
Discussiones Mathematicae 123
Graph Theory 22 (2002 ) 123–148

CONDITIONS FOR β-PERFECTNESS

Judith Keijsper

University of Twente
Faculty of Mathematical Sciences

7500 AE Enschede, The Netherlands

and

Meike Tewes∗

Freiberg University
Faculty of Mathematics and Computer Sciences

09596 Freiberg, Germany

Abstract

A β-perfect graph is a simple graph G such that χ(G′) = β(G′) for
every induced subgraph G′ of G, where χ(G′) is the chromatic number
of G′, and β(G′) is defined as the maximum over all induced subgraphs
H of G′ of the minimum vertex degree in H plus 1 (i.e., δ(H) + 1).
The vertices of a β-perfect graph G can be coloured with χ(G) colours
in polynomial time (greedily).

The main purpose of this paper is to give necessary and sufficient
conditions, in terms of forbidden induced subgraphs, for a graph to be
β-perfect. We give new sufficient conditions and make improvements
to sufficient conditions previously given by others. We also mention a
necessary condition which generalizes the fact that no β-perfect graph
contains an even hole.
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1. Introduction

Graphs in this paper are finite graphs without loops and multiple edges.
The parameter β(G) associated with a graph G, as well as the concept of a
β-perfect graph were introduced in [9]. The definition of β(G) is as follows.

β(G) := max{δ(G′) + 1 | G′ is an induced subgraph of G}.

Here, δ(G) denotes the minimum vertex degree in the graph G. We just
mention that β(G) equals the colouring number col(G) which was introduced
by Erdős and Hajnal [5] to study, in particular, infinite graphs. See e.g. [8]
for more information. It was proved by several authors (cf. for example [7])
that for any graph G the value β(G) can be calculated in polynomial time.

Using a minimum degree sequence, the vertices of any graph G can
be greedily coloured with at most β(G) colours, and hence β(G) forms a
trivial upper bound for the chromatic number χ(G). A graph G is said to
be β-perfect if β(G′) = χ(G′) for every induced subgraph G′ of G. So the
vertices of any induced subgraph G′ of a β-perfect graph, can be coloured
with χ(G′) colours in polynomial time. We say that G is β-imperfect if it is
not β-perfect.

Since a graph G isomorphic to an even induced cycle satisfies 2 =
χ(G) < β(G) = 3, no β-perfect graph can contain an even hole (a graph is
said to contain an even (odd) hole if it contains an even (odd) chordless cycle
of length at least four). More generally, a β-perfect graph does not contain
any regular induced subgraphs, except perhaps odd holes and cliques, as we
observe in Section 5.

The necessary condition of being even hole-free is by no means sufficient:
there are many examples of even hole-free graphs that are β-imperfect. In
Section 5, we show that in fact every 3-regular connected even hole-free
graph which is not the complete graph is minimally β-imperfect. The fact
that a graph is even hole-free does give a performance guarantee for the
greedy colouring algorithm, since it was shown in [9] that β(G) ≤ 2(χ(G)−1)
for such a graph G. Conforti, Cornuéjols, Kapoor, and Vušković [3] showed
that one can check in polynomial time whether a graph is even hole-free.

A short-chorded cycle is a cycle of length at least four with exactly one
chord which forms a triangle with two edges of the cycle. In particular, by
a diamond we mean a short-chorded cycle on four vertices. If, besides even
holes, short-chorded cycles are excluded as induced subgraphs, then this is
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sufficient to force β-perfectness, as was proved by Markossian, Gasparian,
and Reed [9]. This result was improved in [6] to the following

Theorem 1.1 (Figueiredo, Vušković [6]). If G is a graph that contains no
even hole, no diamond and no short-chorded cycle on six vertices, then G is
β-perfect.

A graph G is said to contain the graph H, if H is an induced subgraph of G.
If G does not contain a copy of H, then G is H-free.

It was conjectured that in fact no short-chorded cycles of order greater
than four have to be excluded to obtain the same conclusion.

Conjecture 1.2 (Figueiredo, Vušković [6]). If G is a graph that contains
no even hole and no diamond, then G is β-perfect.

A simplicial extreme of a graph G is a vertex v ∈ V (G) having one of the
following two properties: either the degree of v in G is at most 2, or v is a
simplicial vertex of G (that is, the neighbourhood of v in G induces a clique
in G). Figueiredo and Vušković proved their result by proving the existence
of a simplicial extreme in any graph satisfying the conditions of Theorem
1.1. In other words, they derived Theorem 1.1 from the following result (by
using arguments similar to the ones in Lemma 1.6 below).

Theorem 1.3 (Figueiredo, Vušković [6]). If G is a graph that contains no
even hole, no diamond and no short-chorded cycle on six vertices, then G
has a simplicial extreme.

In the same way (by proving existence of a simplicial extreme), we will show
in this paper that two more classes of graphs defined in terms of forbidden
induced subgraphs, are β-perfect. Section 2 deals with claw-free graphs
(a claw-free graph is a graph containing no K1,3 as an induced subgraph).
There, we will prove the following theorem.

Theorem 1.4. Let G be a claw-free graph without even holes that contains
none of the graphs in Figure 1. Then G is β-perfect.

In Section 3, net-free graphs are considered. The net is a graph isomorphic
to the graph with vertices a, a′, b, b′, c, c′, and edges ab, bc, ca, aa′, bb′, and
cc′. The following will be shown.
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Figure 1. Forbidden induced subgraphs for claw-free even hole-free graphs

Theorem 1.5. If G is a graph which contains no even hole, no diamond
and no net, then G is β-perfect.

In particular, Theorems 1.4 and 1.5 show that Conjecture 1.2 is valid for
claw-free graphs and for net-free graphs.

As mentioned, β-perfectness of the graphs described in these two theo-
rems will be derived from the fact that a graph G in either one of the given
classes contains a simplicial extreme. In fact, we need the existence of this
simplicial extreme only in an induced subgraph H of G where the β-value
is attained (that is where β(G) = δ(H) + 1). This is stated in the following
lemma, which will be useful throughout the paper.

Lemma 1.6. Let G be a graph without even holes and let H be an induced
subgraph of G such that β(G) = δ(H)+1. If H contains a simplicial extreme,
then χ(G) = β(G).

For the proof of the above lemma, we need the well-known theorem of Dirac
on the existence of simplicial vertices in triangulated (or chordal) graphs.

Theorem 1.7 (Dirac [4]). Every triangulated graph which is not a clique
contains at least two nonadjacent simplicial vertices.

For an induced subgraph G′ of a graph G (G′ = G possibly) we denote the
degree of a vertex v in G′ (i.e., the number of vertices of V (G′) adjacent in
G to v) by d(v, G′). Note that v might be a vertex of G′ or not. We also
use the short form d(v, S) instead of d(v,G[S]), for S ⊆ V (G).

Proof of Lemma 1.6 (essentially due to [6]). Assume first that H has
a simplicial vertex x. Then it is obvious that χ(G) ≤ β(G) = δ(H) + 1 ≤
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d(x,H) + 1 ≤ χ(H) ≤ χ(G). If H has no simplicial vertex, then there is a
vertex y ∈ V (H) with d(y, H) ≤ 2 and it follows by Theorem 1.7 that H is
not triangulated. Hence, H contains an odd hole implying that χ(H) ≥ 3.
Altogether, we have χ(G) ≤ β(G) = δ(H) + 1 ≤ d(y, H) + 1 ≤ 3 ≤ χ(H) ≤
χ(G), which completes the proof.

So far, every sufficient condition for β-perfectness we have mentioned, was
given in terms of forbidden induced subgraphs and implied existence of a
simplicial extreme. This means that all the β-perfect graphs G that have
been obtained so far have the following special property: for every induced
subgraph G′ of G, either χ(G′) = ω(G′) or χ(G′) = 3 > 2 = ω(G′) (where
ω(G′) denotes the size of a largest clique in G′).

In Section 4, we prove the following extension of Theorem 1.1, which
introduces a more general type of β-perfect graph. Indeed, graphs satisfying
the conditions of this theorem need not have a simplicial extreme (the 5-
wheel D3 is an example) and in general do not have the special property
described above.

D2

D D54

D1

Figure 2. Forbidden induced subgraphs containing the diamond
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Theorem 1.8. Let G be an even hole-free graph containing none of the
graphs in Figure 2 and none of the graphs in Figure 3. Then G is β-perfect.

This theorem describes the possible neighbourhoods of a diamond (Figure 2)
or a short-chorded 6-cycle (Figure 3) in a minimally β-imperfect graph (note
that short-chorded cycles are β-perfect graphs). To prove this theorem in
Section 4, we will apply Theorem 1.3, and furthermore we will exploit the
observation (also used in Lemma 1.6) that to prove χ(G) = β(G) for a graph
G, it suffices to prove χ(H) = β(H) for one induced subgraph H of G where
the β-value is attained (we take a minimal such H).

Since all graphs in Figure 2 contain a diamond, and both graphs in
Figure 3 contain a net, Theorem 1.5 can be viewed as a corollary of
Theorem 1.8.

2S1S

Figure 3. Forbidden induced subgraphs containing the short-chorded 6-cycle

With the results obtained in Section 4, we can also improve Theorem 1.4
and obtain the following stronger result for claw-free graphs.

Theorem 1.9. Let G be a claw-free graph without even holes that contains
no D1 or D2. Then G is β-perfect.

Finally, note that by the results in [3] mentioned above, all sufficient condi-
tions for β-perfectness we deal with in this paper can be checked in polyno-
mial time.

2. Claw-Free Graphs

In this section, we prove Theorem 1.4, which states that for even hole-free
graphs that are in addition claw-free, it suffices to exclude three supergraphs
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of the diamond to guarantee β-perfectness, namely the three graphs D1, D2,
and D3, depicted in Figure 1. This will imply a characterization of β-perfect
line graphs.

Consider the following family of graphs G = {G simple graph | G is
complete or has two nonadjacent simplicial extremes}.

Lemma 2.1. Let G /∈ G such that G′ ∈ G for every proper induced subgraph
G′ of G. Then G does not have a clique cutset.

Proof. Suppose G /∈ G is such a graph that does have a clique cutset C. It
means that there are two proper induced subgraphs G1 and G2 of G with
C = V (G1) ∩ V (G2), such that in G there are no edges between V (G1) \ C
and V (G2) \ C. By assumption, G1 ∈ G and G2 ∈ G, so there are three
possibilities:

G1, G2 are both complete graphs. In this case, since every vertex of a
complete graph is simplicial, if we choose v ∈ V (G1)\C and w ∈ V (G2)\C,
then v, w are nonadjacent simplicial vertices in G. Hence G ∈ G, a contra-
diction.

G1, G2 both contain two nonadjacent simplicial extremes. Then at least
one simplicial extreme v of G1 is in V (G1) \ C, and at least one simplicial
extreme w of G2 is in V (G2) \ C. Now v, w are two nonadjacent simplicial
extremes in G. Hence G ∈ G, a contradiction.

The case that G1 is complete, and G2 contains two nonadjacent simpli-
cial extremes can be dealt with by a similar argument.

Hence G does not have a clique cutset.

Analogously to the definition of d(v, G′) given in Section 1, where G′ is
some induced subgraph of a graph G (G′ = G possibly) and v ∈ V (G),
we denote the neighbourhood of a vertex v in G′ (i.e., the set of vertices in
V (G′) adjacent in G to v) by N(v, G′). Again, we use N(v, S) instead of
N(v, G[S]) for S ⊆ V (G) and v might be a vertex of G′ or not.

Proof of Theorem 1.4. We claim that any graph G satisfying the con-
ditions of the theorem is in G. It suffices to prove this claim, because if
G′ is an induced subgraph of G, and if H is an induced subgraph of G′

with β(G′) = δ(H) + 1, then H ∈ G (since H also satisfies the conditions
of the theorem), so in particular H has a simplicial extreme, and hence
χ(G′) = β(G′), by Lemma 1.6.

To prove the above claim, suppose that G is a minimal counterexample,
i.e., G /∈ G is a claw-free, even hole-free graph having none of the graphs in
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Figure 1 as an induced subgraph, but any proper induced subgraph of G is
a member of G.

Then G is connected and, by Lemma 2.1, G does not have a clique
cutset. Moreover, since G /∈ G, G is not triangulated (by Theorem 1.7). So
G contains a hole Q = G[z1, z2, . . . , zk] (where z1z2 . . . zkz1 is a cycle) which
is an odd hole because G is even hole-free. Choose Q to be a shortest such
hole. Since any odd hole contains two nonadjacent simplicial extremes, and
since G /∈ G, G properly contains Q, i.e. V (G−Q) 6= ∅.

In the following, all indices concerning cycles should be taken modulo
the cycle length.

Claim 1. No x ∈ V (G−Q) is adjacent in G to more than two consecutive
vertices on Q.
Suppose to the contrary that xzi, xzi+1, xzi+2 ∈ E(G) and without loss of
generality let i = 1. Since G does not contain D1 and D2, x is adjacent to
z4 or zk, say xz4 ∈ E(G). To avoid the even hole xz4z5 . . . zkz1x, there is a
further neighbour zi of x for some 5 ≤ i ≤ k. Since G does not contain the
5-wheel D3, we know that k > 5. But this leads to G[{x, z1, z3, zi}] ∼= K1,3

(if i 6= k) or G[{x, z2, z4, zk}] ∼= K1,3 (if i = k), a contradiction.

Claim 2. If d(x,Q) > 0 for some x ∈ V (G−Q), then N(x,Q) = {zi, zi+1}
for some i ∈ {1, 2, . . . , k}.
Without loss of generality let xz1 ∈ E(G). Since G is claw-free, x is adjacent
to z2 or zk, say xz2 ∈ E(G). If N(x,Q) = {z1, z2}, we are done. Hence
suppose that zi ∈ N(x,Q) for some 3 ≤ i ≤ k, where we may assume that
i is chosen to be as large as possible. By Claim 1, we have 4 ≤ i ≤ k − 1.
Then xzi−1 ∈ E(G) and xzizi+1 . . . zkz1x induces a hole. This leads to a
contradiction to the minimality of Q, respectively to the hypothesis.

Since G is connected and V (G − Q) 6= ∅, there is a vertex x ∈ V (G − Q)
with d(x,Q) > 0 and by Claim 2 we may assume that N(x,Q) = {z1, z2}.
Let Gx denote the component of G−Q containing x.

Claim 3. If d(y,Q) > 0 for some y ∈ Gx, then N(y, Q) = {z1, z2}.
Suppose to the contrary that this does not hold and let P be a shortest
path in Gx leading from a vertex p1 ∈ V (Gx) with N(p1, Q) = {z1, z2} to a
vertex ps ∈ V (Gx) with N(ps, Q) > 0 but N(ps, Q) 6= {z1, z2}. Note that
d(p,Q) = 0 for every p ∈ P −{p1, ps}. By Claim 2, N(ps, Q) = {zi, zi+1} for
some 2 ≤ i ≤ k. Since Q has an odd number of vertices, one of Q[z2, . . . , zi]
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and Q[zi+1, . . . , z1] is odd and the other one is even. So one of these segments
together with P forms an even hole, a contradiction.

By Claim 3, the edge z1z2 is a clique cutset in G and this contradiction
completes the proof.

Beineke [1] gave a characterization of line graphs in terms of forbidden in-
duced subgraphs. Note that the claw as well as D1, D2, and D3 belong
to Beinekes set of forbidden subgraphs. Hence, Theorem 1.4 implies the
following.

Corollary 2.2. A line graph G is β-perfect if and only if G contains no
even holes.

This means that only graphs without even cycles have β-perfect line graphs.
For other graphs H, the upper bound ∆(H) + 1 on the edge chromatic
number χ′(H) of H, given by Vizing’s Theorem, is at least as good as the
upper bound obtained by taking the β-value of the line graph of H.

Note that the graphs in Figure 1 are β-perfect. For D1 and D2, there are
examples of claw-free graphs showing that it is not possible to delete either
one of them from the list of forbidden subgraphs. The graph D3 however
can be removed from this list, as we will show in Section 4.

3. Net-Free Graphs

In this section, we will prove Theorem 1.5, which shows that Conjecture 1.2
is valid for net-free graphs. We use the following result from [9].

Theorem 3.1 (Markossian, Gasparian, Reed [9]). Let G be a triangle-
free graph without even holes. Then for every x ∈ V (G) either d(x,G) =
|V (G)| − 1 or there exists a vertex y ∈ V (G) \N(x,G) with d(y,G) ≤ 2.

From this, we can derive the next theorem in an elementary way.

Theorem 3.2. If G is a graph which contains no even hole, no diamond
and no net, then G has a simplicial extreme.

Proof. We suppose to the contrary that there is no simplicial extreme in
G, which implies that G is not complete. Define C to be the largest clique
in G. If there is no triangle in G, then it follows from Theorem 3.1 that
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there is a vertex y ∈ V (G) such that d(y,G) ≤ 2, a contradiction. Hence,
|V (C)| ≥ 3. The maximality of C implies moreover that for every vertex
u ∈ V (G− C) there is a vertex zu ∈ V (C) \N(u,G). It follows that u has
at most one neighbour in C, since otherwise two neighbours z1, z2 ∈ V (C)
together with u and zu would form a diamond.

Since, by our assumption, no vertex of C is a simplicial vertex, we have
zuz ∈ E(G) for some uz ∈ V (G−C) for every z ∈ V (C). Since d(uz, C) = 1
and |V (C)| ≥ 3, this leads to a net in G, a contradiction.

Proof of Theorem 1.5. We obtain the desired result directly from The-
orem 3.2 and Lemma 1.6.

4. Enlarging the Forbidden Subgraphs

A minimal induced subgraph H of a graph G that satisfies β(G) = δ(H)+1
has the property that δ(H ′) < δ(H) for every proper induced subgraph H ′

of H. For graphs H with this property that contain no short even holes, the
following holds.

Lemma 4.1. Let H be a graph without 4- and 6-holes such that δ(H ′) <
δ(H) for every proper induced subgraph H ′ of H. Then H contains a dia-
mond if and only if H contains D3 (see Figure 1), D6 (see Figure 4) or one
of the graphs in Figure 2.

D*6D 3

Figure 4. The graphs D6 and D∗
3

Proof. To prove that the existence of a diamond in H implies the existence
of one of the six supergraphs listed above, we proceed in two steps. In the
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following we denote by T the graph obtained from the 5-wheel D3 by deleting
one vertex on the rim.

Step 1. If H contains a diamond, then H contains D1 or D2 or T as an
induced subgraph.

Proof. Consider a counterexample H. Then there exist sets A,B,Z ⊆
V (H) satisfying

A,B 6= ∅, |Z| ≥ 2, A ∩B = A ∩ Z = B ∩ Z = ∅,
az, bz ∈ E(H), ∀a ∈ A, ∀b ∈ B,∀z ∈ Z,

ab /∈ E(H), ∀a ∈ A, ∀b ∈ B.

Indeed, since H contains a diamond, say with vertices a, z1, b, z2 in that
order on a 4-cycle, and with chord z1z2, the sets A := {a}, B := {b}, and
Z := {z1, z2} fulfill these requirements. Now, in addition we assume that
A,B, Z are chosen in such a way that

1. |Z| is maximal,
2. |A ∪B| is maximal for this choice of Z.

Now, since A+ := H[A ∪ Z] and B+ := H[B ∪ Z] are proper induced
subgraphs of H, by assumption it holds that δ(A+) < δ(H), and δ(B+) <
δ(H). Moreover, because H is 4-hole free, Z induces a clique in H, and
therefore

d(a,A+) ≤ |Z|+ |A| − 1 = d(z, A+), ∀a ∈ A,∀z ∈ Z,

d(b,B+) ≤ |Z|+ |B| − 1 = d(z, B+), ∀b ∈ B, ∀z ∈ Z.

It follows that there is an a∗ ∈ A satisfying d(a∗, A+) = δ(A+), and (because
δ(A+) < δ(H)) that there is an a′ ∈ V (H−A+) with a∗a′ ∈ E(H). Similarly
there are b∗ ∈ B and b′ ∈ V (H −B+) with b∗b′ ∈ E(H). Because there are
no edges between A and B,

a′ /∈ B and b′ /∈ A.

So both a′ and b′ are vertices of H not contained in A∪B∪Z. Furthermore,

a′y /∈ E(H), ∀y ∈ B and b′x /∈ E(H), ∀x ∈ A.(1)
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Indeed, if (say) a′y were an edge, for some y ∈ B, then A′ := {a∗}, B′ := {y},
and Z ′ := Z ∪ {a′} would contradict the maximal choice of Z. Next, we
prove that

a′b′ /∈ E(H).(2)

Indeed, suppose that a′b′ ∈ E(H). By (1), the edges a′b∗, and b′a∗ do not
exist in H. So, for some z ∈ Z, either a′z or b′z ∈ E(H), since otherwise
H would contain an induced D2 (recall that |Z| ≥ 2). But if a′z ∈ E(H)
then also b′z ∈ E(H) (and vice versa), since otherwise a′zb∗b′a′ would be
an induced 4-hole in H. But now we have obtained an induced T (on
a∗, a′, z, b∗, b′) in H, a contradiction.

Finally, we claim that

N(a′, Z) ∈ {∅, Z}, N(b′, Z) ∈ {∅, Z},
least one of them is nonempty.

(3)

To prove this, assume that a′z ∈ E(H) and a′z′ /∈ E(H) for some z, z′ ∈ Z,
z 6= z′. Then (since a′b∗ /∈ E(H) by (1)) the induced subgraph
H[a∗, a′, z, z′, b∗] is isomorphic to T , a contradiction. Similarly for b′. More-
over, if we suppose that N(a′, Z) = ∅ = N(b′, Z), then (using (1) and (2))
the vertices a∗, a′, z, z′, b∗, b′ induce a D1 in H, which is also a contradiction.
This proves (3).

Now without loss of generality we may assume that N(a′, Z) = Z. But
then A′ := A ∪ {a′}, B′ := B, Z ′ := Z contradict the maximal choice of
A ∪B. This completes the proof of Step 1.

Step 2. If T is a subgraph of H, then H contains D3, D4, D5, or D6 as an
induced subgraph.

Proof. Again we consider a counterexample H containing T but none of
the other four graphs. Let now C ⊆ V (H) such that C induces a clique and
there are vertex sets A, B ⊆ V (H) and a partition C = C1 ∪ C2 ∪ C3 with
Ci 6= ∅ (i = 1, 2, 3) of C having the following properties:

A and B induce connected subgraphs of H,

C1 ∪ C3 ⊆ N(a,H), C2 ∪ C3 ⊆ N(b,H), ∀a ∈ A,∀b ∈ B,

C2 ∩N(a, H) = C1 ∩N(b,H) = ∅, ∀a ∈ A,∀b ∈ B,

ab /∈ E(H), ∀a ∈ A,∀b ∈ B.
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Note that A ∩ B = A ∩ C = B ∩ C = ∅. Since T is a subgraph of H, there
exist vertex sets A,B and C with the desired properties. In the following,
we may assume that A,B and C are chosen such that

1. |C| is maximal,
2. |C1 ∪ C2| is minimal for this choice of C,
3. |A ∪B| is maximal for this choice of C,C1, C2.

Consider the proper subgraphs A+ = H[A∪C1∪C3] and B+ = H[B∪C2∪C3]
of H. Since H[C] is a clique, we deduce analogously to Step 1

d(a, A+) ≤ |C1|+ |C3|+ |A| − 1 = d(c, A+) ∀a ∈ A,∀c ∈ C1 ∪ C3,

d(b,B+) ≤ |C2|+ |C3|+ |B| − 1 = d(c′, B+) ∀b ∈ B, ∀c ∈ C2 ∪ C3

and hence there is a vertex a∗ ∈ A, and a vertex b∗ ∈ B with d(a∗, A+) =
δ(A+) and d(b∗, B+) = δ(B+). By the properties of A,B, C and since
δ(A+), δ(B+) < δ(H), it follows that A′ = N(a∗,H − (A∪B ∪C)) 6= ∅ and
B′ = N(b∗,H − (A ∪B ∪ C)) 6= ∅.
We proceed by proving five claims.

Claim 1. For every x ∈ A′ and y ∈ B′, we have d(x,C2) < |C2| and
d(y, C1) < |C1|.
We verify the claim for the set A′ (then the analogous result holds for B′ by
symmetry). Suppose to the contrary that C2 ⊆ N(x,H) for some x ∈ A′.
Then cx ∈ E(H) for every c ∈ C1 ∪ C3, since otherwise acc2xa induces a
4-hole, where c2 ∈ C2 is an arbitrary vertex. Hence, C ∪ {x} induces a
clique. If xb for some b ∈ B, then the choice C∗ := C1 ∪ C2 ∪ (C3 ∪ {x}),
A∗ := {a∗} and B∗ := {b} contradicts the maximality of C. If d(x,B) = 0,
then we derive the same contradiction by choosing C∗ := (C1∪{x})∪C2∪C3,
A∗ := {a∗}, and B∗ := B.

Claim 2. For every x ∈ A′ (y ∈ B′) with d(x,C1) > 0 (d(y, C2) > 0), we
have d(x,B) = 0 (d(y, A) = 0).
Let z1 ∈ C1 such that xz1 ∈ E(H). Assume that xb ∈ E(H) for some
x ∈ A′, b ∈ B and consider the cycle xz1z2bx, where z2 ∈ C2 is an arbitrary
vertex. Since H contains no 4-hole and z1b /∈ E(H), it follows that xz2 for
every z2 ∈ C2, contradicting Claim 1.

Analogously, the result follows for every y ∈ B′.
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Claim 3. There exist a′ ∈ A′ and b′ ∈ B′ with d(a′, C1 ∪ C3) < |C1 ∪ C3|
and d(b′, C2 ∪ C3) < |C2 ∪ C3|.
Again, for symmetry reasons, it is enough to show the claim for the set A′.
Suppose to the contrary that d(x,C1 ∪ C3) = |C1 ∪ C3| for every x ∈ A′.
The maximality of |A ∪B| implies that xux ∈ E(H) for some ux ∈ B ∪ C2.
By Claim 2, ux ∈ C2. On the other hand, Claim 1 implies that xvx /∈ E(H)
for some vx ∈ C2, vx 6= ux. For the rest of the proof of Claim 3, fix ux and
vx for every x ∈ A′. We show

ax ∈ E(H) ∀a ∈ A,∀x ∈ A′.(4)

Let x ∈ A′ be an arbitrary vertex with corresponding vertices ux, vx ∈ C2

described above. By the definition of A′, there is nothing to show for a = a∗.
Now, let a ∈ N(a∗, A) and consider the subgraph F = H[{a, a∗, x,

ux, vx, z1}], where z1 is some vertex of C1. Note that {aa∗, a∗x, xux, uxvx,
z1a, z1a

∗, z1x, z1ux, z1vx} ⊆ E(F ). By assumption, H does not contain D4

as an induced subgraph, and hence it follows that ax ∈ E(F ) ⊆ E(H).
Since A is connected, we successively obtain the result for every a ∈ A.

This proves (4).
Next, we show

H[A′] is a clique.(5)

Assume that xx′ /∈ E(H) for some distinct vertices x, x′ ∈ A′.
Note first that no vertex z2 ∈ C2 is adjacent to both x and x′, since

otherwise a∗xz2x
′a∗ is a 4-hole. Furthermore, for every z2 ∈ C2, we have

either z2x ∈ E(H) or z2x
′ ∈ E(H). To see this, assume that z2x, z2x

′ /∈
E(H). Then, again because D4 is not induced in H, the subgraph F =
H[{x′, a∗, x, ux, z2, z1}] (for some z1 ∈ C1) implies that x′ux ∈ E(H) leading
to the 4-hole x′a∗xuxx′.

Hence, the set C2 can be partitioned into C2 = C ′
2 ∪ C ′′

2 such that for
z2 ∈ C2, we have z2 ∈ C ′

2 if and only if z2x
′ ∈ E(H) and z2 ∈ C ′′

2 if and
only if z2x ∈ E(H). Then the choice C∗ := C with C∗

1 := C ′
2, C∗

2 := C ′′
2 ,

C∗
3 := C1 ∪ C3, A∗ := {x′} and B∗ := {x} contradicts the minimality of

|C1 ∪ C2|. This proves (5).

Now, define A++ := H[A ∪ A′ ∪ C1 ∪ C3]. It follows from (4), (5), together
with our assumption (d(x, C1 ∪ C3) = |C1 ∪ C3|, ∀x ∈ A′) that

d(u,A++) = d(u,A+) + |A′| ≤ |A|−1 + |C1|+ |C3|+ |A′|, ∀u∈A ∪ C1 ∪ C3,

d(x,A++) = |A|+ |A′| − 1 + |C1|+ |C3|, ∀x ∈ A′.
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Since a∗ ∈ A was chosen to be a vertex with d(a∗, A+) = δ(A+), we also
have d(a∗, A++) = δ(A++). Note that A++ is a proper subgraph of H and
hence d(a∗,H −A++) = d(a∗,H − (A∪B ∪C ∪A′)) > 0, which contradicts
the definition of A′. This completes the proof of Claim 3.

In the following, let a′ ∈ A′ and b′ ∈ B′ be such that they have the property
described in Claim 3.

Claim 4. d(a′, C2) = d(b′, C1) = 0.
Suppose that a′c2 ∈ E(H) for some c2 ∈ C2. Let c ∈ C1 ∪ C3 be an
arbitrary vertex. Now the cycle a′a∗cc2a

′ forces that a′c ∈ E(H). Hence,
d(a′, C1 ∪ C3) = |C1 ∪ C3|, contradicting Claim 3.

Analogously, we conclude that d(b′, C1) = 0.

Claim 5. d(a′, B) = d(b′, A) = 0.
Again by symmetry, we verify the claim only for a′. Assume that a′b ∈ E(H)
for some b ∈ B and let z3 ∈ C3 be an arbitrary vertex. Then the cycle
a′a∗z3ba

′ implies that d(a′, C3) = |C3| and hence there exists some z1 ∈ C1

such that a′z1 /∈ E(H) by Claim 3. Moreover, it follows from Claim 4 that
a′z2 /∈ C2 for every z2 ∈ C2. The contradiction H[{a′, a∗, z1, z2, z3, b}] ∼= D3

finishes the proof of Claim 5.

Finally, we analyse the neighbourhood of a′ and b′ in C1 ∪ C3 and C2 ∪ C3,
respectively.

Let c2 ∈ C2 be an arbitrary vertex. If d(a′, C1 ∪ C3) > 0 it follows
by Claim 3 that there are vertices c1 ∈ C1 and c3 ∈ C3 such that either
a′c1 ∈ E(H) and a′c3 /∈ E(H) or a′c1 /∈ E(H) and a′c3 ∈ E(H). In the first
case, H[{a′, a∗, c1, c2, c3, b

∗}] is isomorphic to D6, in the second case, it is
isomorphic to D4. We derive the same contradiction if d(b′, C2 ∪ C3) > 0.

Hence, assume that d(a′, C1 ∪ C3) = d(b′, C2 ∪ C3) = 0 and let zi ∈
Ci (i = 1, 2, 3). Since we obtain the 6-hole a′a∗c1c2b

∗b′a′ if a′b′ ∈ E(H),
the vertices a′ and b′ are not adjacent. Thus H[{a′, a∗, c1, c2, c3, b

∗, b′}] is
isomorphic to D5, a contradiction.

This completes the proof of Step 2 and hence of the whole lemma.

To show that χ(G) = β(G) for a given graph G, it is enough to show the
existence of a simplicial extreme in a subgraph H of G where the β-value
of G is attained, by Lemma 1.6. If we choose such an H to be as small
as possible with respect to inclusion, i.e., δ(H ′) < δ(H) for every proper
induced subgraph H ′ of H, then by Lemma 4.1 every condition formulated
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in the preceeding sections involving diamonds can be replaced by a weaker
condition, excluding not the diamond itself but D3, D6, and the graphs in
Figure 2. This leads to better conditions since any supergraph of H is now
allowed to contain diamonds which are embedded in G in a way different
from the possibilities indicated by the six graphs D1, D2,. . . , D6.

Having a closer look to the list of possible embeddings of the diamond
given by Lemma 4.1, it turns out that the graph D6 is redundant. This will
be shown in two steps.

Lemma 4.2. Let H be a graph without 4-holes such that δ(H ′) < δ(H) for
every proper induced subgraph H ′ of H. If H contains the subgraph D6, then
it also contains D1, D2, D4, (see Figure 2), or D∗

3 (see Figure 4).

Proof. Suppose that the statement does not hold and let H be a coun-
terexample. Hence, D6 is an induced subgraph of H, but H does not contain
D1, D2,D4, or D∗

3.
Let C,X, Y, Z ⊆ V (H) be disjoint vertex sets of H such that there is a

partition C = C1 ∪ C2 ∪ C3 ∪ C4 of C with the following properties:

Ci 6= ∅, i ∈ {1, 2, 3, 4},
c1c2, c1c3, c2c3, c2c4, c3c4 ∈ E(H) and c1c4 /∈ E(H), ∀ci ∈ Ci, i ∈ {1, 2, 3, 4},
N(x,C ∪ Y ) = C1 ∪ C2 and N(y, C ∪X) = C3 ∪ C4, ∀x ∈ X, ∀y ∈ Y,

zu ∈ E(H), ∀z ∈ Z, u ∈ C ∪X ∪ Y,

X, Y 6= ∅ (Z = ∅ is possible),

H[X] and H[Y ] are connected subgraphs of H.

At least one such collection of vertex sets C, X, Y, Z exists, since H contains
D6. Note that the 4-hole-freeness of H implies that H[Ci] (i = 1, 2, 3, 4) and
H[Z] are cliques. In the following, we may assume that the sets C, X, Y ,
and Z are chosen such that

1. |C| is maximal,
2. |X ∪ Y | is maximal for this choice of C,
3. |Z| is maximal for this choice of C, X, and Y .

Consider the proper subgraphs X+ = H[X ∪C1 ∪C2 ∪Z] and Y + = H[Y ∪
C3 ∪ C4 ∪ Z] of H. Then
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d(x,X+) = d(x,X) + |C1|+ |C2|+ |Z| ≤ |X|+ |C1|+ |C2|+|Z|−1, ∀x ∈X,

d(u,X+) = X|+ |C1|+ |C2|+ |Z| − 1, ∀u ∈ C1 ∪ C2 ∪ Z,

d(y, Y +) = d(y, Y ) + |C3|+ |C4|+ |Z| ≤ |Y |+ |C3|+ |C4|+ |Z|−1, ∀y ∈ Y,

d(v, Y +) = |Y |+ |C3|+ |C4|+ |Z| − 1, ∀v ∈ C3 ∪ C4 ∪ Z,

and hence there are vertices x0 ∈ X and y0 ∈ Y with d(x0, X
+) = δ(X+)

and d(y0, Y
+) = δ(Y +). Since δ(X+), δ(Y +) < δ(H) and by the properties

of C, X, Y , and Z described above, it follows that X ′ := N(x0,H− (C∪X ∪
Y ∪ Z)) 6= ∅ and Y ′ := N(y0,H − (C ∪X ∪ Y ∪ Z)) 6= ∅.

If not otherwise specified, then in the following, ci, i ∈ {1, 2, 3, 4}, x, y,
and z are arbitrary vertices of Ci, X, Y , and Z, respectively. We proceed
by proving four claims.

Claim 1. d(x′, C1) = |C1| and d(y′, C4) = |C4| for every x′ ∈ X ′, y′ ∈ Y ′.
By symmetry, it suffices to show that d(y′, C4) = |C4| for an arbitrary
y′ ∈ Y ′. Suppose to the contrary that there is a vertex c∗4 ∈ C4 which
is not adjacent to y′. Since we obtain the 4-hole y′y0c

∗
4c2y

′, if c2y
′ ∈ E(H)

for some c2 ∈ C2, it follows that d(y′, C2) = 0. If y′c3 /∈ E(H), then
H[{x, c2, c3, c

∗
4, y0, y

′}] is therefore isomorphic to D1 or D2, and we conclude
that d(y′, C3) = |C3|. To avoid now H[{c3, y

′, y0, c
∗
4, c2, c1}] ∼= D4, we ob-

tain d(y′, C1) = |C1| and, since H[{c3, y
′, y0, c

∗
4, c2, c1, x}] 6∼= D∗

3, this implies
d(y′, X) = |X|. Then the 4-hole y′xc2c3y

′ completes the proof of the claim.

Claim 2. d(x′, C3) > 0 for every x′ ∈ X ′, or d(y′, C2) > 0 for every y′ ∈ Y ′.
Suppose to the contrary that there exist vertices x′ ∈ X ′ and y′ ∈ Y ′ such
that d(x′, C3) = 0 and d(y′, C2) = 0. By Claim 1 and since there are no
4-holes in H, we deduce that then d(x′, C4 ∪ Y ) = 0 and d(y′, C1 ∪X) = 0.

If d(x′, C2) = |C2|, then because d(x′, C1) = |C1| by Claim 1, we have
N(x′, C ∪ Y ) = C1 ∪ C2. Hence, X̂ = X ∪ {x′} and Ŷ = Y contradict the
maximal choice of |X ∪ Y | (note that X̂ is connected). Analogously, we can
add y′ to Y , if d(y′, C3) = |C3|. Hence, there exist c∗2 ∈ C2 and c∗3 ∈ C3 such
that x′c∗2, y′c∗3 /∈ E(H). Then H[{x′, y′, c1, c

∗
2, c

∗
3, c4}] is isomorphic to D1 or

D2 and this contradiction completes the proof of Claim 2.

From now on, we assume without loss of generality that

d(y′, C2) > 0, ∀y′ ∈ Y ′.(6)
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To avoid a 4-hole consisting of y′, y0 and some c∗2 ∈ C2 with y′c∗2 ∈ E(H),
together with some c3 ∈ C3 or z ∈ Z, we conclude

d(y′, C3) = |C3| and d(y′, Z) = |Z|, ∀y′ ∈ Y ′.(7)

Claim 3. d(y′, C1) < |C1| for every y′ ∈ Y ′.
If d(y′, C1) = |C1| for some y′ ∈ Y ′, then we have d(y′, C4) = |C4| by Claim
1, and we derive d(y′, C2) = |C2| as well (since c1c2c4y

′c1 is not a 4-hole).
Now, with (7), we obtain d(y′, C) = |C|.

If d(y′, X) = |X|, then by the maximal choice of |Z|, it follows that
y′y∗ /∈ E(H) for some y∗ ∈ Y . But now the sets Ĉ2 = C2 ∪ {y′}, Ĉi = Ci

(i = 1, 3, 4), X̂ = X, and Ŷ = {y∗} contradict the maximal choice of |C|.
If y′x∗ /∈ E(H) for some x∗ ∈ X, then we derive the same contradiction

with the sets Ĉ3 = C3∪{y′}, Ĉi = Ci (i = 1, 2, 4), X̂ = {x∗}, and Ŷ = {y0}.

Claim 4. d(y′, Y ) = |Y | for every y′ ∈ Y ′ and H[Y ′] is a clique.
To show the first statement, let y′ ∈ Y ′ be an arbitrary vertex. By the
definition of Y ′, we have y′y0 ∈ E(H). Now let y1 ∈ N(y0, Y ). By Claim 3
and (6), there are c∗1 ∈ C1 and c∗2 ∈ C2 such that y′c∗1 /∈ E(H) and y′c∗2 ∈
E(H). Since H[{c3, c

∗
1, c

∗
2, y

′, y0, y1}] 6∼= D4, it follows that y′y1 ∈ E(H).
Since Y is connected, the desired result follows inductively.

Now suppose to the contrary that Y ′ does not induce a clique, say
y′1y′2 /∈ E(H) for some y′1, y′2 ∈ Y ′. Then no vertex c2 ∈ C2 is adjacent to
both y′1 and y′2, since otherwise H[{y′1, c2, y

′
2, y0}] is a 4-hole. By (6), this

implies d(y′1, C2), d(y′2, C2) < |C2| and therefore d(y′1, C1) = d(y′2, C1) = 0,
since otherwise y′1c1ĉ2c4y

′
1 respectively y′2c1ĉ2c4y

′
2 would be a 4-hole

(where ĉ2 is such that y′iĉ2 /∈ E(H), i = 1, 2). Let c∗2 ∈ C2 such that
y′1c∗2 ∈ E(H). Then y′2c∗2 /∈ E(H) and with (7) we derive the contradiction
H[{c3, c1, c

∗
2, y

′
1, y0, y

′
2}] ∼= D4.

Consider the proper subgraph Y ++ = H[Y ∪C3 ∪C4 ∪Z ∪Y ′] of H. By (7)
and Claims 1 and 4, it follows that

d(y, Y ++) = d(y, Y ) + |C3|+ |C4|+ |Z|+ |Y ′|, ∀y ∈ Y,

d(v, Y ++) = |Y |+ |C3|+ |C4|+ |Z|+ |Y ′| − 1, ∀v ∈ C3 ∪ C4 ∪ Z ∪ Y ′.

Hence, since y0 ∈ Y has minimal degree in Y +, it also has minimal degree
vertex in Y ++. Since d(y0, X ∪ C1 ∪ C2) = 0, this implies that there is
a vertex in V (H − (C ∪ X ∪ Y ∪ Z ∪ Y ′)) that is adjacent to y0. This
contradiction to the definition of Y ′ finishes the proof of the lemma.
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Lemma 4.3. Let H be a graph without 4- and 6-holes such that δ(H ′) <
δ(H) for every proper induced subgraph H ′ of H. If D∗

3 is contained in H,
then H also contains D1, D2, or D4.

Proof. Assume that the statement does not hold, i.e., there is a graph
H with the desired degree property that contains D∗

3 but none of D1, D2,
and D4. Consider disjoint vertex sets A,U, V, Z ⊆ V (H) with the following
properties:

U ={u0, u1, u2, u3, u4} such that H[U ] is a 5-hole with cycle u0u1u2u3u4u0,

Z 6= ∅ with d(z, U) = |U |, ∀z ∈ Z,

A 6= ∅ with N(a, U ∪ Z) = {u0, u1}, ∀a ∈ A,

d(v, U ∪ Z ∪A) = |U ∪ Z ∪A|, ∀v ∈ V (V = ∅ is possible).

Note that such a collection of vertex sets exists since H contains D∗
3. In the

following let the sets A,U, V, and Z be chosen such that

1. |U ∪ Z| is maximal,
2. |A| is maximal for this choice of U and Z,
3. |V | is maximal for this choice of U,Z and A.

Consider the proper subgraph A+ = H[{u0, u1} ∪A ∪ V ] of H. Since H[V ]
is a clique (two non-adjacent vertices of V together with u0 and u2 induce
a 4-hole) and by the properties above, it follows that

d(u0, A
+) = d(u1, A

+) = |A|+ |V |+ 1,

d(a,A+) = d(a,A) + 2 + |V | ≤ |A|+ |V |+ 1, ∀a ∈ A,

d(v, A+) = |A|+ |V |+ 1, ∀v ∈ V.

Hence, there is a vertex a∗ ∈ A with d(a∗, A+) = δ(A+) and by the hypothe-
sis, a∗a′ ∈ E(H) for some a′ ∈ V (H−A+). In fact, N(a∗, U ∪Z) = {u0, u1}
implies that a′ ∈ V (H − (A∪U ∪ V ∪Z)). In the following, let z denote an
arbitrary vertex in Z.

Claim 1. d(a′, Z) = 0.
Suppose to the contrary that a′z0 ∈ E(H) for some z0 ∈ Z. Then a′u0, a

′u1 ∈
E(H), since there is no 4-hole in H. We show next that a′u2 /∈ E(H) and
a′u4 /∈ E(H).
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By symmetry it suffices to verify the first statement. Assume that a′u2 ∈
E(H). Then H[{u0, u1, u2, u3, u4, a

′}] 6∼= D2 implies that a′u3 ∈ E(H) or
a′u4 ∈ E(H). Indeed, since there is no 4-hole in H, both u3 and u4 are
neighbors of a′ and we conclude that d(a′, U) = |U |. To avoid a 4-hole
consisting of a′, u1, u3 and z, we furthermore have d(a′, Z) = |Z|. Now the
maximality of |V | implies that there exists a vertex a0 ∈ A with a′a0 /∈ E(H)
and hence the sets Û = U , Ẑ = Z ∪ {a′}, Â = {a0} contradict the maximal
choice of |U ∪ Z|.

Since a′u2, a
′u4 /∈ E(H), we also have a′u3 /∈ E(H) and we derive the

contradiction H[{a′, u1, u2, u3, u4, z0}] ∼= D4.

Claim 2. a′u0 /∈ E(H) and a′u1 /∈ E(H).
By symmetry, we only show the second statement. Assume that a′u1 ∈
E(H). Then a′u3 /∈ E(H) and a′u4 /∈ E(H), since otherwise a′u1zu3a

′

would be a 4-hole (using a′z /∈ E(H) by Claim 1). Moreover, a′u2 /∈ E(H),
since otherwise either H[{a∗, a′, u2, u3, u4, u0}] is a 6-hole (if a′u0 /∈ E(H))
or H[{a′, u2, z, u0}] is a 4-hole (if a′u0 ∈ E(H)).

But now H[{a′, a∗, u0, z, u2, u1}] 6∼= D4 leads to a′u0 ∈ E(H). Recalling
Claim 1, the set Â = A ∪ {a′} contradicts the maximality of |A|.
By Claim 1 and 2, the subgraph H[{a′, a∗, u0, u1, z, u3}] is isomorphic to D1

or D2 which completes the proof of the lemma.

Lemmas 4.2 and 4.3 can be combined as follows.

Corollary 4.4. Let H be a graph without 4- and 6-holes such that δ(H ′) <
δ(H) for every proper induced subgraph H ′ of H. If H contains D6, then it
also contains D1, D2, or D4.

The following lemma presents another refinement of the set of forbidden
induced subgraphs for β-perfect graphs. It states that the 5-wheel D3 can
be deleted from the list of supergraphs of the diamond given in Lemma
4.1, since it is either redundant or yields the desired equality χ(G) = β(G).
Note that if we further exclude a 6-hole in the graph H in consideration,
the subgraph D6 is also redundant by Corollary 4.4.

Lemma 4.5. Let H be a graph without 4-holes such that δ(H ′) < δ(H) for
every proper induced subgraph H ′ of H. If H contains D3, then H also
contains D1, D2, D4, or D6 (see Figure 2), or χ(H) = β(H).
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Proof. Consider a counterexample H. So H contains D3, it satisfies χ(H)
< β(H), and it does not contain D1, D2, D4 or D6.

Since D3 is a subgraph of H, there exist vertex sets U,Z ⊆ V (H) such
that

U = {u0, u1, u2, u3, u4}, Z 6= ∅, U ∩ Z = ∅,

H[U ] is a 5-hole with cycle u0u1u2u3u4u0,

zui ∈ E(H), ∀z ∈ Z, ui ∈ U .

Let Z be chosen such that |Z| is maximal for the given U , and define W =
H[U ∪ Z]. Since H does not contain a 4-hole, Z induces a clique. Hence,
χ(W ) = |Z|+ 3 and

d(ui,W ) = |Z|+ 2, ∀ui ∈ U and d(z,W ) = |Z|+ 4, ∀z ∈ Z.(8)

We claim that W is a proper subgraph of H. Indeed, if W = H then
δ(H) = |Z| + 2 by (8) and we derive the contradiction χ(H) = |Z| + 3 =
δ(H) + 1 = β(H).

Hence, δ(W ) < δ(H) and, by (8), we have Ni := N(ui,H −W ) 6= ∅ for
i ∈ {0, 1, . . . , 4}. In the following, all indices appearing in connection with
some Ni should be taken modulo 5. We proceed by proving three claims.

Claim 1. Ni ∩ (Ni−2 ∪Ni+2) = ∅ for every 0 ≤ i ≤ 4.
Suppose to the contrary that Ni∩ (Ni−2∪Ni+2) 6= ∅ for some i = 0, 1, . . . , 4.
Without loss of generality, let i = 0 and v ∈ N0 ∩ N2. To avoid a 4-hole
vu0u1u2v, we have u1v ∈ E(H). Consider the subgraph H[U ∪ {v}] of H.
Since H does not contain D2, it follows that v is adjacent to u3 or to u4.
In fact, since H is 4-hole-free, both vu3 and vu4 are in E(H). But now the
choice Z ′ := Z ∪ {v} contradicts the maximality of |Z|.

Claim 2. Ni ∩ (Ni−1 ∪Ni+1) = ∅ for every 0 ≤ i ≤ 4.
Again we assume that there exists a vertex v ∈ Ni ∩ (Ni+1 ∪ Ni−1) for
some 0 ≤ i ≤ 4, where we suppose i = 0 and v ∈ N0 ∩N1. By Claim 1, v /∈
N2∪N3∪N4. For some z ∈ Z, consider the subgraph H[{z, v, u0, u1, u2, u3}]
of H. Since there is no D6 in H, it follows that vz ∈ E(H). Then
H[{z, v, u0, u4, u3, u2}] ∼= D4, a contradiction.

Claim 3. vz /∈ E(H) for every v ∈ N0 ∪ . . . ∪N4, z ∈ Z.
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If vz ∈ E(H) for some z ∈ Z and v ∈ N0 ∪ . . . ∪ N4, say v ∈ N1, then
Claim 1 and 2 imply that vuj /∈ E(H) for j = 2, 3, 4 and the contradiction
H[{z, v, u1, u2, u3, u4}] ∼= D4 proves the claim.

Let v0 ∈ N0 and v2 ∈ N2. By Claim 1, 2, and 3, v0 6= v2 and the
subgraph H[{v0, v2, u0, u1, u2, z}], where z ∈ Z is an arbitrary vertex, is
isomorphic to D1 or D2. This contradiction completes the proof of the
lemma.

Note that the graph W mentioned in the proof of Lemma 4.5 fulfils χ(W ) =
β(W ) without having a simplicial extreme.

By applying the technique from the proofs of Lemmas 4.1 up to 4.5 to
diamond-free graphs, we can argue next that also the condition in Theorem
1.1 involving the short-chorded 6-cycle can be replaced by a weaker condition
involving two supergraphs of the short-chorded 6-cycle. This is summarized
in the following lemma.

Lemma 4.6. Let H be a diamond-free graph without 4-holes, such that
δ(H ′) < δ(H) for every proper induced subgraph H ′ of H. Then H con-
tains a short-chorded 6-cycle if and only if it contains one of the graphs in
Figure 3 (S1 or S2) as an induced subgraph.

Proof. Consider a counterexample H. Since H contains a short-chorded
6-cycle, it contains a 5-hole Q = H[x1, x2, u, v, w] (where x1x2uvwx1 is a
cycle), such that the set A defined as

A := {a ∈ V (H) | ax1, ax2 ∈ E(H), au, av, aw /∈ E(H)}

is nonempty. Now, in addition assume that |A| is maximal.
Because A+ := H[A ∪ {x1, x2}] is a proper induced subgraph of H, by

assumption it holds that δ(A+) < δ(H). Moreover,

d(a,A+) ≤ |A|+ 1 = d(xi, A
+), ∀a ∈ A, i ∈ {1, 2}.

It follows that there is an a∗ ∈ A satisfying d(a∗, A+) = δ(A+), and (because
δ(A+) < δ(H)) that there is an a′ ∈ V (H − A+) with a∗a′ ∈ E(H). Since
a∗ is not adjacent to u, v, or w, the vertex a′ is not in Q.

We claim that
a′u /∈ E(H), a′w /∈ E(H).
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Indeed, suppose without loss of generality that a′u ∈ E(H), then since
H does not contain a 4-hole, also a′x2 ∈ E(H). But this means that
H[a∗, a′, u, x2] is a diamond, a contradiction.

If a′x1 ∈ E(H), then also a′x2 ∈ E(H) since otherwise H[a∗, a′, x1, x2]
would be a diamond. Thus by symmetry, either both a′x1 and a′x2 are edges
of H, or both are not.

Moreover, if a′x1 ∈ E(H), then a′v /∈ E(H) because H is 4-hole-free
and a′w /∈ E(H). Hence, if a′x1 and a′x2 are edges of H, then there are
no other edges between a′ and Q in H, and A′ := A ∪ {a′} contradicts the
maximality of A.

So there are only two possibilities: either a′ is not adjacent to any
vertex of Q, in which case H contains S1 as an induced subgraph, or the
only neighbour of a′ in Q is v, in which case H contains S2 as an induced
subgraph. This contradiction finishes the proof.

These results together imply Theorem 1.8.

Proof of Theorem 1.8. Let G be a graph not containing any of the
graphs depicted in Figure 2 and Figure 3 as induced subgraphs. For showing
that G is β-perfect, it suffices to prove χ(G) = β(G).

Let H be a minimal induced subgraph of G satisfying β(G) = δ(H)+1.
If H is diamond-free, then H does not contain any short-chorded 6-cycles,
by Lemma 4.6. Thus, by Theorem 1.3, H contains a simplicial extreme,
which by Lemma 1.6 leads to χ(G) = β(G).

If H contains a diamond then, by Lemma 4.1, Corollary 4.4, and the
hypothesis, H contains D3. Now Lemma 4.5 implies

χ(G) ≤ β(G) = δ(H) + 1 = β(H) = χ(H) ≤ χ(G).

Note that both graphs in Figure 3 contain a net. Therefore, the above
theorem implies Theorem 1.5, which was derived in another way in Section
3 (there we did not use Theorem 1.3, but explicitly showed existence of a
simplicial extreme for the graph class in consideration in Theorem 3.2).

All graphs in Figures 2 and 3 are β-perfect. For D1, D2, and D4, we
have examples showing that it is not possible to delete either one of them
from the list of forbidden subgraphs. For the other graphs (D5, S1, and S2)
we have no such examples, and we believe that they are superfluous in this
list.

Lemma 4.5 and Corollary 4.4 also easily allow us to prove Theorem 1.9
from the weaker Theorem 1.4.
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Proof of Theorem 1.9. Let G be a claw-free, even hole-free, D1-free,
D2-free graph. Let H be a minimal induced subgraph satisfying β(G) =
δ(H) + 1. By Theorem 1.4 we may assume that H contains D3. By Lemma
4.5 and Corollary 4.4, H contains D4 or satisfies χ(H) = β(H). But since
D4 is not claw-free, we must have χ(H) = β(H), which implies (as before)
that G is β-perfect.

5. Regular Graphs

In this section, we observe that β-perfect graphs are not only even hole-free
but that in fact they do not contain any induced regular subgraphs, except
perhaps odd holes and cliques. For graphs with maximum degree at most
three, we also show the converse.

Regular graphs are examples of graphs G for which δ(H) < δ(G) for
all proper induced subgraphs H of G, as is stated (and generalized) in the
following lemma. Note that β(G) = δ(G) + 1 for those graphs.

Lemma 5.1. Let G be a regular, connected graph, then δ(H) < δ(G) for
every proper induced subgraph H of G. More generally, G has the property
that δ(H) < δ(G) for every proper induced subgraph H of G with |V (H)| > k,
if for some nonnegative integer k, G contains at least |V (G)| − k vertices of
degree δ(G) and it is (k + 1)-connected.

Proof. We prove the general assertion. Let G be a (k+1)-connected graph
containing at most k vertices of degree greater than δ(G). If δ(H) ≥ δ(G)
for some proper induced subgraph H of G with |V (H)| > k, then no vertex
in V (G−H) is adjacent to a vertex in V (H) of degree δ(G) in G. In other
words, the neighbours in V (H) of every vertex v ∈ V (G−H) are contained
in the set of vertices in V (H) of degree greater than δ(G) in G, which has
size at most k. But this means that G has a vertex cut of size at most k, a
contradiction.

Complete graphs and odd cycles are easily seen to be β-perfect. But these
are the only regular β-perfect graphs, as follows from the following lemma
(see also [8, section 4.1] for the connection between Brooks’ Theorem and
β(G)).

Lemma 5.2. Let G be an r-regular, connected graph, for some nonnegative
integer r. Then χ(G) < β(G), unless G = Kr+1, or r = 2 and G is an odd
cycle.
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Proof. If G is r-regular, then β(G) = r + 1, because δ(G) = r, and no
proper subgraph H of G has δ(H) > δ(G) by Lemma 5.1. Now Brooks’
Theorem [2] states that χ(G) < ∆(G) + 1 = r + 1 = β(G), unless G is a
complete graph on r + 1 nodes, or r = 2 and G is an odd cycle.

The next lemma states that the converse statement is true for even hole-free
graphs with maximum degree at most 3.

Lemma 5.3. Let G be a connected even hole-free graph, with δ(G) < ∆(G)
≤ 3. Then G is β-perfect.

Proof. Let G′ be any induced subgraph of G. Let H be a minimal induced
subgraph of G′ such that β(G′) = δ(H) + 1. Clearly δ(H) ≤ 3. Moreover,
δ(H) = 3 is impossible, since G is not regular, and can not contain a proper
∆(G)-regular subgraph. If δ(H) ≤ 2, then H contains a simplicial extreme,
and hence χ(G′) = β(G′), by Lemma 1.6.

Together, these statements imply the following.

Theorem 5.4 Let G be a 3-regular, connected, even hole-free graph not
equal to K4. Then G is minimally β-imperfect.

Proof. Directly from Lemma 5.2 and Lemma 5.3.

The corresponding statement for 4-regular graphs is false: below we present
a 4-regular graph, not containing any 2- or 3-regular subgraphs except odd
holes and cliques, which is not minimally β-imperfect.

Another immediate corollary of Lemma 5.2 is the following.

Theorem 5.5. Let G be a β-perfect graph. Then G does not contain any
induced regular subgraphs, except perhaps odd holes and cliques.

Proof. Directly from Lemma 5.2.

Note that the above theorem generalizes the fact that β-perfect graphs are
even hole-free. However, the condition in Theorem 5.5 is still not strong
enough to imply β-perfectness of a graph. This is illustrated by the following
example.

Define R as the graph on 15 vertices obtained from a triangle x1x2x3

by adding three copies of the graph D1 in Figure 2, where the two vertices
of degree 1 are identified with x1 and x2, x2 and x3, x3 and x1, respectively.
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It is easy to see that the only regular induced subgraphs of R are cliques on
three vertices and 5-holes. Also, 3 = χ(R) < β(R) = 4.

Moreover, if we add three vertices to R, each of which is adjacent to
the four vertices of a diamond in R, we obtain a connected 4-regular graph
with only cliques and 5-holes as induced regular subgraphs and which is not
minimally β-imperfect (since it contains R).
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[5] P. Erdős and A. Hajnal, On the chromatic number of graphs and set-systems,
Acta Math. Acad. Sci. Hungar. 17 (1966) 61–99.
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