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Abstract

An integer distance graph is a graph G(D) with the set Z of inte-
gers as vertex set and two vertices u,v € Z are adjacent if and only if
|u—v| € D where the distance set D is a subset of the positive integers
N. In this note we determine the chromatic index, the choice index,
the total chromatic number and the total choice number of all inte-
ger distance graphs, and the choice number of special integer distance
graphs.
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1. INTRODUCTION

If D is a subset of the positive integers, then the integer distance graph
G(Z,D) = G(D) is defined as the graph with vertex set V(G(D)) = Z, the
set of integers, and two vertices u and v are adjacent if and only if their
distance |u — v| is an element of the so-called distance set D.
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A (vertez) coloring of a graph G is an assignment of colors to the vertices
of G such that adjacent vertices are colored differently. The minimum num-
ber of colors necessary to color the vertices of G is the chromatic number
x(G) of G.

If L ={L(v):v € V(G)} is a set of lists of colors then an L-list (vertez)
coloring of a graph G is a coloring of the vertices of G such that each vertex
obtains a color from its own list and adjacent vertices are colored differently.
A graph G is called k-choosable if such a coloring exists for each choice of lists
L(v) of cardinality at least k. The minimum % such that G is k-choosable
is the choice number ch(G) of G.

For a distance set D = {d;,da, ...} C N we write G(D) = G(dy,ds,...)
and x(G(D)) = x(D) = x(d1,do, ...), ch(G(D)) = ch(D) = ch(di,do,...).

Integer distance graphs were introduced by Eggleton, Erdés, and Skilton
[6]. There are a lot of papers in which the chromatic numbers of special
integer distance graphs are determined (see, e.g., [4, 6, 7, 17, 22, 23, 24, 25]).
We mention some of these results.

For example, x(P) = 4 is proved in [6] where P is the set of primes. If
D contains at most three elements, x(D) is completely determined.

Obviously, x(D) = 2 for 1-element distance sets. If D contains only odd
integers then x (D) = 2 (color all vertices alternately with two colors). Since
|D| 4+ 1 is a trivial upper bound for x(D) if D is finite (see [4, 24]), we have
for 2-element distance sets x(D) = 2 if D contains two odd elements and
x(D) = 3 if D consists of two coprime elements of distinct parity.

If the greatest common divisor of D is 1, which is no loss of generality
(see below), and |D| = 3 then x(D) = 4 if and only if D = {1,2,3n} or
D ={z,y,z +y} and z # y (mod 3). For all other 3-element distance sets
D it holds x(D) < 3 [22, 25].

If the greatest common divisor of D is 1 and |D| = 4 then x(1,2,3,4n)
=5 and x(z,y,z + v, |y —z|) = 5 if and only if  and y both are odd [18].
Possibly, these are all of the 4-element distance sets such that the chromatic
number of the corresponding integer distance graph is b.

As far as we know there are no specific results about the choice number
of integer distance graphs and no published results about edge colorings and
total colorings.

An edge coloring of a graph G is an assignment of colors to the edges of G
in such a way that adjacent edges are colored differently. A total coloring is
an assignment of colors to the vertices and edges such that adjacent vertices,
adjacent edges as well as incident vertices and edges are colored differently,



EDGE COLORINGS AND T'OTAL COLORINGS OF ... 151

respectively. The minimum number of colors necessary to color the edges of
G is the chromatic index x'(G) and to color the vertices and edges the total
chromatic number X" (G).

Again, if the colors belong to specific lists assigned to the edges or to
vertices and edges of GG, respectively, and the cardinality of the lists is at
least & then G is called k-edge choosable or k-total choosable, respectively, if
such colorings exist for each choice of lists. The minimum & such that G is
k-edge choosable is the choice index ch’'(G) of G, and the minimum k such
that G is k-total choosable is the total choice number ch”(G).

Obviously, for considerations of coloring properties of graphs one can
restrict oneself without loss of generality to connected graphs. If d is an
arbitrary divisor of the elements d1, do, ... of distance set D then the integer
distance graph G(D) = G(dy,da,...) is isomorphic to d disjoint copies of
G(%l, %2, ...). These copies are induced by the residue classes modulo d.
Therefore, we will restrict ourselves throughout this paper to integer distance
graphs whose distance set D has greatest common divisor 1, i.e., G(D) is
connected.

In this note we prove in Section 2 that |[D| + 1 is an upper bound for
the choice number ch(D) of integer distance graphs G(D). Moreover, we
determine ch(D) for distance sets of small cardinality, namely D = {z,y}
and D = {z,y,z + y}.

In Section 3 we determine the chromatic index and the choice index and
in Section 4 the total chromatic number and the total choice number for an
integer distance graphs G(D).

2. CHOICE NUMBER

It is proved in [24] that |D|+ 1 is an upper bound for the chromatic number
x(D) of an integer distance graph G(D). The proof can be transferred to
list colorings.

Theorem 1. If G(D) is an integer distance graph, then ch(D) < |D| + 1.

Proof. Let L = {L(v) : v € Z} be any set of lists of colors such that L(v)
is assigned to vertex v and all lists have length at least |D| + 1.

Color the vertices 0,1, —1,2,—2,... successively such that vertex v ob-
tains a color of its list L(v) which is not used to color the previous colored
neighbors of v. Such a color exists since the order of coloring implies that
at most half of the neighbors, i.e., at most |D|, are previously colored. =
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Since x(G) < ¢h(G) for all graphs G we obtain as a corollary of Theo-
rem 1 that ch(D) = |D| + 1 for the integer distance graphs with x(D) =
|D| + 1. Examples of such graphs are connected integer distance graphs
G(D) with distance set D with |D| <1, or D = {z,y}, z Z y (mod 2), or
D={z,y,z+y},z#y (mod 3), or D ={z,y,z+y,ly—z|},z=y=1
(mod 2),or D={1,2,...,k—1,nk},n,keN, k>2.

For integer distance graphs G(D) — as it is for graphs G — the differ-
ence between ch(D) and x(D) can be arbitrarily large.

For example, if D, = {1,3,5,...,2n — 1} then x(Dy) = 2, since G(Dy,)
is bipartite. The subgraph of G(D,,) induced by 2n consecutive vertices is
isomorphic to the complete bipartite graph K, . It is proved in [8] that
ch(Kpn) = logan + o(logn). Since ch(Dy) > ch(Kyy), the difference
ch(Dy) — x(Dy,) tends to infinity with n.

For distance sets of small cardinality the choice number and the chro-
matic number of the corresponding integer distance graph may differ.

Obviously, ch(D) = 1if D = () and ch(D) = 2if |D| =1. If |D| = 2,
then x(D) = 2 or 3 (see above) but ch(D) = 3 for all distance sets D =
{z,y}-

Theorem 2. If x # y, then ch(x,y) = 3.

Proof. Let D = {z,y}, ¢ < y. G(D) contains P, x P3 as subgraph (for
example Vp,xp, = {—y,2 —y,0,z,y,x + y}, see Figure 1) which is not 2-
choosable: Assume f is an L-list coloring of G(D) with L(0) = L(z) = {a, b},
Lz —y) = L(y) = {b,c}, and L(—y) = L(z +y) = {a,c}.

r—y T T+y
{b,c} {a,b} {a,c}

{a,c} {a,b} {b,c}
) 0 Y

Figure 1. P, x P; as subgraph of G(z,y)

If f(0) = a then f(—y) = ¢, f(z —y) = b but x cannot be colored by a
color of its list. On the other hand, if f(0) = b then f(y) =c¢, f(zr+y) =a
and again z cannot be colored. Therefore, ch(D) > ch(P2 x P3) > 3, and
ch(D) <|D|+1 =3 by Theorem 1 which proves the assertion. |
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Theorem 2 implies that ch(D) > 3 whenever |D| > 2.

The chromatic number x (D) with D = {z,y, z+y} is 3 or 4 as mentioned
in the Introduction. We show in the next theorem that, however, the choice
number ch(D) is always 4.

Theorem 3. If x # y, then ch(z,y,z +y) = 4.

Proof. Let D = {z,y,x +y},  # y, and assume that ch(D) = 3. Con-
sider the subgraph of G(D) (see Figure 2) which is induced by the vertex set
V={0,z+y,..., 7z +vy),z,2z +y,..., 72+ 6y,y,z + 2y,...,6z + Ty}.

y 42y 2z+3y 3z+4y 4dz+by Sz+6y 6x+Ty

0 Ty Tx+Ty

z 2z4+y 3z+2y 4z+3y Sz+4y 6z+by Tz+6y

Figure 2. A subgraph of G(z,y,z +v)

Let L be a list of colors such that L(i(z + y)) = L(j(z + y) + z) = {a, b, c}
fori=0,...,7,7=0,...,6 and L(k(z +y) + y) = {a,b,d} for k=10,2,4,6
and {b,c,d} for k =1,3,5.

Assume f is an L-list coloring of G(D). The choice of the lists implies
that £(0) = f(3(z +y)) = f(6(z+v)), f(z+y) = f4(z+y)) = F(T(z+y))
and f(2(z +y)) = f(5(z +y))-

If f(0)=a, f(x+y)=0b, f(2(z+y)) =c, then f(y) =d and z+2y can
not be colored with a color from its list {b, ¢, d}, which is a contradiction to
the assumption that f is an L-list coloring of G(D). Any other permutation
of the colors a, b, ¢ for the vertices 0,z +y, 2(x +y) forces f(k(z +y) +y) =
fl(k+1)(z+y)+y) =d for some k, 1 < k <5, which is a contradiction to
the assumption, since k(z +y) + v and (k + 1)(z + y) + y are neighbors. m

3. CHROMATIC INDEX AND CHOICE INDEX

Vizing [21] proved that the chromatic index x/(G) of any simple graph G
attains one of two values: A(G) < ¥'(G) < A(G) + 1 where A(G) is the
maximum degree of G. We show that all integer distance graphs G(D) are
class 1, i.e.,, X (G(D)) = A(G(D)) = 2|D|.

Theorem 4. If G(D) is an integer distance graph, then x'(D) = 2|D|.
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Proof. Each distance element d € D creates a subgraph G(d) of G(D)
which consists of d disjoint infinite paths. The edges of these d paths can be
colored with two colors. This implies that all edges of G(D) can be colored
with 2 |D| = A(G(D)) colors. ]

It is conjectured that x'(G) = ch'(G) for all graphs G (see, e.g., [2, 14]).
This so-called list edge coloring conjecture is proved, for instance, for graphs
G with A(G) = 2 or with A(G) = 3 and x/(G) = 4 [12], for bipartite
graphs [9], for complete graphs of odd order [11], for planar graphs G with
A(G) > 12 [3], and for outerplanar graphs [10, 15]. We prove that this
conjecture is also true for integer distance graphs.

Theorem 5. If G(D) is an integer distance graph, then ch'(D) = x'(D) =
2|D|.

Proof. Let D = {dl,dg,dg,,... ;d|D|}; di < do < dzg < --- < d|D| be
nonempty and finite (otherwise the statement is trivial). A list of 2|D| colors
is assigned to each edge of G(D). We color the edges of G(D) successively
such that each edge has at most 2|D| — 1 previously colored adjacent edges,
i.e., each edge can be colored with a color of its list.

We denote the edge from v to v + d; by {v,v + d;} and we start by
coloring all edges incident with vertex 0. Since the number of these edges
is 2|D| each edge can be colored with a color from its list. We proceed by
coloring successively all edges incident with 1, —1,2,—2,... &k, —k and show
that also the edges incident with £ + 1 and —& — 1 can be colored.

First, we color those edges {k+1,k+1—4d;}, ¢ = 1,...,|D|, which
are uncolored so far step by step in an arbitrary order. These edges can
be colored with a color from their list, since they are adjacent to at most
2|D| — 2 previously colored edges, namely to at most |D| — 1 edges incident
with & + 1 and at most |D| — 1 edges incident with k& + 1 — d;.

Next we color the edges {k+ 1,k + 1+ d;} in the order i = 1, i = 2,
and so on, up to ¢ = |D|. The edge {k + 1,k + 1 + d;} is adjacent to at most
2|D| — 1 previously colored edges, namely to |D|+ i —1 edges incident with
vertex k + 1 and to at most |D| — ¢ edges which connect vertex k& + 1 + d;
with vertices k+14d; —d;, j =i+1,...,|D| (see Figure 3). Therefore, we
can color the edges {k + 1,k + 1 + d;} with some color of their respective
lists.

Next we color the edges incident with —k — 1 step by step. If we choose
the order {—-k — 1,—k — 1 + &1}, {-k — 1,—k — 1 + dao},...,
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{-k-1,-k- 1+d|D|}, {-k-1,-k—-1-di},....{-k- 1,—k‘—1—d|D|}
for coloring the edges, then the same argument shows that there are for each
of these edges at most 2|D| — 1 previously colored adjacent edges. Hence,
these edges can also be colored with a color from their list.

k+1 k+1+d
1—1 |D|—z
E+1L,k+14+4d;
IDI—l iZ1

Figure 3. The edge {k + 1,k + 1+ d;} and adjacent edges

Therefore, ch’'(D) < 2|D|. Since ch'(G) > x'(G) for all graphs G, ch/(D) =
¥(D) = 2|D). =

Obviously, the list edge coloring conjecture also holds for all subgraphs

of integer distance graphs G(D) whose maximum degree coincides with
A(G(D)).

4. TotAL CHROMATIC NUMBER AND TOTAL CHOICE NUMBER

For total colorings it is conjectured that A(G) +1 < x"(G) < A(G) + 2
(total coloring conjecture, see [1, 21]) and ch”(G) = x"(G) for all graphs
G (list total coloring conjecture, see [3]). The total coloring conjecture is
proved, e.g., for complete graphs, for bipartite graphs, for graphs G with
maximum degree A(G) > 2 |V(G)| [13] or A(G) < 5 [19], and for planar
graphs G with A(G) # 6 [20]. The list total coloring conjecture is verified,
for example, for graphs G with A(G) < 2 [16], for planar graphs G with
A(G) > 12 [3], and for outerplanar graphs [15].

We prove the total coloring conjecture as well as the list total coloring
conjecture for integer distance graphs using methods analogous to those of
Theorem 5.

Theorem 6. If G(D) is an integer distance graph, then ch”(D) = x"(D) =
A(G(D))+1=2|D| +1.
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Proof. Let D = {dl, do,... ,d|D|} be nonempty and finite (if not, the
assertion is obvious) and let L be an assignment of color lists of length
2|D| + 1 to the vertices and edges of G(D).

In a first step we color the vertex 0 and all 2 |D| incident edges. Then
we color successively vertices v and all edges incident with v in the order
v=1,-1,2,-2,... k,—k.

Vertex k + 1 is incident with at most |D| edges and adjacent to at most
|D| respective end vertices which are previously colored. Therefore, vertex
k + 1 can be colored with a color from its list.

The so far uncolored edges {k+ 1,k +1—d;}, i =1,2,...,|D| are ad-
jacent to at most 2 |D|—2 previously colored edges and hence can be colored
step by step.

Each edge {k+ 1,k+1+d;}, i = 1,...,|D| is adjacent to at most
2|D| — 1 previously colored edges (see proof of Theorem 5) such that it can
be colored with a color from its list, since vertex k4 14d; is so far uncolored.

Next we color vertex —k — 1 and proceed by coloring all incident edges
similar to that done in the proof of Theorem 5.

Therefore, ch” (D) < 2|D|+1. Since ch”(D) > x"(D) > A(G(D))+1 =
2|D| + 1, the theorem is proved. |

The total coloring conjecture and the list total coloring conjecture also hold
for all subgraphs H of integer distance graphs G(D) with A(H) = A(G(D)).

5. CONCLUDING REMARKS

More generally, one can define distance graphs instead of integer distance
graphs (see [5, 6]). If S is a subset of the n-dimensional Euclidean space,
S C R, then the distance graph G(S, D) has vertex set V(G(S,D)) = S,
and two vertices are adjacent if and only if their Euclidean distance is an
element of the distance set D which is a subset of the set of positive real
numbers, D C R, .

Eggleton, Erdés, and Skilton [6] considered distance graphs on the real
line, i.e., n = 1. They investigated, among others, the chromatic num-
ber x(G(R, D)) for various intervals and unions of intervals D. If n > 1
and D # (), then obviously ch(G(R", D)), x'(G(R", D)), ch'(G(R", D)),
X"'(G(R", D)) as well as ch”(G(R™, D)) are infinite.

Some of the proofs of this paper can be transferred to distance graphs
G(R, D), e.g., for the chromatic index it holds that x'(G(R, D)) = 2|D|. Is
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it also possible to generalize the results for the other chromatic numbers?

As mentioned in the Introduction the chromatic numbers of all integer
distance graphs with 3-element distance sets are completely determined. So
far, there are only partial results known for the choice number of such graphs
(see Section 2).

All the integer distance graphs G(D) whose choice number was deter-
mined in Section 2 had the property that their clique number w(G(D)) is
large with respect to the cardinality of D. It turned out for those graphs
that ch(D) = |D|+ 1 whenever w(G(D)) = |D|. Is this true in general? For
example, does ch(z,y,z + vy, |y — z|) = 5 always hold? If z and y both are
odd then this is true.
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