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Abstract

Given a family F of multigraphs without isolated vertices, a multi-
graph M is called F-decomposable if M is an edge disjoint union of
multigraphs each of which is isomorphic to a member of F . We present
necessary and sufficient conditions for the existence of such decompo-
sitions if F comprises two multigraphs from the set consisting of a
2-cycle, a 2-matching and a path with two edges.
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1. Introduction

All multigraphs considered in what follows are loopless. Given a family F of
multigraphs without isolated vertices, an F-decomposition of a multigraph
M is a collection of submultigraphs which partition the edge set E(M) of M
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and are all isomorphic to members of F . If such a decomposition exists, M
is called F-decomposable; and also H-decomposable if H is the only member
of F . Let F = {H1, H2, . . . , Ht}. By an Hi-edge in an F-decomposition of
M we mean an edge belonging to any decomposition part isomorphic to Hi

for some i = 1, 2, . . . , t.
If M is a multigraph, we write M = (V, E) where V = V (M) and E =

E(M) stand for the vertex set and edge set of M , respectively. Cardinalities
of those sets, denoted by v(M) and e(M), are called the order and size of
M , respectively. For S ⊂ V (M), M [S] denotes the submultigraph of M
induced by S. The number of edges incident to a vertex x in M , denoted by
valM (x), is called the valency of x, whilst the number of neighbours of x in
M , denoted by degM (x), is called the degree of x. As usual ∆(M) stands for
the maximum valency among vertices of M . For any two vertices x, y of M ,
let pM (x, y) denote the number of edges joining x and y. We call pM (x, y)
the multiplicity of an edge xy in M . Edges joining the same vertices are
called parallel edges (if they are distinct).

The aim of our paper is to provide necessary and sufficient conditions
for a multigraph M to be {H1, H2}-decomposable, where H1, H2 are any
two multigraphs out of C2 (2-cycle), P3 (path with two edges), and 2K2

(2-matching). Obviously, if M is Hi-decomposable for some i = 1, 2, then
M is {H1, H2}-decomposable. Therefore the following known results are
quoted.

Theorem 1 (Skupień [7], see [4] for a proof). A multigraph M is 2K2-
decomposable iff its size e(M) is even, ∆(M) ≤ e(M)

2 and e(M [{x, y, z}]) ≤
e(M)

2 for all {x, y, z} ⊂ V (M).

If M is a simple graph then the very last condition in Theorem 1 means
that M 6= K3 ∪̇K2, cf. Caro [2].

Proposition 2. A multigraph M is C2-decomposable iff pM (x, y) ≡ 0
(mod 2) for all x, y ∈ V (M).

Theorem 3 [5, 3]. A simple graph G is P3-decomposable iff each compo-
nent of G is of even size.

Corollary 4. A graph G is {P3, 2K2}-decomposable iff the size e(G) of G
is even.
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Given a multigraph M , define the ∗-line graph of M , denoted by L∗(M), to
be the graph with vertex set V (L∗(M)) = E(M) and edge set E(L∗(M)) =
{w1w2 : w1, w2 ∈ E(M), |w1 ∩ w2| = 1}. Evidently, L∗(M) is obtainable
from the ordinary line graph L(M) by removal of all edges which represent
multiple adjacency of edges in the root multigraph M . In other words, the
operator L∗ represents doubly adjacent edges in M as if they were nonad-
jacent in M .

Theorem 5 [4]. Given a multigraph M , the following statements are equiv-
alent.

(i) M is P3-decomposable.
(ii) L∗(M) has a 1-factor.

Therefore checking whether a multigraph M is P3-decomposable can be done
in polynomial time O(e(M)2.5), cf [4]. Some original sufficient conditions
for M to be P3-decomposable may be found in [1, 4].

2. {C2, P3}-Decomposition

Theorem 6. Let M be a multigraph and let L(M) be the line graph of M .
The following statements are equivalent.

(i) M is {C2, P3}-decomposable.
(ii) Each component of M has an even number of edges.
(iii) Each component of L(M) has an even number of vertices.
(iv) L(M) has a 1-factor.

Proof. Each of the implications in the cycle (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i) is
obvious or well-known. Well-known is the implication (iii)⇒ (iv) following
from the result of Sumner [8] and Las Vergnas [6] which says that every
connected claw-free graph of even order has a 1-factor.

3. {P3, 2K2}-Decomposition

Theorem 7. Let M be a multigraph. Let L∗(M) and L(M) be the ∗-line
graph and the complement of the line graph L(M) of M , respectively. The
following statements are mutually equivalent.
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(i) M is {P3, 2K2}-decomposable.
(ii) M has an even number, e(M), of edges and the multiplicity of any edge

does not exceed e(M)/2.
(iii) The graph L̃ := L∗(M) ∪ L(M) has a 1-factor.

Proof. Implication (i)⇒ (ii) is true because e(M)/2 is the number of parts
and parallel edges must be in different parts of a decomposition. Impli-
cation (ii)⇒ (iii) is true because the order v(L̃) = e(M) is even and the
minimum degree δ(L̃) ≥ 1

2v(L̃), whence, by Dirac’s theorem, the graph L̃
has a Hamiltonian cycle. Implication (iii)⇒ (i) is obvious.

4. {C2, 2K2}-Decomposition

Given a multigraph M , let G(M) denote the graph induced by the edge set
E(G(M)) := {xy : pM (x, y) ≡ 1 (mod 2)}. Evidently, a graph isomorphic
to G(M) is obtainable from M both by removing all edges of the maximal
family of pairwise edge-disjoint copies of C2 and by removing all resulting
isolated vertices. Thus 2K2-edges in any {C2, 2K2}-decomposition of M
induce a multigraph M ′ containing a subgraph isomorphic to G(M) (in
fact, pM ′(x, y) ≥ 1 whenever xy ∈ E(G(M))).

If E′ ⊂ E(M), f ∈ E(M), and w ∈ V (M) then M − E′ (or M − f) is
the spanning submultigraph of M obtained by removing the edges only (E′

or f), while M − w is obtained from M by removing the vertex w together
with all edges incident to w.
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Figure 1. Eight families of multigraphs M

edge : heavy thin doubled dotted
multiplicity : odd 1 even ≥ 2 even ≥ 0
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Table 1. Codes in Figure 1

Theorem 8. Let M be a multigraph and let L∗(M) be the complement of
the ∗-line graph L∗(M) of M . The following three statements are mutually
equivalent.

(i) M is {C2, 2K2}-decomposable.
(ii) L∗(M) has a 1-factor.
(iii) Each of the following five conditions holds:

(0) e(M) is even,
(1) valM (x) + degG(M)(x) ≤ e(M) for every x ∈ V (M),
(2) if xy ∈ E(G(M)) then valM (x) + valM (y)− pM (x, y) < e(M),
(3) if yx, xz ∈ E(G(M)) then 1 + valM (x) + pM (y, z) < e(M),
(4) M is different from each of the (forbidden) multigraphs shown in

Figure 1.

A vertex y is called an odd neighbour of a vertex x if M has an edge xy
whose multiplicity pM (x, y) is odd.

Proposition 9. The following condition (i′) is an equivalent of (i) above
for i = 1, 2, 3.

(1′) The number of odd neighbours of any vertex x does not exceed the num-
ber of all edges nonincident to x;

(2′) There is no edge xy adjacent to every other edge and with odd multi-
plicity pM (x, y);

(3′) There are no two adjacent edges yx, xz both with odd multiplicities and
such that among the remaining edges at most one is not a neighbour of
both yx and xz.

Proposition 10. Each multigraph depicted in Figure 1 satisfies all condi-
tions (0)–(3) and is not {C2, 2K2}-decomposable.

The following converse result is of importance.

Lemma 11. Every multigraph M which satisfies conditions (0)–(3), has
e(G(M)) ≤ 4, and is not {C2, 2K2}-decomposable is depicted in Figure 1.
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Proof. Suppose that M is a counterexample. Since M is not C2-decom-
posable, e(G(M)) > 0. Due to (0), G(M) has two or four edges. Consider
two main cases A and B.

A. e(G(M)) = 4. As G(M) is not 2K2-decomposable, either G(M)
contains a triangle or otherwise ∆(G(M)) ≥ 3. Consider the following
subcases.

A1. ∆(G(M)) = 4. Then G(M) is a star with a central vertex w and
M − w is C2-decomposable. Moreover, e(M − w) ≥ 4 by (1). Since M
satisfies (2), not all edges of M − w are incident to one vertex of G(M).
On the other hand, each edge of M − w has both endvertices in G(M) as
well as there is no 2K2 in M − w because otherwise G(M) together with
any two pairs of parallel edges of M − w which do not intersect at G(M)
is 2K2-decomposable. Consequently, edges of M − w induce a “multiple
triangle” on three hanging vertices of G(M). Therefore no parallel edges
can join w to a vertex off the “triangle”. Hence M appears in Figure 1, a
contradiction.

A2. ∆(G(M)) = 3 and G(M) contains no triangle. Let w be the
degree-3 central vertex of the star of G(M), let f and wxi with i = 1, 2, 3
be the four edges of G(M) with notation such that the edge f is incident to
x3 if G(M) is connected. Then e(M − w) > 2 by (1). It is easily seen that
each pair of parallel edges of M −w has a vertex in {x1, x2, x3}. Hence the
multiplicity of f is one if f is not incident to x3. The multiplicity of f is
one, too, otherwise. Namely, by (2), M has a pair of parallel edges which
are nonadjacent to the edge wx3 of G(M). These are x1–x2 edges because
otherwise the pair together with G(M) is 2K2-decomposable (the edge f
being matched with wxi if xi is an endvertex of the pair, i 6= 3). Now,
clearly, the multiplicity of f is one. Consequently, by (3), each vertex xi is
incident to parallel edges of M − w; moreover, one can see that all parallel
edges of M − w are of the form xixj only. Similarly, degM (w) = 3 only,
whence M appears in Figure 1, a contradiction.

A3. G(M) contains a triangle. Let the vertices of the triangle be
denoted by xi, i = 1, 2, 3. Let f stand for the remaining edge of G(M).
Then each pair of parallel edges are incident to some xi because otherwise
the pair and G(M) make up a 2K2-decomposable submultigraph. Assume
that the edge f has no vertex in the triangle of G(M). Hence the multiplicity
of f is one. Moreover, by (3), M has two pairs of parallel edges of the form
xiz and xj z̃ where xi, xj are distinct vertices of the triangle of G(M) and
z, z̃ are both off the triangle. Then z̃ = z because otherwise the two pairs
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and G(M) would be 2K2-decomposable. Moreover, f is either incident to z
or not; and in either case M appears in Figure 1, a contradiction.

Assume that f is incident to a vertex, say x1, in the triangle of G(M).
Then, by (2), M has parallel edges of the form x2z and x3z̃ where z, z̃ are
vertices off the triangle of G(M). Hence z̃ = z can be seen. Moreover, the
multiplicity of f is one if f is not incident to z. Then, as well as if f = x1z,
the multigraph M appears in Figure 1, a contradiction.

B. e(G(M)) = 2. As G(M) is not 2K2-decomposable, ∆(G(M)) = 2,
i.e., E(G(M)) = {wx1, wx2}. Each pair of parallel edges of M − w has an
endvertex in {x1, x2} because otherwise G(M) together with a nonincident
pair is 2K2-decomposable. Then also two mutually nonadjacent pairs of par-
allel edges in M−w taken together with G(M) make up a 2K2-decomposable
submultigraph of M . By (2), however, M−w has parallel edges nonadjacent
to either edge of G(M). Hence, there is a vertex y of M which is adjacent
to both x1 and x2 and y 6= w. Moreover, one can see that no other vertex
can be a neighbour of w. Therefore M appears in Figure 1, a contradiction.

Proof of Theorem 8. Note that the equivalence (i)⇔(ii) and implica-
tion (i)⇒ (iii) are clear.

It remains to prove the converse implication (iii)⇒ (i) for all M with
e(G(M)) ≥ 6. To this end, let us assume to the contrary that M is a
multigraph with a minimum number of edges and e(G(M)) ≥ 6, which sat-
isfies (0)–(3) and still M is not {C2, 2K2}-decomposable. Then M contains
parallel edges because otherwise G(M) = M and, by (0), (1), (3) and The-
orem 1, M is 2K2-decomposable. By the minimality of M , for any pair
of parallel edges f1, f2, at least one of the conditions (1)–(3) is false if
M ← M − {f1, f2}. Moreover, e(G(M)) is even by (0) and the definition of
G(M). As the simple graph G(M) is not 2K2-decomposable, ∆(G(M)) >
e(G(M))

2 ≥ 3 by Theorem 1. Let w ∈ V (M) satisfy degG(M)(w) = ∆(G(M)).
One can easily see that if we remove any pair of parallel edges incident to
w, we get a multigraph satisfying (0)–(3), a contradiction to the minimal-
ity of M . Therefore degG(M)(w) = valM (w). By Theorem 1, since M is

not 2K2-decomposable, ∆(M) > e(M)
2 or e(M [{x, y, z}]) > e(M)

2 for some
{x, y, z} ⊂ V (M). Consider the following cases.

A. ∆(M) > e(M)
2 . Let u ∈ V (M) satisfy valM (u) = ∆(M). Then

u 6= w because otherwise (1) would be violated. Moreover, degG(M)(w) >
degG(M)(u) is clear. Therefore u is incident to some parallel edges.

Let t ∈ V (M) satisfy pM (u, t) ≥ pM (u, x) for any x ∈ V (M). Then
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pM (u, t) ≥ 2 whence t 6= w. Define M ′ to be a submultigraph of M obtained
by removing two parallel u − t edges. By the minimality of M , one of the
conditions (1)–(3) is false if M ← M ′.

A1. Suppose that (1) is false for a vertex x of M ′. Then x = w is
the only possibility whence e(M) − 2 = e(M ′) < 2valM (w) ≤ e(M), i.e.,
valM (w) = e(M)

2 . Hence, since valM (u) > valM (w), the vertices u and w
are adjacent and the edge wu is adjacent to all remaining edges of M . This
contradicts (2) since clearly pM (u, w) < 2 by the choice of w.

A2. Suppose that (2) is false for M ′. Then there is a vertex y ∈ V (M)
such that wy ∈ E(G(M)) and wy is adjacent to all remaining edges of
M ′. As M satisfies (2), y /∈ {u, t} whence pM (u, t) = 2 (and moreover,
pM (u, x) ≤ 2 for any x ∈ V (M)). Thus 4 ≤ ∆(G(M)) < ∆(M) =
valM (u) = pM (u, t) + pM (u, y) + pM (u,w) ≤ 5. Hence ∆(M) = 5 and
pM (u, y) = 2. Therefore 10 = 2∆(M) > e(M) ≥ e(G(M)) + pM (u, t) +
pM (u, y) ≥ 10, a contradiction.

A3. Suppose that (3) is false for M ′. As M satisfies (3) as well as
valM (w) = degM (w) ≥ 4 and valM (u) ≥ 5, there is a vertex y /∈ {t, u, w}
such that uw, wy ∈ E(G(M)) and e(M) > 1+valM (w)+pM (u, y) ≥ e(M ′) =
e(M)− 2. Since M satisfies (2), M ′ has an edge different from and nonad-
jacent to uw. Hence pM (u, t) = 2 (and pM (u, x) ≤ 2 for any x ∈ V (M))
whence 5 ≥ pM (u, t) + pM (u, y) + pM (u,w) = valM (u) ≥ 5. Therefore
∆(M) = 5, pM (u, y) = 2 and 10 = 2∆(M) > e(M) ≥ e(G(M)) + pM (u, t) +
pM (u, y) ≥ 10, a contradiction.

B. ∆(M) ≤ e(M)
2 . Then there are three vertices x, y, z ∈ V (M) such

that e(M [{x, y, z}])> e(M)
2 where the notation is chosen so that pM (y, z) ≥

pM (z, x) ≥ pM (x, y) ≥ 1. As e(M) ≥ 8, pM (y, z) ≥ 2. Let M+ be a
multigraph obtained from M by removing two y–z edges. Clearly, one of
the conditions (1)–(3) is false if M ← M+.

B1. Suppose that (1) is false for M+. Then e(M) − 2 = e(M+) <

2valM (w) ≤ e(M), i.e., valM (w) = e(M)
2 . Since e(M [{x, y, z}]) > e(M)

2 , it
follows that x = w, pM (y, z) ≥ e(M)

2 − 1 and wy,wz ∈ E(G(M)), contrary
to (3).

B2. Suppose that (2) is false for M+. As M satisfies (2), pM (y, z) = 2.
Hence 6 ≥ e(M [{x, y, z}]) > valM (w) ≥ 4, i.e., pM (z, x) = 2 ≥ pM (x, y).
Therefore a contradiction arises since either pM (x, y) = 1 and 10 =
2e(M [{x, y, z}]) > e(M) ≥ e(G(M))+pM (y, z)+pM (x, z) ≥ 10 or pM (x, y) =
2 and 12 = 2e(M [{x, y, z}]) > e(M) ≥ e(G(M)) + pM (y, z) + pM (x, z) +
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pM (x, y) ≥ 12.
B3. Suppose that (3) is false for M+. As M satisfies (3), w /∈ {x, y, z}

and pM (y, z) = 2. Since e(M) ≥ 8, e(M [{x, y, z}]) ≥ 5 and therefore
pM (x, z) = 2. Thus wx, wz ∈ E(G(M)) and 1 + valM (w) + pM (x, z) ≥
e(M+) = e(M)−2. Hence pM (x, y) = 1. This implies 5 = e(M [{x, y, z}]) >
e(M)

2 ≥ valM (z) = pM (y, z) + pM (x, z) + pM (w, z) = 5, a contradiction.
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Discuss. Math. Graph Theory 18 (1998) 225–232.

[2] Y. Caro, The decomposition of graphs into graphs having two edges,
a manuscript.

[3] Y. Caro and J. Schönheim, Decompositions of trees into isomorphic subtrees,
Ars Comb. 9 (1980) 119–130.
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[7] Z. Skupień, Problem 270 [on 2-edge-decomposable multigraphs], Discrete
Math. 164 (1997) 320–321.

[8] D.P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974) 8–12.

Received 4 October 2000
Revised 28 May 2001

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

