{-\frac{m}{d-1}} .
$$

Observe that these events are totally independent for the at least $\frac{1}{2} d^{2}-m$ vertices of the entire set $V_{1} \backslash M$. Consequently,

$$
\operatorname{Prob}\left(M \text { dominates } V_{1}\right)<\left(1-e^{-\frac{m}{d-1}}\right)^{\frac{1}{2} d^{2}-m}
$$

Considering all the possible $\binom{d^{2}}{m}<\left(\frac{e d^{2}}{m}\right)^{m}$ choices of M, we obtain

$$
\begin{aligned}
& \operatorname{Prob}\left(\text { some } m \text {-set dominates } V_{1}\right)<\left(\frac{e d^{2}}{m}\right)^{m}\left(1-e^{-\frac{m}{d-1}}\right)^{\frac{1}{2} d^{2}-m} \\
& =\exp \left(m\left(1+\log d^{2}-\log m\right)+\left(\frac{1}{2} d^{2}-m\right) \log \left(1-e^{-\frac{m}{d-1}}\right)\right)
\end{aligned}
$$

Since we assumed $m=\gamma_{1}$, the probability equals 1 , to be exceeded by the last formula. Taking logarithm of the inequality and applying the fact $\log (1-x)<-x$,

$$
m(1+2 \log d-\log m)>\left(\frac{1}{2} d^{2}-m\right) e^{-\frac{m}{d-1}}
$$

follows, or, equivalently,

$$
e^{\frac{m}{d-1}}>\frac{d^{2}-2 m}{2 m(1+2 \log d-\log m)}
$$

Taking logarithm again, we conclude

$$
m>(d-1)\left(\log \left(d^{2}-2 m\right)-\log 2-\log m-\log (1+2 \log d-\log m)\right)
$$

By our assumptions, here $\log \left(d^{2}-2 m\right)=(2-o(1)) \log d, \log m=$ $(1+o(1)) \log d$, while the last term is just $(1+o(1)) \log \log d$. Thus, $m \geq$ $(1-o(1)) d \log d$ for $d \rightarrow \infty$, as claimed.

More generally, an analogous argument yields the following result.

Theorem 7. Let d and k denote natural numbers. There exists a sequence of positive reals ϵ_{d} (independent of k), tending to 0 as $d \rightarrow \infty$, such that

$$
\left(1-\epsilon_{d}\right) \frac{k \log d}{d} \leq \sup \frac{\gamma_{G}\left(V_{1}\right)+\cdots+\gamma_{G}\left(V_{k}\right)}{|V(G)|} \leq \frac{1+k \log d}{d}
$$

where the supremum is taken over all graphs $G=(V, E)$ of minimum valency at least $d-1$ and over all vertex partitions $V_{1} \cup \cdots \cup V_{k}=V(G)$.

In the particular case of $k=1$ the upper bound coincides with the one known for the domination number of (non-partitioned) graphs [2, Theorem $2.18]$, and is asymptotically matched by the lower bound as d gets large.

5. Open Problems

In this concluding section we recall some problems that remain unsolved. Table 1 summarizes bounds conjectured or proved. Define S and T by $S=\lim \sup _{\delta(G) \rightarrow \infty} \frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|}$ and $T=\lim \sup _{\delta(G) \rightarrow \infty} \frac{\gamma(G)+\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|}$ where the supremum is taken over all graphs G with minimum valency δ and all partitions V_{1}, V_{2} of $V(G)$. From [2, Theorem 2.18] which states that any graph G with $\delta(G)=\delta$ satisfies $\gamma(G) \leq \frac{1+\ln (\delta+1)}{\delta+1}|V(G)|$, follows that $S=T=0$.

Table 1. Upper bounds conjectured and proved

$\delta(G)$	Conjecture 1	Theorem 5	Comments
1	$f(G) \leq\|V(G)\|$	$f(G) \leq\|V(G)\|$	trivially true
2	$f(G) \leq \frac{2}{3}\|V(G)\|$	$f(G) \leq \frac{3}{4}\|V(G)\|$	Conj. proven in Th. 3
3	$f(G) \leq \frac{4}{7}\|V(G)\|$	$f(G) \leq \frac{2}{3}\|V(G)\|$	
4	$f(G) \leq \frac{1}{2}\|V(G)\|$	$f(G) \leq \frac{5}{8}\|V(G)\|$	
5	$f(G) \leq \frac{1}{2}\|V(G)\|$	$f(G) \leq \frac{3}{5}\|V(G)\|$	
≥ 6		$f(G) \leq \frac{\delta+1}{2 \delta}\|V(G)\|$	$\frac{f(G)}{\|V(G)\|}$ is "proportional" to $\frac{\log \delta}{\delta}$ in the sense of Th. 6

Define $s(\delta)$ and $t(\delta)$ by

$$
s(\delta)=\limsup _{|V(G)| \rightarrow \infty} \frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|}, t(\delta)=\limsup _{|V(G)| \rightarrow \infty} \frac{\gamma(G)+\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|}
$$

where the supremum is taken over all graphs G with minimum valency δ and over all partitions V_{1}, V_{2} of $V(G)$. Considering $G=\overline{K_{n}}$ we have $s(0)=1$. If we consider graphs with no isolated vertex we get from $\gamma\left(V_{i}\right) \leq \gamma(G) \leq$ $\frac{|V(G)|}{2}, i=1,2$, and the graphs $G=k K_{2}$ that $s(1)=1$. If only graphs with $\delta(G) \geq 2$ are considered, Theorem 3 and $f\left(C_{3 k}\right)=2 k$ yields $s(2)=\frac{2}{3}$. What can we say if only graphs with $\delta(G) \geq d$ are considered? Theorem 5 and its remark gives $s(\delta) \leq \frac{d+1}{2 d}$. Will we have $s(\delta)=\frac{d+1}{2 d}$ or $s(\delta)<\frac{d+1}{2 d}$ for d small?

Similarly $t(0)=2$ for $\delta=0$ and $t(1)=\frac{3}{2}$ for $\delta=1$. For connected graphs we have $t=\frac{5}{4}$ by [1, Theorem 2] while graphs with $\delta \geq 2$ by Theorem 2 have $t(2) \leq 1$, and in fact $t(2)=1$, as is seen from the circuits $C_{3 k}$.

Summing up, we ask the questions below.
Question 1. Which graphs G with minimum valency at least two attain the equality $f(G)=\frac{2}{3}|V(G)|$ in Theorem 3 ?

Question 2. For which values of δ is the construction of Theorem 4 optimal for S ?

Question 3. Consider graphs G with $\delta(G)=3$ or $\delta(G)=4$. Is $t(\delta)$ equal to 1 or strictly less than 1 ?

Bruce Reed has proven
Theorem 8 ([4]). If a graph G has minimum valency at least 3 then $\gamma(G) \leq$ $\frac{3}{8}|V(G)|$.

We conjecture that $t(3)<1$. This may be viewed as a weak version of Conjecture 1 since $t(3)<1$ would follow from the truth of Conjecture 1 giving $\frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|} \leq \frac{4}{7}$ combined with Theorem 8.

If we conjecture $t(d)$ to be strictly decreasing in d we shall have $t(3)<1$ since we have earlier found that $t(2)=1$. We only know that $t(3) \leq \frac{25}{24}$, as $\frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|} \leq \frac{2}{3}$ by Theorem 4 and $\frac{\gamma(G)}{|V(G)|} \leq \frac{3}{8}$ by Theorem 8 . By the same
theorems $t(4) \leq 1$, as $\frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|} \leq \frac{5}{8}$ and $\frac{\gamma(G)}{|V(G)|} \leq \frac{3}{8}$. We have $t(5)<1$ since $t(5) \leq \frac{\gamma_{G}\left(V_{1}\right)+\gamma_{G}\left(V_{2}\right)}{|V(G)|}+\frac{\gamma(G)}{|V(G)|} \leq \frac{6}{10}+\frac{3}{8}$.
Finally, in connection with the case of $\delta=5$, we raise the following
Conjecture 2. In every 6-uniform 3-regular hypergraph on n vertices there exists a set of at most $n / 4$ vertices that meets all edges.

Note that the edge set of such a hypergraph consists of precisely $n / 2$ 6 -tuples, i.e., the so-called transversal number should be proven not to exceed half of the number of edges.

References

[1] B.L. Hartnell and P.D. Vestergaard, Partitions and dominations in a graph, Manuscript, pp. 1-10.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., New York, N.Y., 1998).
[3] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32.
[4] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (3) (1996) 277-295.
[5] S.M. Seager, Partition dominations of graphs of minimum degree 2, Congressus Numerantium 132 (1998) 85-91.

[^0]: ${ }^{1}$ Research supported in part by the Hungarian Scientific Research Fund under grant OTKA T-032969.

