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Abstract
A maximum independent set of vertices in a graph is a set of pair-

wise nonadjacent vertices of largest cardinality α. Plummer [14] de-
fined a graph to be well-covered, if every independent set is contained
in a maximum independent set of G. One of the most challenging prob-
lems in this area, posed in the survey of Plummer [15], is to find a good
characterization of well-covered graphs of girth 4. We examine several
subclasses of well-covered graphs of girth ≥ 4 with respect to the odd
girth of the graph. We prove that every isolate-vertex-free well-covered
graph G containing neither C3, C5 nor C7 as a subgraph is even very
well-covered. Here, a isolate-vertex-free well-covered graph G is called
very well-covered, if G satisfies α(G) = n/2. A vertex set D of G is
dominating if every vertex not in D is adjacent to some vertex in D.
The domination number γ(G) is the minimum order of a dominating
set of G. Obviously, the inequality γ(G) ≤ α(G) holds. The family
Gγ=α of graphs G with γ(G) = α(G) forms a subclass of well-covered
graphs. We prove that every connected member G of Gγ=α containing
neither C3 nor C5 as a subgraph is a K1, C4, C7 or a corona graph.
Keywords: well-covered, independence number, domination number,
odd girth.
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1. Introduction and Notation

We consider finite, undirected, and simple graphs G with vertex set V (G)
and edge set E(G). For A ⊆ V (G) let G[A] be the subgraph induced by
A. N(x) = NG(x) denotes the set of vertices adjacent to the vertex x and
N [x] = NG[x] = N(x) ∪ {x}. More generally, we define N(X) = NG(X) =⋃

x∈X N(x) and N [X] = NG[X] = N(X) ∪X for a subset X of V (G). The
vertex v is called an end vertex if d(v,G) = 1, and an isolated vertex if
d(v, G) = 0, where d(x) = d(x,G) = |N(x)| is the degree of x ∈ V (G). Let
Ω = Ω(G) be the set of end vertices of G. An edge incident to an end vertex
is called a pendant edge. We denote by n = n(G) = |V (G)| the order of
G. We write Cn for a circuit of length n and Kn for the complete graph
of order n. A subgraph F of G with V (F) = V (G) is called a factor of G.
Furthermore, a factor F of G is a perfect [1, 2]-factor if every component of
F is either a circuit or a K2. The corona G ◦K1 of a graph G is the graph
obtained from G by adding a pendant edge to each vertex of G. The girth
of a graph G, denoted g(G), is the length of a shortest circuit in G. The
girth is ∞ if G has no circuit. The odd girth of a graph G is the length of a
shortest odd circuit in G, it is ∞ if G is bipartite.

A maximum independent set of vertices in a graph is a set of pairwise
nonadjacent vertices of largest cardinality. The cardinality α(G) of a maxi-
mum independent set in a graph G is called the independence number of G.
Plummer [14] defined a graph to be well-covered, if every independent set is
contained in a maximum independent set of G. These graphs are of inter-
est because, whereas the problem of finding the independence number of a
general graph is NP-complete, the maximum independent set can be found
easily for well-covered graphs by using a simple greedy algorithm. Chvátal,
Slater [4] and Sankaranarayana, Steward [17] independently showed that the
property of being not well-covered is NP-complete. Hence, it is unlikely that
there exists a good characterization of well-covered graphs.

The work on well-covered graphs appearing in literature (see [15]) has
focused on certain subclasses of well-covered graphs. Finbow, Hartnell and
Nowakowski [7], [8] characterized the well-covered graphs G of girth ≥ 5,
i.e., G contains neither C3 nor C4 as a subgraph, and also the well-covered
graphs G containing neither C4 nor C5 as a subgraph. Both sets of forbidden
subgraphs are subsets of the set {C3, C4, C5, C7}, which precisely are all well-
covered circuits. One of the most challenging problems in this area, posed
in the excellent survey of Plummer [15], is to find a good characterization
of well-covered graphs of girth ≥ 4, (i.e., G contains no C3 as a subgraph).
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We investigate several subclasses of well-covered graphs of girth ≥ 4 with
respect to the odd girth of a graph. Our main interest are the well-covered
graphs of odd girth ≥ 7, (i.e., G contains neither C3 nor C5 as a subgraph).
It is well known (e.g. see [3], [15]) that any well-covered graph with n
vertices, none of which is isolated, has α(G) ≤ n/2. An isolate-vertex-free
well-covered graph G of order n with α(G) = n/2 is called very well-covered.
Staples [18] and Favaron [5] independently characterized this subclass of
well-covered graphs. We prove that every isolate-vertex-free well-covered
graph G with odd girth ≥ 9 (i.e., G contains no well-covered odd circuit as
a subgraph) is also very well-covered.

A vertex set D of G is dominating if every vertex not in D is adjacent
to some vertex in D. The domination number γ(G) is the minimum order of
a dominating set of G. Obviously, the inequality γ(G) ≤ α(G) holds. The
family Gγ=α of graphs G with γ(G) = α(G) form a subclass of the class of
well-covered graphs. In 1970, SzamkoÃlowicz [19] posed the problem of char-
acterizing graphs G of Gγ=α. Very little is known about a characterization
of such graphs. E.g. Topp and Volkmann [20] characterized all bipartite
members of Gγ=α. We generalize their result by showing that every con-
nected member G of Gγ=α with odd girth ≥ 7 satisfies γ(G) = n/2 or is a
7-circuit or is a K1.

2. Preliminaries

The following two observations (e.g. see [15]) are very useful in the subse-
quent proofs.

Observation 1. Let I, J be two vertex sets in a graph G such that I is
independent, |J | < |I| and NG[I] ⊆ NG[J ]. Then G satisfies γ(G) < α(G).
Moreover, if J is likewise independent, then G is not well-covered.

Observation 2. If G is a well-covered graph and I is an independent set of
G, then G′ = G−NG[I] is also well-covered and α(G′) = α(G)− |I|.

It is easy to see that Observation 1 and 2 remain true if the property well-
covered is replaced by having the property that γ(G) = α(G). The next
result provides a more powerful tool, if we have additional information.

Lemma 3. Let G be a well-covered graph, I an independent set of vertices
in G and G′ = G[NG[I]]. Then
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1. if α(G′) = |I|, then G′ is also well-covered;
2. if G has no isolated vertex and |NG(I)| ≤ |I|, then G′ is very well-

covered.

Proof. (1). Since α(G′) = |I| we only have to show that there exists no
maximal independent set J of G′ with |J | < |I|. Otherwise, assume J is a
maximal independent set of G′ with |J | < |I|, then NG[I] ⊆ NG[J ] and by
Observation 1 we obtain that G is not well-covered, a contradiction.

(2). Suppose G has no isolated vertex and we have |NG(I)| ≤ |I|.
Berge [3] showed that for every independent set I of a well-covered graph
G without isolated vertice, |NG(I)| ≥ |I|. Hence, we have |NG(I)| = |I|.
By Observation 1 we deduce that there exists no maximal independent set
J of G′ with |J | < |I|. Now assume there exists a maximal independent
set J of G′ with |J | > |I|. Note that ∅ 6= I ∩ J 6= I, ∅ 6= NG(I) ∩ J 6=
NG(I) and |I − {I ∩ J}| < |NG(I) ∩ J |. With J independent we obtain
NG(I ∩ J) ∩ {NG(I) ∩ J} = ∅, i.e., NG(I ∩ J) ⊆ NG(I)− {NG(I) ∩ J}. By
rearranging

|I ∩ J | = |I| − |I − {I ∩ J}|
> |NG(I)| − |NG(I) ∩ J |
≥ |NG(I ∩ J)|

we get a contradiction to Berge’s result. Thus every maximal independent
set of G′ has cardinality α(G′) = |I| = n(G′)/2, i.e., G′ is very well-covered.

Observation 4. Let G be a graph of odd girth at least 2l +1 and x a vertex
of G. Then all vertices having distance exactly i to x with 1 ≤ i < l form
an independent set of G.

3. Well-Covered Graphs of odd Girth 7 or
Greater

Staples [18] and Favaron [5] independently characterized the family of very
well-covered graphs. Finbow and Hartnell [6] proved that a well-covered
graph without isolated vertices and with girth at least 8 is very well-covered.
In the next theorem we state that it is enough to demand odd girth ≥ 9,
i.e., C4, C6 are not forbidden.
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Theorem 5. Let G be well-covered with no isolated vertex and odd girth
≥ 9, then G is very well-covered.

Proof. Let G be a well-covered graph with no isolated vertex and odd
girth ≥ 9, such that G is not very well-covered and every isolate-vertex-free
subgraph G′ = G −NG[I], with I being an independent vertex set of G, is
very well-covered. Now let x ∈ V (G) and Ji(x) denote the set of all vertices
having distance exactly i from x. Because of Observation 4 each of the sets
J1(x), J2(x) and J3(x) are independent. The graph G′ = G − NG[J3(x)]
is because of Observation 2 well-covered. Let J ′2(x) be the subset of J2(x)
containing all vertices of distance 2 from x, which are not adjacent to any
vertex of J3(x). One (well-covered !) component of G′ = G −NG[J3(x)] is
Gx = G[N [x] ∪ J ′2(x)]. Note that the well-covered bipartite graph Gx is by
the choice of G very well-covered, i.e., α(Gx) = n(Gx)/2 = |J1(x)| = |{x} ∪
J ′2(x)|. (Since G is not very well-covered that implies J3(x) 6= ∅.) Likewise
G′′ = G−NG[{x}∪J ′2(x)] is well-covered, contains no isolated vertex, has odd
girth ≥ 9 and satisfies because of G’s choice α(G′′) = n(G′′)/2. Observe that
n(G) = n(G′′)+n(Gx) and J3(x) is contained in a maximum independent set
A of G′′. Moreover, the set I = A ∪ {x} ∪ J ′2(x) is a maximum independent
set of G with |I| = n(G′′)/2+n(Gx)/2, i.e., α(G) = n(G)/2, a contradiction.

We now examine the members of the family of connected, well-covered
graphs with odd girth at least 7, which are not very well-covered. In or-
der to have a self-contained proof for Theorem 5 we required the special
choice of G to deduce that the subgraph Gx is very well-covered. Alterna-
tively, as Gx is both well-covered and bipartite, it is also very well-covered.
From the proof of Theorem 5 we see that

successive removals of Gx for vertices x belonging to no C7 produce decreas-
ingly smaller graphs which are well-covered but not very well-covered. Hence,
in this case it is possible to ’reduce’ G. Moreover, if there exists an inde-
pendent set I of G with |NG(I)| = |I|, then we can also apply Lemma 3 in
order to ’reduce’ G.

We now examine the members of the family of connected, well-covered
graphs with odd girth at least 7, which are not very well-covered. Fin-
bow, Hartnell and Nowakowski [7] proved that a connected, well-covered
graph with girth at least 6 is very well-covered or is one of C7, K1. Hence,
if 4-circuits are not permitted there are only two exceptional graphs. But
we will outline that allowing 4-circuits enlarges this class of exceptional
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graphs, i.e., the members of the family of connected, well-covered graphs
with odd girth at least 7, which are not very well-covered. The following
observation is an easy consequence of two results due to Berge [3] and Tutte
[21]. Berge showed that for every independent set I of an isolate-vertex-free
well-covered graph G we have |NG(I)| ≥ |I|, but then also the König-Hall
condition — |NG(S)| ≥ |S| for all subsets S of V (G) — holds. Finally it is
due to Tutte that the König-Hall condition is equivalent to the existence of
a perfect [1, 2]-factor F .

Observation 6. If G is an isolate-vertex-free well-covered graph, then G
contains a perfect [1, 2]-factor F .

Note that then there exists also a perfect [1, 2]-factor F of G, such that F
only contains induced odd circuits and K2’s. A canonical problem now is to
examine the family of isolate-vertex-free well-covered graphs G, such that
there exists a perfect [1, 2]-factor F of G with α(F) = α(G). The core of
the following conjecture is that all isolate-vertex-free well-covered graphs of
odd girth ≥ 7 are contained in this subclass of the well-covered graphs.

Conjecture 7. Let G be an isolate-vertex-free graph of odd girth at least 7.
Then G is well-covered if and only if
• there exists a perfect [1, 2]-factor F of G, such that F only contains

(induced) 7-circuits and K2’s. Furthermore, we have α(F) = α(G).
• if C1 and C2 are two vertex-disjoint 7-circuits of F , then there are

1. either G[V (C1) ∪ V (C2)] = C1 ∪ C2;
2. or G[V (C1) ∪ V (C2)] = C7[2K1];
3. or there exist two vertices x1, x2 of distance 2 of C1 and two vertices

y1, y2 of distance 2 of C2, such that these vertices induce a 4-circuit
and these are the only edges between the two circuits C1 and C2.

• the set of vertices of the K2-components induces a very well-covered
graph.

• there exists a well-covered, isolate-vertex-free graph G∗ of odd girth at
least 7 and an independent vertex set I of G∗, such that we have G =
G∗−NG∗ [I] and there exists a perfect [1, 2]-factor F of G∗ only containing
induced 7-circuits.

If Conjecture 7 is true, then every isolate-vertex-free well-covered graph G
of odd girth ≥ 7 satisfies α(G) ≥ 3

7n(G). Note that this result also holds
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for the related family of graphs G of odd girth ≥ 7 with δ(G) > n(G)/4 as
shown by Albertson, Chan and Haas [1].

4. On the Subclass Gγ=α

4..1 On members of G=� with odd girth ≥ 7

For the next theorem we need a characterization of isolate-vertex-free graphs
G with γ(G) = n(G)/2, which is due to Payan and Xuong [11] and indepen-
dently Fink, Jacobson, Kinch and Roberts [9]. As a considerable extension
of this result Randerath and Volkmann [16] (see also [2] for a different proof)
characterized all extremal graphs in the well-known inequality of Ore [10],
i.e., they determined the connected graphs with γ(G) = bn(G)/2c.

Proposition 8 [11], [9]. Let G be a connected graph of order n = n(G) ≥ 2.
Then γ(G) = n/2 if and only if G = C4 or G = H ◦K1 for some arbitrary
connected graph H.

In next theorem we study another subclass of the well-covered graphs of odd
girth ≥ 7.

Theorem 9. Let G be a connected graph of order n = n(G) ≥ 2 and odd
girth at least 7. Then γ(G) = α(G) if and only if G = C4, C7 or G = H ◦K1

where H is a connected graph of odd girth at least 7.

Proof. By inspection we see that the graphs C4, C7,H ◦K1 have γ = α.
Conversely, assume G is a graph of smallest order n = n(G) ≥ 2 such that
G is connected, has odd girth ≥ 7, has γ(G) = α(G) and G is neither C4, C7

nor a corona graph, or equivalently γ(G) = α(G) < n(G)/2 and G 6= C7. We
shall prove that no such G exists by deriving a contradiction. Thus, by the
minimality of n, any graph G′ with n(G′) = n′ vertices, 2 ≤ n′ < n, which is
connected, has odd girth ≥ 7 and satisfies γ(G′) = α(G′) has this common
value equal to n′/2 or is a C7. Recall, that Observation 2 also holds for the
subclass of well covered graphs fulfilling γ = α. If δ(G) = 1, let y ∈ V (G)
have degree one neighbours I = {x1, x2, . . . , xk}, k ≥ 1. By Observation 2,
G′ = G−NG[I] fulfills γ(G′) = α(G′), thus each component G′′

i , 1 ≤ i ≤ l, of
G′ also has γ(G′′

i ) = α(G′′
i ). G is dominated by y together with a dominating

set from each of the l components G′′
i , 1 ≤ i ≤ l, so γ(G) ≤ 1 +

∑l
i=1 γ(G′′

i ).
From I together with l maximum independent sets of each G′′

i we obtain that
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k +
∑l

i=1 α(G′′
i ) ≤ α(G); combining this with γ(G′′

i ) = α(G′′
i ), for 1 ≤ i ≤ l

and γ(G) = α(G) we find that k = 1. Next we obtain a contradiction to
γ(G) = α(G) < n/2. If γ(G′) = α(G′) = n(G′)

2 , then with n = n′ + 2 we
deduce γ(G) = α(G) = n(G)

2 , a contradiction. Therefore, γ(G′) = α(G′) <
n(G′)

2 and by the minimality of n, G′ has to contain a 7-circuit C as a
component. Note that at least one vertex z1 ∈ V (C) is adjacent to y.
Now it is easy to see that there exists an independent set I containing the
endvertex x1 and three pairwise nonadjacent vertices of the 7-circuit C and
a vertex set J containing the vertex y and two nonadjacent vertices of the
7-circuit C satisfying the property NG[I] ⊆ NG[J ]. With γ(G) = α(G) we
get a contradiction by Observation 1.

Therefore, we have δ(G) ≥ 2. Consider a vertex x of minimum degree
δ = δ(G) and denote by Ix the union of x and the set of isolated vertices of
G−NG[x]. If G′ = G−NG[Ix] is the empty graph, G is bipartite with vertex
classes Ix and N(x). Since G is well covered we find that |Ix| = |N(x)| = δ
and G = Kδ,δ. That implies γ(G) = 2, α(G) = δ, and hence G = C4 against
the hypothesis; consequently, G′ is not the empty graph. Since G′ contains
no isolated vertex and for each i, 1 ≤ i ≤ l, the G′-component G′′

i has odd
girth ≥ 7 and γ(G′′

i ) = α(G′′
i ) we obtain that, by the minimality of n, G′′

i is
a C4, a C7 or a corona graph. Now suppose G′ contains a circuit-component,
say G′′

1 is a C4 or a C7. Then again applying Observation 1 a simple case
by case analysis of the corresponding graph G′′′ produces a contradiction.
Thus, each component of G′ is a corona graph G′′ = H ′′ ◦K1. Because G
has odd girth at least 7 and δ ≥ 2 we can drop the case that G′ contains
K2 as a component. Thus, we also deduce n′ ≥ 4. Let uv be an edge in
H ′′ and let u′ and v′ be their respective neighbours in Ω(G′′). Each of u′

and v′ has exactly one neighbour in H ′′ and hence at least δ− 1 neighbours
in N(x). If δ(G) ≥ 3, as |N(x)| = δ, some vertex in N(x) is adjacent to
both u′ and v′, that creates a C5 against the assumption that G has odd
girth at least 7. So δ(G) = 2 and G contains a C7. We have Ix = {x},
otherwise we can deduce that γ(G) < α(G). In G the set {x} ∪ Ω(G′) is
maximum independent with α(G) = n′

2 + 1 vertices. Let H ′ denote the
union of all H ′′. Since H ′′ has no isolated vertex we have by a result of
Ore that each γ(H ′′) ≤ 1

2 |V (H ′′)| and hence γ(H ′) ≤ 1
2

n′
2 . Let D′ be a

dominating set of H ′ with |D′| ≤ n′
4 . Each vertex in Ω(G′) is joined to

precisely one vertex in H ′ and to at least one vertex in N(x). Thus, the
two vertices in N(x) together with D′ dominate G and γ(G) ≤ 2 + n′

4 .
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From α(G) = γ(G) we obtain n′
2 + 1 ≤ n′

4 + 2 and by rearranging n′
4 ≤ 1,

implying n′ = 4. Moreover, we have G′ = P4 and G = C7, a contradiction to
our hypothesis.
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4..2 On triangle-free members of G=�
An interesting subproblem of SzamkoÃlowicz’s Gγ=α-problem and Plummer’s
well-covered-girth-4-problem is to find a good characterization of
all graphs of Gγ=α with girth ≥ 4, i.e., find a good characterization of
all triangle-free graphs G satisfying γ(G) = α(G).

Description of a family of triangle free well covered graphs (Gj)j2N:

For j ≥ 1 let Gj be the j-regular graph on 3j − 1 vertices described by
V (G) = {v1, v2 . . . , v3j−1},
N(xi) = {vi+j , vi+j+1, . . . , vi+2j−1}, 1 ≤ i ≤ 3j − 1, indices are added

modulo 3j − 1, so that v3j = v1, v3j+1 = v2 etc.

The first three graphs in this family are G1 = K2, G2 = C5 and G3 = ML8,
the Möbius ladder on 8 vertices. Note that these graphs are circulants. We
can easily establish that α(Gj) = j and that the maximal independent sets
in Gj precisely are the 3j − 1 neighbourhood sets N(xi), 1 ≤ i ≤ 3j − 1,
each consisting of j vertices, so Gj is well covered. For j = 1, 2, 3 we see
that γ(Gj) = α(Gj) but for j ≥ 4 we have that {v1, vj+1, v2j+1} dominates
Gj and hence that 3 = γ(Gj) < α(Gj) = j. We shall use Gj , j = 1, 2, 3, in
the construction of H+ below.

SzamkoÃlowicz asked for a characterization of graphs with γ = α. In
Theorem 9 we gave an answer for graphs with odd girth ≥ 7.

In addition we shall now construct H+, a family of graphs in Gγ=α:

Let H be a graph with vertex set V (H) = {a1, a2, . . . , ak, b1, b
′
1, b2, b

′
2, . . . ,

b`, b
′
`}, (k = 0 or ` = 0 may occur), and E(H) is any set of edges such that

(1) bib
′
i /∈ E(H), 1 ≤ i ≤ `, and

(2) H ∪ {bib
′
i|1 ≤ i ≤ `} is a connected graph.

Let H+ be obtained from H by attaching to each as, 1 ≤ s ≤ k, either

1) a new vertex xs and a new edge asxs or
2) four new vertices xs, ys, zs, ws and five new edges such that asxsyszsws

is a C5, or
3) seven new vertices x1

s, x
2
s, . . . , x

7
s and 12 new edges such that

asx
1
s, x

2
s, . . . , x

7
s is an 8-circuit plus 4 edges joining diametrically op-

posite vertices, i.e., asx
1
s, x

2
s, . . . , x

7
s spans a ML8 = G3.

Further, to each pair of independent vertices bs, b
′
s, 1 ≤ s ≤ ` we attach 3

new vertices xs, ys, zs and 5 new edges producing a 5-circuit bsxsysb
′
szs.
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Each graph H+ from this family H+ just constructed satisfies γ(H+) =
α(H+). We note that H+ includes the family PC of well covered graphs
from [7]. Furthermore, the exceptional graphs K1, C4, C7, P10, P13, Q13

and P14 (see Figure 1) also determined in [7] are not only well covered, but
they also satisfy γ = α.

Figure 1

Observation 10. The exceptional graphs K1, C4, C7, P10, P13, Q13, P14 and
the graphs of H+ all belong to Gγ=α.

So far we obtained a large subclass of triangle-free members of Gγ=α. In the
following we will enlarge this subclass.
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Pinter constructed in [12, 13] families of W2-graphs of girth 4, where a graph
G is a W2-graph, if G is well-covered and every vertex x of G is an extendable
vertex, i.e., G − x remains well-covered. One major issue of the concept of
extendable vertices ([7, 8]) is that for two well-covered graphs G1 and G2

each having an extendable vertex xi with i = 1, 2 the graph G obtained
by G1 and G2 and the additional edge x1x2 remains well-covered. Observe
that it is not very difficult to show that for the class Gγ=α the concept of
extendable vertices is also valid. Note that every vertex of the corresponding
graph H of a graph H+ from our family H+ is an extendable vertex. Now
we describe Pinters ’stable’ operations used in [12, 13].

Operation 1 [12]. Suppose G is a W2-graph (of girth 4) with adjacent degree
two vertices x and y which are not on a triangle. Let NG(x) = {u, y} and
NG(y) = {v, x} and a, b and c be new vertices. Form a new graph H with
V (H) = V (G)∪ {a, b, c} and E(H) = E(G)∪ {xa, ab, bc, cy, cu}. Then H is
also a W2-graph (of girth 4) with α(G) = α(H) + 1.

Operation 2 [13]. Suppose H is a W2-graph of girth 4 and C is a 4-circuit
in H such that α(H − C) = α(H) − 1 and H − C is in W2. Let C = abcd
and let xy be a new line and A = v1v2v3v4 be a new 4-circuit. Form a new
graph G with V (G) = V (H) ∪ V (A) ∪ {x, y} and E(G) = E(H) ∪ E(A) ∪
{xy, v1x, v3y, v2a, v2b, v4c, v4d}. Then G is also a W2-graph of girth 4 with
α(G) = α(H) + 2.

Operation 3 [13]. Suppose H is a W2-graph of girth 4 with disjoint 4-circuits
C1 and C2 such that (i) α(H −Ci) = α(H)− 1 for i = 1, 2 and (ii) H −Ci

is in W2 for i = 1, 2. Also, H is connected or has exactly two components.
In the disconnected case, each component contains exactly one of the 4-
circuits Ci. Let C1 = u1y1v1x1 and C2 = u2y2v2x2 and let A = abcd be
a new 4-circuit. Form a new graph G with V (G) = V (H) ∪ V (A) and
E(G) = E(H)∪E(A)∪{au1, av1, cx1, cy1, bx2, by2, du2, dv2}. Then G is also
a W2-graph of girth 4 with α(G) = α(H) + 1.

Operation 1 requires the property that if v is an endvertex, then also u is an
endvertex, i.e., either the graph in consideration is a path with four vertices
or d(u), d(x), d(y), d(v) ≥ 2. Since a W2-graph G satisfies δ(G) ≥ 2, it is not
necessary to require the extra condition. But if we want to replace W2 by
Gγ=α, we have to add the additional condition.

Two disjoint copies of the graph H ′ ∈ Gγ=α, obtained by a 4-circuit
uxyv and one carried out Operation 1, fullfils the conditions of Operation 3,
if we consider an arbitrary 4-circuit of H ′. If Operation 3 is carried out the



On Well-Covered Graphs of ... 171

resulting graph H∗ satisfies γ(H∗) = 6 < 7 = α(H∗). Thus for the graph H
in consideration we have to add the condition that there exists no minimum
dominating D of H hitting for each of the two considered 4-circuits at least
two adjacent vertices. In order to see that these conditions for the new
Operation 3 can be satisfied by a graph of Gγ=α, we only have to consider
two disjoint copies of the graph H ′′ ∈ Gγ=α, obtained by a 5-circuit uxyvz
and one carried out Operation 1.

Lemma 11. The above operations are also valid for the class Gγ=α, i.e., we
can replace W2 by Gγ=α, we only have to add the before mentioned condi-
tions.

The proof of this lemma is tedious and not very difficult and therefore
we omit here the proof. Moreover, we can relax the conditions of the
Operation 1:
if we consider a Gγ=α-graph G (of girth 4) with three vertices u, x, y which
induce a path P = uxy in G such that α(G− P ) = α(G)− 1. Let a, b and
c be new vertices. Form a new graph H with V (H) = V (G) ∪ {a, b, c} and
E(H) = E(G) ∪ {xa, ab, bc, cy, cu}. Then H is also a Gγ=α-graph (of girth
4) with α(G) = α(H) + 1.

Operation 2 can also be relaxed:
Suppose H is a Gγ=α-graph of girth 4 and M is a 4-circuit or a K2 in H
such that α(H − M) = α(H) − 1. If M = acbd let xy be a new line and
A = v1v2v3v4 be a new 4-circuit. Form a new graph G with V (G) = V (H)∪
V (A) ∪ {x, y} and E(G) = E(H) ∪ E(A) ∪ {xy, v1x, v3y, v2a, v2b, v4c, v4d}.
If M = ac let xy be a new line and A = v1v2v3v4 be a new 4-circuit.
Form a new graph G with V (G) = V (H) ∪ V (A) ∪ {x, y} and E(G) =
E(H) ∪ E(A) ∪ {xy, v1x, v3y, v2a, v4c}. Moreover, in the latter case we
can add the additional edges ax and cy. Note that then the eight vertices
a, c, x, y, v1, v2, v3, v4 induce the Moebius ladder ML8.

Recall that therefore we obtain one of our basic building blocks, the Moebius
ladder ML8, in the construction of our class H+ by applying the modified
operation 2 on a K2 representing an endvertex and its unique neighbour.

4..3 Concluding Remark

The graph W obtained by identifying two paths with four vertices, where
each path is contained in a 5-circuit, plays a central role in all of the above



172 B. Randerath and P.D. Vestergaard

mentioned operations and surely also in a characterization of all triangle-
free graphs G satisfying γ(G) = α(G). In this last section we started with
a class H+ constructed by basic building blocks. Then we briefly summa-
rized Pinters ’stable’ operations used for W2-graphs and adapted (modified)
these operations for the class Gγ=α. A combination of H+ and the modified
operations constructs a large class of graphs satisfying γ = α, but we ex-
pect that there are further operations needed in order to characterize Gγ=α

−{K1, C4, C7, P10, P13, Q13, P14}.
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