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Abstract

A maximum independent set of vertices in a graph is a set of pair-
wise nonadjacent vertices of largest cardinality a. Plummer [14] de-
fined a graph to be well-covered, if every independent set is contained
in a maximum independent set of G. One of the most challenging prob-
lems in this area, posed in the survey of Plummer [15], is to find a good
characterization of well-covered graphs of girth 4. We examine several
subclasses of well-covered graphs of girth > 4 with respect to the odd
girth of the graph. We prove that every isolate-vertex-free well-covered
graph G containing neither Cs, Cs nor C7 as a subgraph is even very
well-covered. Here, a isolate-vertex-free well-covered graph G is called
very well-covered, if G satisfies o(G) = n/2. A vertex set D of G is
dominating if every vertex not in D is adjacent to some vertex in D.
The domination number v(G) is the minimum order of a dominating
set of G. Obviously, the inequality v(G) < «(G) holds. The family
Gy—aq of graphs G with v(G) = a(G) forms a subclass of well-covered
graphs. We prove that every connected member G of G,—, containing
neither C3 nor C5 as a subgraph is a Ky, Cy, C; or a corona graph.
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1. Introduction and Notation

We consider finite, undirected, and simple graphs G with vertex set V(G)
and edge set E(G). For A C V(G) let G[A] be the subgraph induced by
A. N(z) = Ng(x) denotes the set of vertices adjacent to the vertex x and
Nz] = Nglz] = N(z) U {x}. More generally, we define N(X) = Ng(X) =
Uzex N(z) and N[X] = Ng[X] = N(X)U X for a subset X of V(G). The
vertex v is called an end vertex if d(v,G) = 1, and an isolated vertex if
d(v,G) = 0, where d(z) = d(z,G) = |N(z)| is the degree of x € V(G). Let
2 = Q(G) be the set of end vertices of G. An edge incident to an end vertex
is called a pendant edge. We denote by n = n(G) = |V(G)| the order of
G. We write C), for a circuit of length n and K,, for the complete graph
of order n. A subgraph F of G with V(F) = V(G) is called a factor of G.
Furthermore, a factor F of G is a perfect [1, 2]-factor if every component of
F is either a circuit or a K. The corona G o K of a graph G is the graph
obtained from G by adding a pendant edge to each vertex of G. The girth
of a graph G, denoted ¢g(G), is the length of a shortest circuit in G. The
girth is co if G has no circuit. The odd girth of a graph G is the length of a
shortest odd circuit in G, it is oo if G is bipartite.

A maximum independent set of vertices in a graph is a set of pairwise
nonadjacent vertices of largest cardinality. The cardinality a(G) of a maxi-
mum independent set in a graph G is called the independence number of G.
Plummer [14] defined a graph to be well-covered, if every independent set is
contained in a maximum independent set of G. These graphs are of inter-
est because, whereas the problem of finding the independence number of a
general graph is NP-complete, the maximum independent set can be found
easily for well-covered graphs by using a simple greedy algorithm. Chvatal,
Slater [4] and Sankaranarayana, Steward [17] independently showed that the
property of being not well-covered is NP-complete. Hence, it is unlikely that
there exists a good characterization of well-covered graphs.

The work on well-covered graphs appearing in literature (see [15]) has
focused on certain subclasses of well-covered graphs. Finbow, Hartnell and
Nowakowski [7], [8] characterized the well-covered graphs G of girth > 5,
i.e., G contains neither C3 nor Cy4 as a subgraph, and also the well-covered
graphs GG containing neither Cy nor C5 as a subgraph. Both sets of forbidden
subgraphs are subsets of the set {C3, Cy, C5, C7 }, which precisely are all well-
covered circuits. One of the most challenging problems in this area, posed
in the excellent survey of Plummer [15], is to find a good characterization
of well-covered graphs of girth > 4, (i.e., G contains no C3 as a subgraph).
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We investigate several subclasses of well-covered graphs of girth > 4 with
respect to the odd girth of a graph. Our main interest are the well-covered
graphs of odd girth > 7, (i.e., G contains neither C5 nor C as a subgraph).
It is well known (e.g. see [3], [15]) that any well-covered graph with n
vertices, none of which is isolated, has a(G) < n/2. An isolate-vertex-free
well-covered graph G of order n with o(G) = n/2 is called very well-covered.
Staples [18] and Favaron [5] independently characterized this subclass of
well-covered graphs. We prove that every isolate-vertex-free well-covered
graph G with odd girth > 9 (i.e., G contains no well-covered odd circuit as
a subgraph) is also very well-covered.

A vertex set D of G is dominating if every vertex not in D is adjacent
to some vertex in D. The domination number v(G) is the minimum order of
a dominating set of G. Obviously, the inequality v(G) < «(G) holds. The
family G,—, of graphs G' with v(G) = a(G) form a subclass of the class of
well-covered graphs. In 1970, Szamkolowicz [19] posed the problem of char-
acterizing graphs G of G,—,. Very little is known about a characterization
of such graphs. E.g. Topp and Volkmann [20] characterized all bipartite
members of G,—,. We generalize their result by showing that every con-
nected member G of Gy—, with odd girth > 7 satisfies v(G) = n/2 or is a
7-circuit or is a Kj.

2. Preliminaries

The following two observations (e.g. see [15]) are very useful in the subse-
quent proofs.

Observation 1. Let I,J be two vertexr sets in a graph G such that I is
independent, |J| < |I| and Ng[I] C Ng[J]. Then G satisfies v(G) < o(G).
Moreover, if J is likewise independent, then G is not well-covered.

Observation 2. If G is a well-covered graph and I is an independent set of
G, then G' = G — Ng[I] is also well-covered and o(G') = a(G) — |I|.

It is easy to see that Observation 1 and 2 remain true if the property well-
covered is replaced by having the property that v(G) = a(G). The next
result provides a more powerful tool, if we have additional information.

Lemma 3. Let G be a well-covered graph, I an independent set of vertices

in G and G' = G[Ng[I]]. Then
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1. if «(G") = |1|, then G’ is also well-covered;

2. if G has no isolated vertex and |Ng(I)| < |I|, then G’ is very well-
covered.

Proof. (1). Since a(G’) = |I| we only have to show that there exists no
maximal independent set J of G’ with |J| < |I]. Otherwise, assume J is a
maximal independent set of G’ with |J| < |I|, then Ng[I] € Ng[J] and by
Observation 1 we obtain that G is not well-covered, a contradiction.

(2). Suppose G has no isolated vertex and we have |Ng(I)| < |1
Berge [3] showed that for every independent set I of a well-covered graph
G without isolated vertice, |[Ng(I)| > |I|. Hence, we have |Ng(I)| = |I|.
By Observation 1 we deduce that there exists no maximal independent set
J of G' with |J| < |I]. Now assume there exists a maximal independent
set J of G’ with |J| > |I|. Note that ) = INJ # I, ) # Ne(I)NJ #
Ng(I) and |I — {INJ}| < |Ng(I)nJ|. With J independent we obtain
Ne(INJ)N{Ng(I)nJ} =0, ic., No(INJ)C Ne(I) — {Ng(I)nJ}. By

rearranging

[InJ| = |Il—|I—-{INnJ}
> [Ng(I)| — [Na(I) N J|
> |[Ng(InJ)|

we get a contradiction to Berge’s result. Thus every maximal independent
set of G’ has cardinality o(G’) = |I| = n(G")/2, i.e., G’ is very well-covered.
|

Observation 4. Let G be a graph of odd girth at least 2l + 1 and x a vertex
of G. Then all vertices having distance exactly i to x with 1 < ¢ < form
an independent set of G.

3. Well-Covered Graphs of odd Girth 7 or
Greater

Staples [18] and Favaron [5] independently characterized the family of very
well-covered graphs. Finbow and Hartnell [6] proved that a well-covered
graph without isolated vertices and with girth at least 8 is very well-covered.
In the next theorem we state that it is enough to demand odd girth > 9,
i.e., Cy, Cg are not forbidden.
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Theorem 5. Let G be well-covered with no isolated vertex and odd girth
> 9, then G is very well-covered.

Proof. Let G be a well-covered graph with no isolated vertex and odd
girth > 9, such that G is not very well-covered and every isolate-vertex-free
subgraph G’ = G — Ng[I], with I being an independent vertex set of G, is
very well-covered. Now let z € V(G) and J;(z) denote the set of all vertices
having distance exactly ¢ from x. Because of Observation 4 each of the sets
Ji(x), Jo(z) and J3(z) are independent. The graph G’ = G — Ng[J3(x)]
is because of Observation 2 well-covered. Let Jj(z) be the subset of Ja(x)
containing all vertices of distance 2 from z, which are not adjacent to any
vertex of J3(z). One (well-covered !) component of G' = G — Ng[J3(x)] is
G, = G[N[z] U J5(x)]. Note that the well-covered bipartite graph G, is by
the choice of G very well-covered, i.e., a(Gy) = n(Gz)/2 = |J1(z)| = [{z} U
J5(x)|. (Since G is not very well-covered that implies J3(x) # ).) Likewise
G" = G—Ng[{z}UJ)(x)] is well-covered, contains no isolated vertex, has odd
girth > 9 and satisfies because of G’s choice a(G") = n(G")/2. Observe that
n(G) = n(G")+n(G;) and J3(x) is contained in a maximum independent set
A of G”. Moreover, the set I = AU {z} U Jj(x) is a maximum independent
set of G with |I] = n(G")/24n(Gy)/2, i.e., a(G) = n(G)/2, a contradiction.

|
We now examine the members of the family of connected, well-covered
graphs with odd girth at least 7, which are not very well-covered. In or-
der to have a self-contained proof for Theorem 5 we required the special
choice of G to deduce that the subgraph G, is very well-covered. Alterna-
tively, as G is both well-covered and bipartite, it is also very well-covered.
From the proof of Theorem 5 we see that

successive removals of Gy for vertices x belonging to no Cy produce decreas-
ingly smaller graphs which are well-covered but not very well-covered. Hence,
in this case it is possible to ’'reduce’ G. Moreover, if there exists an inde-
pendent set I of G with |Ng(I)| = |I|, then we can also apply Lemma 3 in
order to ’'reduce’ G.

We now examine the members of the family of connected, well-covered
graphs with odd girth at least 7, which are not very well-covered. Fin-
bow, Hartnell and Nowakowski [7] proved that a connected, well-covered
graph with girth at least 6 is very well-covered or is one of C%7, Kj. Hence,
if 4-circuits are not permitted there are only two exceptional graphs. But
we will outline that allowing 4-circuits enlarges this class of exceptional
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graphs, i.e., the members of the family of connected, well-covered graphs
with odd girth at least 7, which are not very well-covered. The following
observation is an easy consequence of two results due to Berge [3] and Tutte
[21]. Berge showed that for every independent set I of an isolate-vertex-free
well-covered graph G we have |[Ng(I)| > |I|, but then also the Konig-Hall
condition — |Ng(S)| > |S| for all subsets S of V(G) — holds. Finally it is
due to Tutte that the Konig-Hall condition is equivalent to the existence of
a perfect [1,2]-factor F.

Observation 6. If G is an isolate-vertex-free well-covered graph, then G
contains a perfect [1,2]-factor F.

Note that then there exists also a perfect [1,2]-factor F of G, such that F
only contains induced odd circuits and Ks’s. A canonical problem now is to
examine the family of isolate-vertex-free well-covered graphs G, such that
there exists a perfect [1,2]-factor F of G with o(F) = a(G). The core of
the following conjecture is that all isolate-vertex-free well-covered graphs of
odd girth > 7 are contained in this subclass of the well-covered graphs.

Conjecture 7. Let G be an isolate-vertex-free graph of odd girth at least 7.
Then G is well-covered if and only if

e there exists a perfect [1,2]-factor F of G, such that F only contains
(induced) T-circuits and Ky’s. Furthermore, we have o(F) = a(G).

e if C1 and Cy are two vertex-disjoint T-circuits of F, then there are
1. either G[V(C1) UV (Cy)] = C1 U Cy;
2. or GIV(C1) UV (Cq)] = C7[2K,4];
3. or there exist two vertices x1,x2 of distance 2 of C1 and two vertices

Y1, Y2 of distance 2 of Cy, such that these vertices induce a 4-circuit
and these are the only edges between the two circuits C1 and Cs.

o the set of wvertices of the Ko-components induces a very well-covered
graph.

o there exists a well-covered, isolate-vertex-free graph G* of odd girth at
least 7 and an independent vertex set I of G*, such that we have G =
G*—Ng+[I] and there exists a perfect [1,2]-factor F of G* only containing
induced T-circuits.

If Conjecture 7 is true, then every isolate-vertex-free well-covered graph G
of odd girth > 7 satisfies a(G) > %n(G) Note that this result also holds
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for the related family of graphs G of odd girth > 7 with §(G) > n(G)/4 as
shown by Albertson, Chan and Haas [1].

4. On the Subclass G-,

4..1 On members of G _ with odd girth > 7

For the next theorem we need a characterization of isolate-vertex-free graphs
G with v(G) = n(G)/2, which is due to Payan and Xuong [11] and indepen-
dently Fink, Jacobson, Kinch and Roberts [9]. As a considerable extension
of this result Randerath and Volkmann [16] (see also [2] for a different proof)
characterized all extremal graphs in the well-known inequality of Ore [10],
i.e., they determined the connected graphs with v(G) = |n(G)/2].

Proposition 8 [11], [9]. Let G be a connected graph of order n = n(G) > 2.
Then v(G) =n/2 if and only if G = Cy or G = H o K for some arbitrary
connected graph H.

In next theorem we study another subclass of the well-covered graphs of odd
girth > 7.

Theorem 9. Let G be a connected graph of order n = n(G) > 2 and odd
girth at least 7. Then v(G) = a(G) if and only if G = Cy,C7 or G = Ho K
where H is a connected graph of odd girth at least 7.

Proof. By inspection we see that the graphs Cy, C7, H o K1 have v = a.
Conversely, assume G is a graph of smallest order n = n(G) > 2 such that
G is connected, has odd girth > 7, has v(G) = a(G) and G is neither Cy, C7
nor a corona graph, or equivalently v(G) = a(G) < n(G)/2 and G # C7. We
shall prove that no such G exists by deriving a contradiction. Thus, by the
minimality of n, any graph G’ with n(G’) = n/ vertices, 2 < n’ < n, which is
connected, has odd girth > 7 and satisfies v(G') = «(G’) has this common
value equal to n’/2 or is a C7. Recall, that Observation 2 also holds for the
subclass of well covered graphs fulfilling v = a. If 6(G) =1, let y € V(QG)
have degree one neighbours I = {z1,x9,...,z;},k > 1. By Observation 2,
G’ = G— N¢[I] tulfills v(G") = a(G’), thus each component G/, 1 < i <[, of
G’ also has v(GY) = a(GY). G is dominated by y together with a dominating
set from each of the I components G, 1 < i <1, s0 v(G) <1+ XL, ~(GY).
From I together with [ maximum independent sets of each G we obtain that
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k+ X', a(GY) < a(@); combining this with v(GY) = a(GY),for 1 <i <1
and 7(G) = a(G) we find that £ = 1. Next we obtain a contradiction to
7(G) = a(G) < n/2. U y(G) = a(G') = "(g), then with n = n/ + 2 we

deduce v(G) = a(G) = @, a contradiction. Therefore, v(G') = a(G’) <
n(G’)
2

and by the minimality of n, G’ has to contain a 7-circuit C as a
component. Note that at least one vertex z; € V(C) is adjacent to y.
Now it is easy to see that there exists an independent set I containing the
endvertex x1 and three pairwise nonadjacent vertices of the 7-circuit C' and
a vertex set J containing the vertex y and two nonadjacent vertices of the
7-circuit C' satisfying the property Ng[I] C Ng[J]. With v(G) = a(G) we
get a contradiction by Observation 1.

Therefore, we have §(G) > 2. Consider a vertex = of minimum degree
0 = §(G) and denote by I, the union of z and the set of isolated vertices of
G — Ng[z]. If G' = G— Ng|I,] is the empty graph, G is bipartite with vertex
classes I, and N(z). Since G is well covered we find that |I,| = |N(z)| =0
and G = K; ;5. That implies v(G) = 2, a(G) = 9, and hence G = Cy against
the hypothesis; consequently, G’ is not the empty graph. Since G’ contains
no isolated vertex and for each ¢, 1 <1 <, the G’-component G has odd
girth > 7 and v(GY) = a(G!) we obtain that, by the minimality of n, G/ is
a Cy, a C7 or a corona graph. Now suppose G’ contains a circuit-component,
say GY is a C4 or a C7. Then again applying Observation 1 a simple case
by case analysis of the corresponding graph G”’ produces a contradiction.
Thus, each component of G’ is a corona graph G” = H” o K. Because G
has odd girth at least 7 and § > 2 we can drop the case that G’ contains
K5 as a component. Thus, we also deduce n’ > 4. Let uv be an edge in
H" and let v’ and v’ be their respective neighbours in Q(G”). Each of u
and v’ has exactly one neighbour in H” and hence at least § — 1 neighbours
in N(z). If §(G) > 3, as |[N(z)| = 9, some vertex in N(x) is adjacent to
both ' and v’, that creates a C5 against the assumption that G has odd
girth at least 7. So §(G) = 2 and G contains a C7. We have I, = {z},
otherwise we can deduce that v(G) < «(G). In G the set {z} U Q(G’) is
maximum independent with a(G) = %/ + 1 vertices. Let H' denote the
union of all H”. Since H” has no isolated vertex we have by a result of
Ore that each y(H") < %|V(H")| and hence y(H') < %%/ Let D' be a
dominating set of H' with |D’| < ”Z/. Each vertex in Q(G’) is joined to
precisely one vertex in H’ and to at least one vertex in N(x). Thus, the
two vertices in N(x) together with D’ dominate G and v(G) < 2 + ”Z,.



ON WELL-COVERED GRAPHS OF ...

167

From a(G) = «v(G) we obtain %/ +1< ”z/ + 2 and by rearranging "I/ <1,
implying n’ = 4. Moreover, we have G’ = P; and G = (7, a contradiction to

our hypothesis.
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4..2 On triangle-free members of G _

An interesting subproblem of Szamkotowicz’s Gy—,-problem and Plummer’s
well-covered-girth-4-problem is to FIND A GOOD CHARACTERIZATION OF
ALL GRAPHS OF §.,—, WITH GIRTH > 4, i.e., find a good characterization of
all triangle-free graphs G satisfying v(G) = a(G).

Description of a family of triangle free well covered graphs (Gj)j2n:

For j > 1 let G; be the j-regular graph on 3j — 1 vertices described by
V(G) = {1)1,1)2 Ceey Ugj_l},
N(l‘l) = {/Ul'+j,/UZ'+j+1, PN ,Ui+2j,1}, 1 < 7 < 3] - ]_7 indices are added
modulo 35 — 1, so that v3; = v1,v341 = v etc.

The first three graphs in this family are G; = Ko, Go = Cs and G = M Lg,
the Mobius ladder on 8 vertices. Note that these graphs are circulants. We
can easily establish that a(G;) = j and that the maximal independent sets
in G; precisely are the 3j — 1 neighbourhood sets N(x;),1 < i < 35 — 1,
each consisting of j vertices, so G is well covered. For j = 1,2,3 we see
that v(G;) = «(G;) but for j > 4 we have that {v1,vj41,v2j41} dominates
G and hence that 3 = v(G;) < a(G;) = j. We shall use G,j = 1,2,3, in
the construction of H' below.

Szamkotowicz asked for a characterization of graphs with v = «. In
Theorem 9 we gave an answer for graphs with odd girth > 7.

In addition we shall now construct H*, a family of graphs in G,—q:

Let H be a graph with vertex set V(H) = {a1,aq,...,a, b1,b}, b2, b5 ...,
be, by}, (k=0 or ¢ =0 may occur), and E(H) is any set of edges such that

(1) bb, ¢ E(H),1<i</{, and

(2) HU{bbl|]1 <i <L} is a connected graph.

Let H be obtained from H by attaching to each as,1 < s < k, either
1) a new vertex x5 and a new edge asxs or

2) four new vertices xs,ys, zs, Ws and five new edges such that asrsyszsws

is a Cs, or

3) seven mew wvertices wl,a? ... ,a:Z and 12 new edges such that
aswl 2%, x7 is an 8-circuit plus 4 edges joining diametrically op-
posite vertices, i.€., asxg,xg, .. ,:nz spans a M Lg = G3.

Further, to each pair of independent vertices bs,bl,,1 < s < £ we attach 3
new vertices Ts,ys, zs and 5 new edges producing a 5-circuit bsxsysblzs.



ON WELL-COVERED GRAPHS OF ... 169

Each graph HT from this family H* just constructed satisfies v(H') =
a(H™T). We note that H™ includes the family PC of well covered graphs
from [7]. Furthermore, the exceptional graphs K, Cy, C7, Py, P13, Q13
and Pi4 (see Figure 1) also determined in [7] are not only well covered, but
they also satisfy v = a.

Figure 1

Observation 10. The exceptional graphs Ky, Cy4,C7, Pig, P13, Q13, P14 and
the graphs of HT all belong to Gy—q.

So far we obtained a large subclass of triangle-free members of G,—,. In the
following we will enlarge this subclass.
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Pinter constructed in [12, 13] families of Wa-graphs of girth 4, where a graph
G is a Wa-graph, if G is well-covered and every vertex x of GG is an extendable
vertex, i.e., G — x remains well-covered. One major issue of the concept of
extendable vertices ([7, 8]) is that for two well-covered graphs G; and G2
each having an extendable vertex x; with ¢ = 1,2 the graph G obtained
by G1 and G5 and the additional edge x1x92 remains well-covered. Observe
that it is not very difficult to show that for the class G,—, the concept of
extendable vertices is also valid. Note that every vertex of the corresponding
graph H of a graph H™ from our family H™ is an extendable vertex. Now
we describe Pinters ’stable’ operations used in [12, 13].

Operation 1 [12]. Suppose G is a Wa-graph (of girth 4) with adjacent degree
two vertices « and y which are not on a triangle. Let Ng(z) = {u,y} and
N¢g(y) = {v,z} and a,b and ¢ be new vertices. Form a new graph H with
V(H)=V(G)U{a,b,c} and E(H) = E(G) U{za,ab,bc,cy,cu}. Then H is
also a Wa-graph (of girth 4) with a(G) = a(H) + 1.

Operation 2 [13]. Suppose H is a Ws-graph of girth 4 and C' is a 4-circuit
in H such that «(H — C) = a(H) — 1 and H — C is in Wy. Let C = abed
and let xy be a new line and A = vivov3v4 be a new 4-circuit. Form a new
graph G with V(G) = V(H)UV(A)U{z,y} and E(G) = E(H) UE(A)U
{zy, viz, v3y, v2a, v2b, vac,v4d}. Then G is also a Wa-graph of girth 4 with
a(G) =a(H) + 2.

Operation 3 [13]. Suppose H is a Wa-graph of girth 4 with disjoint 4-circuits
Cy and Cy such that (i) o(H—C;) =a(H)—1fori=1,2 and (it) H—C;
is in W for ¢ = 1,2. Also, H is connected or has exactly two components.
In the disconnected case, each component contains exactly one of the 4-
circuits C;. Let C7 = wiyivixzy and Co = usysvoxs and let A = abed be
a new 4-circuit. Form a new graph G with V(G) = V(H) U V(A) and
E(G) = E(H)UE(A)U{auy,avy, cx1, cyr, bra, bya, dua, dva}. Then G is also
a Wa-graph of girth 4 with o(G) = a(H) + 1.

Operation 1 requires the property that if v is an endvertex, then also u is an
endvertex, i.e., either the graph in consideration is a path with four vertices
or d(u),d(z),d(y),d(v) > 2. Since a Wa-graph G satisfies 6(G) > 2, it is not
necessary to require the extra condition. But if we want to replace W5 by
Gy=a, we have to add the additional condition.

Two disjoint copies of the graph H' € Gy—,, obtained by a 4-circuit
uzyv and one carried out Operation 1, fullfils the conditions of Operation 3,
if we consider an arbitrary 4-circuit of H'. If Operation 3 is carried out the
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resulting graph H* satisfies y(H*) = 6 < 7 = «(H™). Thus for the graph H
in consideration we have to add the condition that there exists no minimum
dominating D of H hitting for each of the two considered 4-circuits at least
two adjacent vertices. In order to see that these conditions for the new
Operation 3 can be satisfied by a graph of G,—,, we only have to consider
two disjoint copies of the graph H” € G,—,, obtained by a 5-circuit uzyvz
and one carried out Operation 1.

Lemma 11. The above operations are also valid for the class Gy—q, i.€., we
can replace Wa by Gy—n, we only have to add the before mentioned condi-
tions.

The proof of this lemma is tedious and not very difficult and therefore
we omit here the proof. Moreover, we can relax the conditions of the
Operation 1:

if we consider a G,—,-graph G (of girth 4) with three vertices u,x,y which
induce a path P = uzy in G such that o(G — P) = a(G) — 1. Let a,b and
¢ be new vertices. Form a new graph H with V(H) = V(G) U {a, b, c} and
E(H) = E(G) U{za,ab,bc,cy,cu}. Then H is also a Gy—,-graph (of girth
4) with a(G) = a(H) + 1.

Operation 2 can also be relaxed:

Suppose H is a Gy—q-graph of girth 4 and M is a 4-circuit or a K3 in H
such that ao(H — M) = a(H) — 1. If M = acbd let zy be a new line and
A = v1v9v3v4 be a new 4-circuit. Form a new graph G with V(G) = V(H)U
V(A) U{z,y} and E(G) = E(H) U E(A) U {xy, viz,v3y, vaa, vab, vac, v4d}.
If M = ac let zy be a new line and A = wvjvov3v4 be a new 4-circuit.
Form a new graph G with V(G) = V(H) U V(A) U {z,y} and E(G) =
E(H) U E(A) U {zy, viz,v3y, vaa,vsc}. Moreover, in the latter case we
can add the additional edges ax and cy. Note that then the eight vertices
a,c,x,y,v1,v2, V3, vq4 induce the Moebius ladder M LS.

Recall that therefore we obtain one of our basic building blocks, the Moebius
ladder M L8, in the construction of our class H™ by applying the modified
operation 2 on a K> representing an endvertex and its unique neighbour.

4..3 Concluding Remark

The graph W obtained by identifying two paths with four vertices, where
each path is contained in a 5-circuit, plays a central role in all of the above
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mentioned operations and surely also in a characterization of all triangle-
free graphs G satisfying v(G) = a(G). In this last section we started with
a class H' constructed by basic building blocks. Then we briefly summa-
rized Pinters ’stable’ operations used for Wa-graphs and adapted (modified)
these operations for the class G,—,. A combination of H* and the modified
operations constructs a large class of graphs satisfying v = «, but we ex-
pect that there are further operations needed in order to characterize G,—,
—{K1,C4,C7, Prg, P13, Q13, P14}

Acknowledgement

The authors thank Lutz Volkmann and Bert Hartnell for discussions on this
topic and the referees for their helpful comments.

References

[1] M.O. Albertson, L. Chan and R. Haas, Independence and graph homomor-
phisms, J. Graph Theory 17 (1993) 581-588.

[2] X. Baogen, E. Cockayne, T.W. Haynes, S.T. Hedetniemi and Z. Shangchao,
Extremal graphs for inequalities involving domination parameters, Discrete
Math. 216 (2000) 1-10.

[3] C. Berge, Regularizable graphs, Ann. Discrete Math. 3 (1978) 11-19.

[4] V. Chvétal and P.J. Slater, A note on well-covered graphs, Ann. Discrete Math.
55 (1993) 179-182.

[5] O. Favaron, Very well-covered graphs, Discrete Math. 42 (1982) 177-187.

[6] A. Finbow and B. Hartnell, A game related to covering by stars, Ars Combin.
16 (A) (1983) 189-198.

[7] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-
covered graphs of girth 5 or greater, J. Combin. Theory (B) 57 (1993) 44-68.

[8] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-
covered graphs which contain neither 4- nor 5-cycles, J. Graph Theory 18
(1994) 713-721.

[9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having dom-
ination number half their order, Period. Math. Hungar. 16 (1985) 287-293.

[10] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, 1962).



ON WELL-COVERED GRAPHS OF ... 173

11]
12]
13)
14]
15)

[16]

[20]

[21]

C. Payan and N.H. Xuong, Domination-balanced graphs. J. Graph Theory 6
(1982) 23-32.

M.R. Pinter, A class of planar well-covered graphs with girth four, J. Graph
Theory 19 (1995) 69-81.

M.R. Pinter, A class of well-covered graphs with girth four, Ars Combin. 45
(1997) 241-255.

M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970)
91-98.

M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993)
253-287.

B. Randerath and L. Volkmann, Characterization of graphs with equal domi-
nation and covering number, Discrete Math. 191 (1998) 159-169.

R.S. Sankaranarayanan and L.K. Stewart, Complexity results for well-covered
graphs, Networks 22 (1992) 247-262.

J. Staples, Ph. D. dissertation (Vanderbilt University, Nashville, TN, 1975).

L. Szamkolowicz, Sur la classification des graphes en vue des propriétés de
leurs noyauz, Prace Nauk. Inst. Mat. i Fiz. Teoret., Politechn. Wroclaw., Ser.
Stud. Mater. 3 (1970) 15-21.

J. Topp and L. Volkmann, On domination and independence numbers of
graphs, Resultate Math. 17 (1990) 333-341.

W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953)
922-931.

Received 4 August 2000
Revised 23 December 2001


http://www.tcpdf.org

