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The purpose of this article is to give additional attention to three edge-
coloring conjectures that have been considered over the last several years.
Each conjecture together with closely related results appear in a separate
section of the paper. For the reader’s convenience each conjecture itself is
set off in boldface type.

1. A Conjecture on the Classical Ramsey
Number

The classical Ramsey number rk(G) is well known and is the smallest pos-
itive integer m such that any edge-coloring of Km by k colors contains a
monchromatic copy of G. The conjecture to be posed allows a less restric-
tive edge-coloring of Km with the same consequence, a monochromatic copy
of G in the colored Km. To be precise two special colorings need to be
defined, the k-local coloring and the k-mean coloring.
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The concept of local colorings first appeared in a paper of Erdős and Sós
[10] and was later studied extensively in [18]. It has also been more recently
rediscovered by Galluccio, Simonovits, and Simonyi [17]. A k-local coloring
of a graph G is an edge-coloring of G, by any number of colors, as long
as each vertex is incident to edges colored by at most k different colors. A
k-mean coloring of G is an edge-coloring, by any number of colors, such that
“on average” each vertex is incident to edges colored by at most k colors.
For preciseness if f is an edge-coloring of G by any number of colors and
kf (v) is the number of distinct colors that appear on edges of G incident
to v under the coloring f , then a k-mean coloring f of G is one where
1/|G|∑v kf (v) ≤ k. Note that f is a k-local coloring if kf (v) ≤ k for all v
in G, i.e. every k-local coloring is a k-mean coloring.

The k-local Ramsey number rk−`oc (G) (k-mean Ramsey number
rk−mean(G)) is defined as the smallest positive integer m, such that any
k-local coloring of Km (any k- mean coloring of Km) contains a monochro-
matic copy of G. Both of these Ramsey numbers are known to exist which
follows from the following theorem.

Theorem 1.1.
(i) (Gyárfás, Lehel, Schelp, Tuza [18]). Let n, k ≥ 2 be integers. Then

rk−`oc(Kn) ≤ d(kk(n−2)+1/(k − 1)e.
(ii) (Caro [11]). Let n, k ≥ 2 be integers. Then

rk−mean(Kn) ≤ k · r(k+1)−`oc(Kn).

Since every k edge-coloring is a k-local coloring and since every k-local col-
oring is a k-mean coloring, it is clear that rk(G) ≤ rk−`oc(G) ≤ rk−mean(G).

A natural question is whether either or both of the inequalities are in
fact equalities. This leads to the first of the three conjectures of the paper.

Conjecture 1. For all integers n ≥ 3, k ≥ 2, rk(Kn) = rk−mean(Kn).

In the remainder of this section results are presented which form a basis for
the conjecture.

Comparisons between r2(G) and r2−`oc(G) have been studied extensively
in [18]. In particular the following theorem appears there.

Theorem 1.2 (Gyárfás, Lehel, Schelp, Tuza) [18].
(i) For m ≥ 2n− 1, (m,n) 6= (3, 2), r2−`oc(Km −Kn) = r2(Km −Kn). In

particular r2−`oc(Km) = r2(Km) for all m ≥ 1.
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(ii) There exist trees T for which r2−`oc(T )− r2(T ) is not bounded.
(iii) For all connected graphs G the ratio r2−`oc(G)/r2(G) ≤ 3/2.

Theorem 1.2 (iii) is generalized in [23] for all k and is given in the next
theorem.

Theorem 1.3 (Truszczyński and Tuza [23]). For each positive integer k
there exists a constant c = c(k) such that rk−`oc(G)/rk(G) ≤ c for all con-
nected graphs G.

In [12] Caro and Tuza investigate the relationship between rk−`oc(G) and
rk−mean(G). They prove the following.

Theorem 1.4 (Caro and Tuza [12]).

(i) There exists a constant c(k) ≤ 2(k − 1) such that rk−mean(G) ≤
c(k)rk−`oc(G) for every graph G.

(ii) For every graph G, r2−mean(G) ≤ r2(G) + |G| − 2.

(iii) For all m ≥ 3, r2−`oc(Km) = r2−mean(Km).

Theorem 1.4 (iii) generalizes to the following theorem.

Theorem 1.5 (Schelp [21]). rk−`oc(Km) = rk−mean(Km) for all m ≥ 3,
k ≥ 2.

Caro and Tuza [12] mention that there are no known graphs G where
rk−`oc(G) < rk−mean(G) and ask whether rk−`oc(G) = rk−mean(G) for all
graphs G. This question is addressed for trees in [7] by Bollobás, Kos-
tochka, and Schelp. They call a tree T = (V, E) an ES-tree (Erdős-Sós
tree), if every graph with average degree greater than |V | − 2 contains T .
Many trees are known to be ES-trees.

Theorem 1.6 (Bollobás, Kostochka, Schelp [7]). For every ES-tree T on
d vertices and for sufficiently large k such that k(k−1)/(d−1) is an integer,
rk−`oc(T ) = rk−mean(T ) = (d− 2)k + 2.

Lemma 1.7. r3(K3) = r3−mean(K3).
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Proof. It is well known that r3(K3) = 17 ≤ r3−`oc(K3) = r3−mean(K3),
the last equality following from Theorem 1.5. Thus the proof is completed
by showing r3−`oc(K3) ≤ 17.

Consider any 3-local coloring of K17. For any fixed vertex v in the colored
K17, there are at least 6 incident edges colored with the same color, say
color 1. Let N1(v) denote the end-vertices of those edges of color 1 incident
to v so that |N1(v)| ≥ 6. If any pair of vertices in N1(v) are joined in
color 1, K17 contains a monochromatic K3 in color 1. Thus the 3-local
coloring of K17 induces a 2-local coloring on N1(v). But by Theorem 1.2
(i) r2−`oc(K3) = r2(K3). Since |N1(v)| ≥ 6 and r2(K3) = 6, there is a
monochromatic K3 in N1(v).

Observe that from the results given above Conjecture 1 holds when k = 2 and
when k = n = 3. Also rk−`oc(Kn) = rk−mean(Kn) with rk−`oc(Kn) ≥ rk(Kn).
Thus proving Conjecture 1 amounts to showing that the last inequality is
an equality.

If Conjecture 1 is true, it gives substantial insight to the classical Ramsey
number. It says that if rk(Kn) = t, then edge-coloring Kt by at most k colors
is not what is important for it to contain monochromatic Kn. Rather Kt can
be edge-colored by any number of colors as long as “on average” each vertex
is incident to edges colored by at most k colors. Thus the number of colors
used would not be important, only the average number of colors on edges
incident to each vertex.

2. Vertex-Distinguishing Edge-Colorings

A proper edge-coloring of a graph is called vertex-distinguishing if every
two distinct vertices are incident to different sets of colored edges. The
mininum number of colors required for a vertex-distinguishing edge-coloring
of a simple graph G is denoted by χ′s(G) and called the strong chromatic
index of G. A graph has a vertex-distinguishing edge-coloring if and only if
it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. Vertex-distinguishing colorings have
been considered in several papers (see [1, 3, 4, 5, 6, 7, 8, 9, 13, 16, 19, 20]).
In [9] Burris and Schelp presented two conjectures the first of which was
recently proved by Bazgan, Harket-Benhamdine, Li, and Woźniak and is
given in the following theorem.

Theorem 2.1 (Bazgan, Harket-Benhamdine, Li, Woźniak [6]). If G is a
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vdec− graph, then χ′s(G) ≤ |V (G)|+ 1.
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Let nd = nd(G) denote the number of vertices of degree d in the graph G.
The other conjecture in [9] is the second conjecture of this paper.

Conjecture 2. Let G be a vdec-graph and let k be the minimum integer
such that

(
k
d

) ≥ nd for all δ(G) ≤ d ≤ ∆(G). Then χ′s(G) = k or k + 1.

Clearly if G has been given a vdec with k colors then
(
k
d

) ≥ nd for all d, so
that in Conjecture 2 certainly χ′s(G) ≥ k. Also there are many graphs where
χ′s(G) ≥ k + 1. As an example consider any d-regular graph on n =

(
k
d

)
vertices, where dn is even. If a vdec exists with k colors, then there must
be exactly

(
k−1
d−1

)
vertices incident to edges colored with any fixed color.

However any edge of a given color is incident to two vertices, so that
(
k−1
d−1

)

must be even. There are many pairs (k, d) where d
(
k
d

)
is even and

(
k−1
d−1

)
is

odd (for example when k is a power of 2 and d is arbitrary). Therefore these
graphs need k + 1 colors.

Recently there has been significant progress on this conjecture. Balister,
Bollobás, and Schelp [3] proved the conjecture holds when G is either a union
of cycles or a union of paths. Specifically they proved the following result.

Theorem 2.2 (Balister, Bollobás, Schelp [3]).

(i) Let G be a vertex-disjoint union of cycles, and let n2(G) = |V (G)| ≤(
k
2

)
, with k as small as possible. Then χ′s(G) = k or k + 1.

(ii) Let G be a vertex-disjoint union of paths with each path of length ≥ 2.
Let n1(G) ≤ k and n2(G) ≤ (

k
2

)
, with k as small as possible. Then

χ′s(G) = k or k + 1.

(iii) Let G be any vdec-graph with ∆(G) = 2. Let n1(G) ≤ k and n2(G) ≤(
k
2

)
, with k chosen as small as possible. Then k ≤ χ′s(G) ≤ k + 5.

This theorem, and in particular part (i) of the theorem, is a consequence of
the following beautiful circuit packing theorem of Balister.

Theorem 2.3 (Balister [2]). Let N be a positive integer and {mi}t
i=1 a

sequence of integers, mi ≥ 3 for all i, such that
(
N
2

)
=

∑t
i=1 mi for N odd

and
(
N
2

)− N
2 =

∑t
i=1 mi for Neven. Then the edges of KN for N odd (KN

minus a 1-factor for N even) can be written as an edge-disjoint union of
circuits of length m1,m2, . . . , mt.
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It is easy to see that Theorem 2.2 (i) is almost an immediate corollary of The-
orem 2.3. For let G be the vertex-disjoint union of cycles Cm1 , Cm2 , . . . , Cmt

with
∑t

i=1 mi = |E(G)| ≤ (
k
2

)
, k as small as possible. If G is given a vdec

by k colors, then the line graph L(G) gives a collection of pairwise edge-
disjoint circuits in Kk with vertices numbered 1, 2, . . . , k. Conversely if
C ′

m1
, C ′

m2
, . . . , C ′

mt
is a pairwise edge-disjoint collection of circuits in Kk,

then G can be given a vdec by simultaneously transversing C ′
mi

, and Cmi ,
for each i, assigning the vertex number on the vertex passed on C ′

mi
to the

corresponding edge passed on Cmi .

As difficult as Conjecture 2 has been for 2-regular graphs it is somewhat
surprising that the conjecture has now been shown true for many graphs.
The following has just recently been proved.

Theorem 2.4 (Balister, Kostochka, Li, Schelp [4]). If G is a graph with n
vertices, ∆(G) ≥ √

2n + 4, δ(G) ≥ 5 and k is the smallest positive integer
such that nd ≤

(
k
d

)
for all d, then k ≤ χ′s(G) ≤ k + 1.

It is also possible, by use of the Lovász Local Lemma, to remove the restric-
tion δ(G) ≥ 5 in the above theorem if one allows the bound on ∆(G) to
become ∆(G) ≥ C

√
n for some larger constant C.

The proof of Theorem 2.4 depends heavily on a useful balanced edge
coloring result in [4]. Let a graph G be given a proper edge-coloring by k
colors. Given a subset S of the set of k colors let S(v) be the set of colors
used to color the edges incident to v, let VS = {v ∈ V (G) : S(v) = S}, and
let nS = |VS |. Define an optimal k-edge-coloring with k colors to be a proper
edge-coloring with minimal value of

∑
S n2

S . Note that minimizing
∑

S n2
S

amounts to bringing different values of nS closer, keeping
∑

S nS = |V (G)|
fixed.

Theorem 2.5 (Balister, Kostochka, Li, Schelp [4]). In any optimal k-edge-
coloring of G, |nS − nS′ | ≤ 2 for all color subsets S, S′ of the color set with
|S| = |S′|.

A corollary to this theorem is that any optimal k-edge-coloring with nd ≤(
k
d

)
+ 1 for all δ(G) ≤ d ≤ ∆(G) has nS ≤ 2 for all S. This follows since

if nS > 2 for some S, then nd =
∑
|S′|=d nS′ ≥ ns +

((
k
d

)− 1
)

(nS − 2) =
(
k
d

)
(nS−2)+2 ≥ (

k
d

)
+2, a contradiction. Thus for k ≥ χ′(G) and nd ≤

(
k
d

)
+1

for all d, Theorem 2.5 can be applied so each color set is used at most twice
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at different vertices of G. The proof of Theorem 2.4 requires using the degree
conditions of the theorem to reduce this use of any color set to at most one
vertex.

In light of Theorems 2.2 and 2.4 it is expected that Conjecture 2 is true.
The most difficult unresolved graphs are ones of small maximum degree. In
particular does the conjecture hold for 3-regular graphs?

Very recently the following result has been proved for d-regular graphs
with small components.

Theorem 2.6 (Balister, Riordan, Schelp [5]). Let d ≥ 3 and assume G is
a d-regular graph which contains d − 2 disjoint 1-factors. Let G = ∪s

i=1Gi

where G1,G2, . . . , Gs are components of G. If |V (G)| ≤ (
k
d

)
and |V (Gi)| ≤

3(k−1)
3(d−1) for all i, then χ′s(G) ≤ k + 1.

For G a vdec-graph let k = k(G) be the smallest positive integer such that
nd ≤

(
k
d

)
for all δ(G) ≤ d ≤ 4(G). Recall for v ∈ V (G), S(v) denotes the

set of colors used to color the edges incident to v. If a vdec with k colors
exists for G, then each color meets an even number of vertices. Hence each
color occurs in an even number of sets S(v). Thus the symmetric difference
of the sets

⊕
v∈V (G) S(v) = ∅. Let k′(G) be the minimum k such that there

exist distinct sets Sv ⊂ {1, 2, · · · , k} for all v ∈ V (G) with |Sv| = deg v and⊕
v∈V (G) Sv = ∅. Then it is clear that χ′s(G) ≥ k′(G) ≥ k(G). There are

many examples where k′(G) > k(G), e.g., G = K4, but there are no known
regular graphs where χ′s(G) > k′(G). The situation for non-regular graphs
is different. Indeed, it is possible for two non-regular graphs with the same
degree sequence to have different strong chromatic indices. An example is
shown in the figure below.

•{1,3,4} •{1,2,3,4}

•{2,3,4} •{1,2,4}
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1 2 3

3 1
4 4

2

1 2

G1 : χ′s > k′ = 4 G2 : χ′s = k′ = 4

This example motivates the following definition. Let k′′(G) be the small-
est k such that for any set of vertices X ⊂ V (G) there exist distinct sets
Sv ⊂ {1, 2, · · · , k}, v ∈ X, such that |Sν | = deg (v) and |⊕v∈X Sv| ≤
|E(X, Xc)|, where E(X,Xc) is the set of edges between X and Xc = V (G)\X.
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If Sv = S(v) for a vdec then |⊕v∈X Sv| ≤ |E(X, Xc)| for all X, so that
χ′s(G) ≥ k′′(G). Also, if X = V (G) then k′′(G) ≥ k′(G). Therefore, χ′s(G) ≥
k′′(G) ≥ k′(G) ≥ k(G). Also, in [5] it is shown that k′′(G) ≤ k(G) + 1.
Therefore, one has the following conjecture.

Conjecture (Balister, Riordan, Schelp [5]). For all vdec-graphs G, χ′s(G) =
k′′(G).

Observe that this conjecture is consistent with the inequalities mentioned
above. Also, by an exhaustive computer search this conjecture has been
shown to hold for all vdec-graphs of order at most 11 and all regular graphs
of order at most 20.

Note that this conjecture says that parity is the only reason that can
make χ′s(G) = k(G) + 1 instead of χ′s(G) = k(G). Also, clearly this conjec-
ture implies the truth of Conjecture 2.

Finally, it is not even known whether there exists an absolute constant
c such that χ′s(G) ≤ k(G) + c when G is a vdec-graph.

3. Local Edge-Colorings that are Global

M. Truszczyński [22] generalized the k-local colorings of Section 1 to what he
called local (H, k)-colorings and considered a corresponding Ramsey num-
ber. Given a positive integer k and a graph H with at least k + 1 edges,
a local (H, k)-coloring of the complete graph Kn is a coloring of its edges
such that each of its subgraphs isomorphic to H has at most k edges colored
differently. This leads to the following natural question considered by Clap-
sadle and Schelp in [15]. Does there exist necessary and sufficient conditions
on H such that for n ≥ n0 (n0 fixed) each local (H, k)-coloring of Kn is in
fact a k-edge-coloring?

It is easy to see that a necessary condition is for H to contain all k-edge
graphs as subgraphs. Suppose this is not the case and that H0 is a k-edge
graph which is not a subgraph of H. Select an isomorphic copy of H0 in Kn.
Color each edge of this copy of H0 in Kn with a different color, say colors
1, 2, . . . , k. Color all remaining edges of Kn with a (k + 1)-st color. Clearly
every isomorphic copy of H in Kn has at most k edges colored differently,
since each such copy fails to contain at least one edge of the fixed copy of
H0 colored with colors 1, 2, . . . , k. Thus the described coloring of Kn is a
local (H, k)-coloring with k + 1 colors. Hence the supposition is false and it
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is necessary for H to contain all k-edge graphs as subgraphs, for each local
(H, k)-coloring of Kn to be a k-edge-coloring.

The sufficiency of the above condition is the unanswered portion of the
third conjecture of this article.

Conjecture 3 (Clapsadle and Schelp [15]). Let k be a positive integer and
H a graph with at least k + 1 edges. A necessary and sufficient condition
that each local (H, k)-coloring of Kn, n ≥ n0 (n0 fixed), is a k-edge-coloring
is that H contain each k-edge graph as a subgraph.

This conjecture has been established when k = 2, 3, 4 and when H is the
graph formed by attaching a pendant edge to each vertex of Kk [15]. This
graph H is of smallest order containing all k-edge graphs as subgraphs.
Clapsadle [14] has considered problems relating to the conjecture, but noth-
ing more has been accomplished toward a complete solution. Since the
conjecture holds for k ≤ 4, it is likely to be true. If true, it would give
a local edge-coloring criteria of Kn with a global consequence that Kn is
k-edge-colored.
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Bolyai 4, Balatonfüred, 1969 (North-Holland, Amsterdam, 1970) 395–404.

[11] Y. Caro, On several variations of the Turan and Ramsey numbers, J. Graph
Theory 16 (1992) 257–266.

[12] Y. Caro and Zs. Tuza, On k-local and k-mean colorings of graphs and hyper-
graphs, Quart. J. Math. Oxford 44 (2) (1993) 385–398.
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