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Abstract

A k-trestle of a graph G is a 2-connected spanning subgraph of G of
maximum degree at most k. We show that a polyhedral graph G has
a 3-trestle, if the separator-hypergraph of G contains no two different
cycles joined by a path of 3-separators of length ≥ 0. There are graphs
not satisfying this condition that have no 3-trestles. Further, for each
integer k every graph with toughness smaller than 2

k has no k-trestle.
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1. Introduction

By Steinitz’s theorem a polyhedral graph is a planar and 3-connected graph.
Let G be a connected graph. A subset S of the vertex set of G sepa-
rates G if the graph G − S obtained from G by deleting the vertices of
S is disconnected. If |S| = k, S is said to be a k-separator of G. If no
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Sp ⊂ S (a proper subset of the set S) separates G then the S is said to be
a proper k-separator of G. A subgraph of G is a spanning subgraph of G if
it contains all vertices of G. 2-connected spanning subgraphs in which all
vertices have degree at most k are called k-trestles. We will say that a graph
G is k-trestled if G has a k-trestle [6]. Note that a graph G has a 2-trestle
if and only if G is Hamiltonian.

A graph G is said to be t-tough if for every separating set S ⊆ V (G) the
number ω(G−S) of components of G−S is at most |S|t . The toughness τ(G)
of a non-complete graph G is defined to be the largest integer t > 0 such
that G is t-tough. For a complete graph G let τ(G) = ∞. The concept of
toughness was introduced by Chvátal [4]. It is easy to see that every graph
with toughness less than one has no 2-trestles. The following Lemma shows
that every graph has a similar property with respect to k-trestles, k ≥ 3.

Lemma 1. Every graph G with toughness τ(G) < 2
k (where the integer k is

greater than one) has no k-trestle.

In [4] Chvátal conjectured:

Conjecture 1 (Chvátal). There is a real number t0 > 0 such that every
t0-tough graph has a Hamiltonian cycle, i.e., a 2-trestle.

It seems to be interesting to consider relations between t-tough and k-
trestled graphs in general. We pose the following conjecture.

Conjecture 2. For every integer k greater than one there is a real number
tk > 0 such that every tk-tough graph has a k-trestle.

There are several papers which deal with k-trestled polyhedral graphs. In
[1] Barnette showed that there is a polyhedral graph with no 5-trestles. In
[5] Gao proved that every 3-connected graph on the plane, projective plane,
torus and Klein bottle has a 6-trestle.

The well known theorem of Tutte [8] states that every 4-connected pla-
nar graph contains a Hamiltonian cycle, which means that every polyhedral
graph with no 3-separators has a 2-trestle. Moreover, Tutte [8] proved

Theorem 1. Let G be a 4-connected planar graph and let e and f be two
edges of a facial cycle of G. Then G has a Hamiltonian cycle through e
and f .
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Let H1 and H2 be two disjoint subsets of the vertex set V (G) of a graph G.
The length of a minimal path in G with one end in H1 and the second in
H2 is said to be the distance of H1 and H2 in G.

Böhme, Harant and Tkáč in [3] showed that every maximal planar graph
G in which no 3-separator has any common vertex with a proper 4-separator
and every two distinct 3-separators have distance at least three, has a 2-
trestle. In [2] Böhme and Harant presented examples of maximal planar
graphs with no 2-trestles in which the minimal distances between two 3-
separators are arbitrarily large.

Our next theorems partially supplement these results but in a more
general case.

For each polyhedral graph G we will construct a separator-hypergraph
H(G) with the same set of vertices, such that the edges of H(G) are the
3-separators of G. A cycle (and a path) of a hypergraph is a sequence
P1e1P2e2 · · ·PkekPk+1, where P1, P2, · · · , Pk are pairwise distinct vertices,
e1, e2, · · · , ek are pairwise distinct edges, the edge ei is incident with both
Pi and Pi+1, 1 ≤ i ≤ k, and Pk+1 = P1 (and Pk+1 /∈ {P1, P2, · · · , Pk},
respectively).

Theorem 2. Let G be a polyhedral graph. Let each component of the
separator-hypergraph H(G) have at most one cycle. Then G has a 3-trestle.

Theorem 3. There are polyhedral graphs with more than one cycle in their
separator-hypergraph which have no 3-trestles.

The polyhedral graphs constructed for Theorem 3 have separator-
hypergraphs with many cycles; even 2-cycles are present.

2. Proofs of Theorems

The Proof of Lemma 1. Let G be a graph with toughness τ(G) < 2
k

(where the integer k is greater than one). Suppose that G has a k-trestle H.
Since τ(G) < 2

k there exists a subset S0 of the vertex set of G (S0 ⊂ V (G))
with |S0|

ω(G− S0)
= τ(G) <

2
k
.

So G contains a vertex set S0 such that

2ω(G− S0) > k|S0|.
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If G has a k-trestle H then S0 ⊂ V (G) = V (H) and every vertex from S0

has in H a degree at most k. Since H is 2-connected, every component of
G− S0 is adjacent with at least two vertices from S0. This means that the
following inequality holds

2ω(G− S0) ≤ k|So|.

But this contradicts the before stated inequality.

Instead of Theorem 2 we shall prove the slightly stronger but more technical
Theorem 4.

Theorem 4. Let G be a polyhedral graph. Let each component of the
separator-hypergraph H(G) have at most one cycle. Label a vertex in each
cycle-free component of H(G). Then G has a 3-trestle H such that every
3-valent vertex of H is an unlabelled vertex of a 3-separator in G.

The Proof of Theorem 4. The proof is by induction on the number
of 3-separators of the considered graphs. If G has no 3-separator then G
is 4-connected and by Tutte’s Theorem 1 the graph G has a Hamiltonian
cycle. Thus G has a special 3-trestle with the required properties.

Assume that Theorem 4 is true for all polyhedral graphs with at most m
3-separators, m ≥ 0. Let G be a polyhedral graph with m + 1 3-separators
such that each component of the ”separator”-hypergraph H(G) has at most
one cycle.

A 3-separator S = {x, y, z} is called elementary if one component I(S)
of G − S has no 3-separators. W.l.o.g. we may suppose that G is mapped
into the plane so that I(S) is the interior of the cycle (x, y, z). Now we prove
the following

Claim 1. If S = {x, y, z} is an elementary 3-separator of G then 〈I(S)∪S〉G,
the subgraph induced by I(S) ∪ S in G, contains an x, y-path through all
vertices of I(S) ∪ S \ {z} avoiding z.

Proof of Claim 1. Since S = {x, y, z} is elementary the subgraph H :=
〈I(S) ∪ S〉G ∪ (x, y, z) has no 3-separators and H is 4-connected or K4 (a
complete graph on four vertices). By Tutte’s Theorem 1 the subgraph H
has a Hamiltonian cycle h through the edges (x, z) and (z, y). The path
p = h\{z} has the required properties, and the proof of Claim 1 is complete.
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The graph G obviously contains an elementary 3-separator S = {x, y, z}.
This 3-separator S is a hyperedge of a component K of H(G).

Case 1. Let K have no cycle in H(G).
The subhypergraph K\{S} ofH(G) has at most three cycle-free components
Kx,Ky and Kz containing x, y, and z, respectively. Note that some of these
components can be trivial. W.l.o.g. let Kx have the vertex with the label
of K (it may be that x has this label). In Ky and Kz we label the vertices
y and z, respectively.

Case 2. Let K have a cycle C in H(G).
Note that K has no label.

Case 2.1. Let S /∈ C.
The subhypergraph K \ {S} of H(G) has at most three components Kx, Ky

and Kz containing x, y and z, respectively. W.l.o.g. let C ⊆ Kx, and Ky,
Kz are cycle-free in H(G). In Ky and Kz we label the vertices y and z,
respectively.

Case 2.2. Let S ∈ C.
Two vertices of S belong to C, say, x and y. The subhypergraph K \ S of
H(G) has at most two components Kx,y and Kz containing {x, y} or {z},
respectively. The path C \ {S} ⊆ Kx,y and both components Kx,y and Kz

are cycle-free in H(G). We label y and z.
In all cases we proceed in the same way.

The graphs G1 and G2 are obtained from G by deleting the interior or
the exterior of (x, y, z), respectively, and adding the cycle (x, y, z). Thus G
has a separation: G = G1 ∪G2, G1 ∩G2 = (x, y, z), K \ {S} ⊆ G1.

By the induction hypothesis G1 contains a 3-trestle T1 with the required
properties. The degrees degT1

(y) = degT1
(z) = 2.

By Claim 1 the subgraph G2 contains a y, z-path T2 through all vertices
of G2 \ {x} avoiding x. Then T1 ∪ T2 is a 3-trestle of G with the required
properties.

The Proof of Theorem 3. Theorem 3 will be proved by construct-
ing an appropriate graph. A double-cube is obtained from two disjoint
copies C1 and C2 of the cube by identifying a face of C1 with a face of C2.
This polyhedral graph has n = 12 vertices and f = 10 quadrangles. In
each quadrangle with bounding 4-cycle (v0, v1, v2, v3) we introduce a 4-cycle
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(w0, w1, w2, w3) so that for every i (mod 4) a vertex vi is connected with wi

and wi+1 by an edge, introduce a new vertex αi in each triangle face with
bounding cycle (vi, vi+1, wi+1) and join αi to each vertex of the bounding
3-cycle (vi, vi+1, wi+1) by an edge.

The resulting graph H is polyhedral and its connected separator-
hypergraph has more than one cycle.

We claim that H has no 3-trestle.
Suppose H has a 3-trestle T . By construction each vertex αi is joined to
the vertex vi or vi+1 of the double-cube by at least one edge of T . Thus the
subgraph T has at least 4f such edges. Consequently, the double-cube has
at least one vertex v of degree

degT (v) ≥ 4f

n
=

40
12

> 3.

Hence v has a degree degT (v) ≥ 4 and T is no 3-trestle. This contradiction
shows that H has no 3-trestle.

Starting our construction with l ≥ 3 cubes results in an infinite sequence
of graphs satisfying Theorem 3.

References

[1] D. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs,
J. Combin. Theory (B) 61 (1994) 210–216.
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