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Abstract

A natural generalization of the fundamental graph vertex-colouring
problem leads to the class of problems known as generalized or im-
proper colourings. These problems can be very well described in the
language of reducible (induced) hereditary properties of graphs. It
turned out that a very useful tool for the unique determination of these
properties are generating sets. In this paper we focus on the struc-
ture of specific generating sets which provide the base for the proof of
The Unique Factorization Theorem for induced-hereditary properties
of graphs.
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1. Introduction and Motivation

The fundamental graph colouring problem deals with the partitioning of the
vertex set of a graph G into classes according to the rule that no pair of
adjacent vertices can appear in the same class. To distinguish the classes
we use a finite set of colours C, and the divisions into classes is given as
a mapping f : V (G) → C satisfying that f(u) differs from f(v) whenever
{u, v} is an edge of G. According to our colouring rule, each colour class
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forms an independent set of vertices of G. Such a colouring is called a proper
colouring.

In improper colourings (sometimes called generalized, defective or re-
laxed) adjacent vertices may be assigned the same colour, but some other
constraint is placed on colour classes (see e.g. [1, 2, 5, 6, 7, 8, 9, 11] and
[14]).

A convenient language that may be used for formulating problems of
graph colouring in a general setting is the language of reducible hereditary
properties. The concept of reducible hereditary properties was introduced
in [6] and [11] (see also [3]).

A graph property is any non-empty isomorphism closed class of graphs.
Since we have, in general, no reason to distinguish between isomorphic copies
of a graph, we use the notation I to denote the set of all finite unlabelled
loopless undirected graphs, one from each isomorphism class, and we can
consider a graph property to be a subset of I. We count a graph G and its
isomorphic images as one graph. By saying that H is a subgraph of G, we
mean that H is isomorphic to a subgraph of G. If G belongs to a property
P ⊆ I then we also say that G has the property P.

Let P1,P2, . . . ,Pn be properties of graphs. A (P1,P2, . . . ,Pn)-partition
of G is a partition (V1, V2, . . . , Vn) of the vertex set V (G) such that the
induced subgraph G[Vi] has property Pi for i = 1, 2, . . . , n. If a graph G has
a (P1,P2, . . . ,Pn)-partition, then we say that G has property P1◦P2◦ · · · ◦Pn.
If P1 = P2 = · · · = Pn = P we simply write Pn instead of P1◦P2◦ · · · ◦Pn.
If there are properties P1,P2 such that P = P1◦P2, then the property P
is called reducible. If such properties do not exist, the property P is called
irreducible. If we denote by O the set of all the edgeless graphs then it is
obvious that a graph G is k-colourable if and only if G ∈ Ok.

Since it is very difficult to deal with properties in such a general setting,
we need an additional reasonable requirement. It seems to be fruitful to
consider some partial order ¹ on the set I, for example “to be a subgraph”,
“to be an induced subgraph”, “to be a minor” etc. We say that a property
P is ¹-hereditary if G ∈ P implies that H ∈ P, for all H ¹ G. In particular,
we shall deal with ⊆-hereditary (in short hereditary) and ≤-hereditary (we
use also the term induced-hereditary) properties of graphs, meaning those
which are closed under taking subgraphs and induced subgraphs, respec-
tively. It is easy to observe that hereditary properties are special examples
of induced-hereditary properties. A number of problems refer to specific
types of hereditary properties which are called additive. Those properties
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are closed under taking the disjoint union of graphs with the given property.
It is not difficult to see that many interesting and important properties (e.g.
to be an acyclic graph, to be a planar graph, to be a k-colourable graph, to
be a graph with maximum degree at most k, to be homomorphic to a given
graph etc.) studied in graph theory are additive and induced hereditary or
even hereditary. For much more details, many applications and open prob-
lems concerning hereditary and induced-hereditary properties of graphs we
refer the reader to [2].

One of the most important problems concerning induced-hereditary
properties is the problem of the unique factorization of an induced-hereditary
property into irreducible factors (see [10] — Problem 17.9). This problem
is solved by so-called unique factorizations theorems in [12] (for induced-
hereditary properties) and [13] (for hereditary properties). Both proofs re-
quire detailed analyses of the structure of reducible properties which is the
aim of our paper.

2. Four Different Types of Generating Sets

In the case of hereditary properties it is natural to characterize a property
P by the set of graphs containing all the graphs in P as subgraphs. To be
more accurate, let us define the set of P-maximal graphs in the following
way:

M(P) = {G ∈ P : G + e /∈ P for each e ∈ E(G)}.
One can observe that a graph G belongs to a property P if and only if
it is a subgraph of some graph H ∈ M(P). Unfortunately, in the case of
induced-hereditary properties we have no natural description of such a type.
It inspires us to introduce a more general concept — the generating set of a
hereditary property (see also [2]).

Given an arbitrary set G, a subset of I. It is quite easy to see that the
properties

[G] = {G ∈ I : G is a subgraph of some graph H ∈ G},
[G]a = {G ∈ I : each component of G is a subgraph of some H ∈ G}

are hereditary and the properties

[G]i = {G ∈ I : G is an induced subgraph of some graph H ∈ G},
[G]ia = {G∈I : each component of G is an induced-subgraph of some H∈G}
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are induced-hereditary. Moreover the properties [G]a and [G]ia are also
additive.

In such cases we say that the set G is an H-generating set of the property
[G], an Ha-generating set of the property [G]a, an I-generating set of the
property [G]i and an Ia-generating set of the property [G]ia. The members
of G shall be called generators. It is obvious that the set M(P) is an H-
generating set for the property P. If P is additive, then M(P) is also an
Ha-generating set of P.

It is not so difficult to see, that the property

Ok = {G ∈ I : each component of G has order at most k + 1}

has the set G = {Kk+1} as an Ha-generating set. It is interesting that only
one graph is sufficient for the description of this hereditary property. On the
other hand, we can observe that the property D1 “to be an acyclic graph”
has no finite H-generating or Ha-generating set.

The following two results provide relationships between the number
of graphs of a given property and the cardinality of the corresponding
generating sets. Their proofs are almost straightforward applications of
the definitions.

Lemma 2.1. Let P be a hereditary property and Q an induced-hereditary
property of graphs. Then

(i) P contains only a finite number of graphs if and only if some H-
generating set of P is finite.

(ii) Q contains only a finite number of graphs if and only if some I-
generating set of Q is finite.

Moreover, it is obvious that if P (Q) contains only a finite number of
graphs then it is not additive and therefore there exists no Ha-generating
set (Ia-generating set) of P (Q).

Lemma 2.2. Let P be an additive hereditary property and let Q be an
induced-hereditary property of graphs. Then

(i) There exists a finite Ha-generating set of P if and only if there exists a
non-negative integer n such that every component of each graph G ∈ P
has at most n + 1 vertices (i.e., P ⊆ On).
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(ii) There exists a finite Ia-generating set of Q if and only if there exists a
non-negative integer n such that every component of each graph G ∈ Q
has at most n + 1 vertices (i.e., Q ⊆ On).

Corollary 2.3. If the property D1 of 1-degenerate graphs (acyclic graphs)
is a subclass of a hereditary property P then P has neither a finite Ha-
generating set nor a finite H-generating set of P.

Corollary 2.4. If all the P-maximal graphs are connected then there exists
no finite Ha-generating set of P.

In order to present the next property of generating sets we need a new
concept. We say that a graph G ∈ P1◦P2◦ · · · ◦Pn is uniquely P1◦P2◦ · · · ◦Pn-
partitionable if it has only one P1◦P2◦ · · · ◦Pn-partition of V (G) up to
the order of the sets in this partition. The following theorem was established
in [4].

Theorem 2.5. Let n be a positive integer and Pi, i = 1, 2, . . . , n be additive
hereditary properties of graphs. If H ∈ P1◦P2◦ · · · ◦Pn and there exists at
least one uniquely P1◦P2◦ · · · ◦Pn-partitionable graph, then H is and induced
subgraph of some uniquely P1◦P2◦ · · · ◦Pn-partitionable graph.

The previous theorem immediately implies the following result.

Theorem 2.6. Let P1◦P2◦ · · · ◦Pn be an additive reducible hereditary prop-
erty of graphs. If there exists an uniquely P1◦P2◦ · · · ◦Pn-partitionable graph
then there exists also an I-generating set of P1◦P2◦ · · · ◦Pn containing only
uniquely P1◦P2◦ · · · ◦Pn-partitionable graphs.

It was proved in [13] that for any H-generating set G of a property P there
exist H-generating sets G′,G∗ ⊆ G such that every graph G′ ∈ G′ contains
a prescribed graph H ∈ P as a subgraph and all the graphs of G∗ have the
same number of components in their complements.

3. Induced-Hereditary Properties

The proof of The Unique Factorization Theorem for hereditary properties is
based on the constructions and examinations of H-generating sets derived
from the sets of P-maximal graphs (for details see [13]). When we tried to
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prove The Unique Factorization Theorem for induced-hereditary properties
we were unsuccessful for a long time because we did not have analogues for
the set of P-maximal graphs and the join operation. Eventually we found
the set of P-strict graphs and the star operation to be the suitable analogues.

Definition 3.1. For given graphs G1, G2, . . . , Gn, n ≥ 2, we denote by
G1 ∗G2 ∗ · · · ∗Gn the set

{
G ∈ I :

n⋃

i=1

Gi ⊆ G ⊆
n∑

i=1

Gi

}
,

where
⋃n

i=1 Gi denotes the disjoint union and
∑n

i=1 Gi the join of graphs
G1, G2, . . . , Gn, respectively.

One can immediately see that the operation ∗ is rather complicated and
its result is not one graph but a class of graphs. All the graphs belonging
to the result of the operation ∗ are of the same order and therefore they
are mutually incomparable with respect to the relation “to be an induced
subgraph”. However, such a definition allows us to work with different vertex
partitions of a graph and disregard the edges between the colour classes.

Definition 3.2. A graph G ∈ P is said to be P-strict if G ∗K1 6⊆ P. The
class of all P-strict graphs is denoted by S(P).

We shall show that the sets of P-strict graphs play an important role in the
characterization of induced-hereditary properties. The next result states
that the set S(P) can be used as a natural generating set of an induced-
hereditary property P.

Theorem 3.3. If P 6= I is an induced-hereditary property of graphs then
S(P) is an I-generating set of P. Moreover, if P is additive then S(P) is
an Ia-generating set of P.

Proof. Since P 6= I, there exists a graph F /∈ P.
Let f(P) = min{|V (F )| : F /∈ P}. It is not difficult to see that for any
graph G ∈ P the class G ∗ K1 ∗ · · · ∗K1︸ ︷︷ ︸

f(P)−1

is not a subset of P. Let us put

H0 = {G} and Hi = G ∗ K1 ∗ · · · ∗K1︸ ︷︷ ︸
i

, for i = 1, . . . , f(P) − 1. Then it
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is obvious, that for some j < f(P) − 1 there exists a graph Hj ∈ Hj such
that Hj ∈ P and Hj ∗ K1 /∈ P. It means that Hj is a P-strict graph and
obviously G ≤ Hj .

In addition, if P is additive then the disjoint union of an arbitrary finite
number of subgraphs of some P-strict graphs belongs to P. On the other
hand, any component of a graph G ∈ P is, according to the previous, an
induced subgraph of some P-strict graph.

Definition 3.4. Let R be an induced-hereditary property. For each G ∈ R
put decR(G) = max{n : there exist a partition (V1, V2, . . . , Vn), Vi 6= ∅ of
V (G) such that for each k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R}. If
G /∈ R we set decR(G) to be zero. A graph G is said to be R-decomposable
if decR(G) ≥ 2, otherwise G is R-indecomposable.

The invariant decR(G) describes the variability of a graph G with respect
to different partitions of its vertex set. The following useful lemma related
to the P-decomposability number of P-strict graphs is proved in [12].

Lemma 3.5. Let G be an R-strict graph and G∗ ∈ R be an induced super-
graph of G (i.e., G ≤ G∗). Then G∗ is R-strict and decR(G) ≥ decR(G∗).

From the next lemma it follows that if it is possible to generate an induced-
hereditary propertyR with an I-generating set consisting ofR-decomposable
graphs then all the R-strict graphs must also be R-decomposable. This
feature can be used as a criterion for reducibility of induced-hereditary
properties.

Lemma 3.6. Let R be an induced-hereditary property of graphs and let
G be an I-generating set of R. If all the graphs belonging to G are R-
decomposable, then all the R-strict graphs are R-decomposable as well.

Proof. Suppose to the contrary that there exists an R-strict graph H
which is R-indecomposable. Since H ∈ R, there exists G ∈ G such that
H ≤ G. Since G is R-decomposable, there exists a partition (V1, V2, . . . , Vn),
n ≥ 2, of the vertex set V (G) such that k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R
for each k ≥ 1.

If the intersections V (H)∩Vi are non-empty for the indices i1, i2, . . . , iq,
n ≥ q ≥ 1 then it is evident that each class k.H[V (H) ∩ Vi1 ] ∗ k.H[V (H) ∩
Vi2 ]∗· · ·∗k.H[V (H)∩Viq ] is a subclass ofR (becauseR is induced-hereditary
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and each k.G[Vi1 ] ∗ k.G[Vi2 ] ∗ · · · ∗ k.G[Viq ] ⊆ R). The assumption that H is
R-indecomposable immediately implies that q should be equal to one. But
then there exists at least one vertex v ∈ V (G)\V (H) such that all the graphs
from H ∗K1 = H ∗ ({v}, ∅) are induced subgraphs of some graphs from the
class G[V1] ∗G[V2] ∗ · · · ∗G[Vn] ⊆ R which contradicts our assumption that
H is R-strict.

The following theorem allows us to assume that each graph of our generating
set has a prescribed substructure.

Theorem 3.7. Let P be an additive induced-hereditary property and G be
an I-generating set of P. If G is an arbitrary graph with the property P then
there exists an I-generating set G′ ⊆ G such that each graph H ∈ G′ contains
at least one copy of the graph G as an induced subgraph.

Proof. Let S ⊆ G be the set of graphs which do not contain G as an
induced subgraph. Since the property P is additive, for any choice of the
graph H ∈ S, the graph H ′ = H ∪ G also belongs to P. Therefore there
exists a graph H∗ ∈ G such that H ′ is an induced subgraph of H∗ (in such
a case H∗ evidently contains a copy of G).

Further, it is easy to observe that the set G′ = G \ S ⊆ G is an I-
generating set with the required properties.

Definition 3.8. Let R be an induced hereditary property. The R-decom-
posability number of an I-generating set G of R is defined as follows:
decR(G) = min{decR(G) : G ∈ G}. The decomposability number of the
property R is the R-decomposability number of the set S(R).

The proof of The Unique Factorization Theorem shows that the decompos-
ability number of a property uniquely determines the number of irreducible
factors in the factorization of the property. The next theorem states that
the R-decomposability number is the same for all generating sets contained
in the set of R-strict graphs.

Theorem 3.9. Let P be an induced-hereditary property of graphs. Let G be
an I-generating set of P such that G ⊆ S(P). Then decP(G) = decP(P).

Proof. Since G ⊆ S(P) we immediately have:

decP(P) = decP(S(P)) ≤ decP(G).
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Let G ∈ S(P) be a graph such that decP(G) = decP(S(P)) = q. Since
G ∈ P there exists a graph H ∈ G such that G ≤ H. According to our
assumptions G and H are P-strict graphs. Hence, by an application of
Lemma 3.5, we obtain the inequality decP(G) ≥ decP(H). This implies
that

decP(P) = decP(S(P)) = decP(G) ≥ decP(H) ≥ decP(G)

= min{decP(H∗) : H∗ ∈ G}

and the proof is complete.

The next theorem guarantees the existence of a generating set, contained in
the set of P-strict graphs, with a prescribed value of the invariant decR for
each of its members. Generating sets of this type are very important for the
proof of The Unique Factorization Theorem (see [12]), because they enable
us to construct the factors of a reducible induced-hereditary property.

Theorem 3.10. Let P be an additive induced-hereditary property of graphs.
Let G ⊆ S(P) be any generating set of P. Then there exists a set G∗ ⊆ G,
which is a generating set of P and contains only graphs of P-decomposability
number equal to dec(P).

Proof. Let G be an arbitrary graph from G with decP(G) = dec(G) = q.
Then there exists a partition (V1, V2, . . . , Vq) of V (G) such that k.G[V1] ∗
k.G[V2] ∗ · · · ∗ k.G[Vq] ⊆ P for each positive integer k. By Lemma 3.7 there
is a generating set G∗ ⊆ G such that each graph H ∈ G∗ contains G as an
induced subgraph.

Let H be any graph from G∗. Similar arguments as in the proof of
Lemma 3.6 show that decP(H) = dec(P) and the proof is complete.

Using The Unique Factorization Theorem it is also possible to prove the
following interesting result (see [12]).

Theorem 3.11. Let R = P1◦P2◦ · · · ◦Pn, n ≥ 2 be the factorization of a
reducible induced-hereditary property R into irreducible factors. Then there
exists an I-generating set ofR which contains only uniquely (P1,P2, . . . ,Pn)-
partitionable graphs.
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