Discussiones Mathematicae Graph Theory 22 (2002) 113–121

DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH TWO EDGES

JAROSLAV IVANČO

Department of Geometry and Algebra Šafárik University Jesenná 5, 041 54 Košice, Slovakia **e-mail:** ivanco@duro.upjs.sk

MARIUSZ MESZKA AND ZDZISŁAW SKUPIEŃ

Faculty of Applied Mathematics AGH University of Mining and Metallurgy al. Mickiewicza 30, 30–059 Kraków, Poland

> e-mail: grmeszka@cyf-kr.edu.pl e-mail: skupien@uci.agh.edu.pl

Abstract

Given a family \mathcal{F} of multigraphs without isolated vertices, a multigraph M is called \mathcal{F} -decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of \mathcal{F} . We present necessary and sufficient conditions for the existence of such decompositions if \mathcal{F} comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges.

Keywords: edge decomposition, multigraph, line graph, 1-factor. **2000 Mathematics Subject Classification:** 05C70.

1. Introduction

All multigraphs considered in what follows are loopless. Given a family \mathcal{F} of multigraphs without isolated vertices, an \mathcal{F} -decomposition of a multigraph M is a collection of submultigraphs which partition the edge set E(M) of M

and are all isomorphic to members of \mathcal{F} . If such a decomposition exists, M is called \mathcal{F} -decomposable; and also H-decomposable if H is the only member of \mathcal{F} . Let $\mathcal{F} = \{H_1, H_2, \ldots, H_t\}$. By an H_i -edge in an \mathcal{F} -decomposition of M we mean an edge belonging to any decomposition part isomorphic to H_i for some $i = 1, 2, \ldots, t$.

If M is a multigraph, we write M = (V, E) where V = V(M) and E = E(M) stand for the vertex set and edge set of M, respectively. Cardinalities of those sets, denoted by v(M) and e(M), are called the *order* and *size* of M, respectively. For $S \subset V(M)$, M[S] denotes the submultigraph of M induced by S. The number of edges incident to a vertex x in M, denoted by $val_M(x)$, is called the *valency* of x, whilst the number of neighbours of x in M, denoted by $\deg_M(x)$, is called the *degree* of x. As usual $\Delta(M)$ stands for the maximum valency among vertices of M. For any two vertices x, y of M, let $p_M(x, y)$ denote the number of edges joining x and y. We call $p_M(x, y)$ the *multiplicity* of an edge xy in M. Edges joining the same vertices are called *parallel edges* (if they are distinct).

The aim of our paper is to provide necessary and sufficient conditions for a multigraph M to be $\{H_1, H_2\}$ -decomposable, where H_1, H_2 are any two multigraphs out of C_2 (2-cycle), P_3 (path with two edges), and $2K_2$ (2-matching). Obviously, if M is H_i -decomposable for some i = 1, 2, then M is $\{H_1, H_2\}$ -decomposable. Therefore the following known results are quoted.

Theorem 1 (Skupień [7], see [4] for a proof). A multigraph M is $2K_2$ decomposable iff its size e(M) is even, $\Delta(M) \leq \frac{e(M)}{2}$ and $e(M[\{x, y, z\}]) \leq \frac{e(M)}{2}$ for all $\{x, y, z\} \subset V(M)$.

If M is a simple graph then the very last condition in Theorem 1 means that $M \neq K_3 \cup K_2$, cf. Caro [2].

Proposition 2. A multigraph M is C_2 -decomposable iff $p_M(x,y) \equiv 0 \pmod{2}$ for all $x, y \in V(M)$.

Theorem 3 [5, 3]. A simple graph G is P_3 -decomposable iff each component of G is of even size.

Corollary 4. A graph G is $\{P_3, 2K_2\}$ -decomposable iff the size e(G) of G is even.

Given a multigraph M, define the *-line graph of M, denoted by $L^*(M)$, to be the graph with vertex set $V(L^*(M)) = E(M)$ and edge set $E(L^*(M)) =$ $\{w_1w_2: w_1, w_2 \in E(M), |w_1 \cap w_2| = 1\}$. Evidently, $L^*(M)$ is obtainable from the ordinary line graph L(M) by removal of all edges which represent multiple adjacency of edges in the root multigraph M. In other words, the operator L^* represents doubly adjacent edges in M as if they were nonadjacent in M.

Theorem 5 [4]. Given a multigraph M, the following statements are equivalent.

- (i) M is P_3 -decomposable.
- (ii) $L^*(M)$ has a 1-factor.

Therefore checking whether a multigraph M is P_3 -decomposable can be done in polynomial time $O(e(M)^{2.5})$, cf [4]. Some original sufficient conditions for M to be P_3 -decomposable may be found in [1, 4].

2. $\{C_2, P_3\}$ -Decomposition

Theorem 6. Let M be a multigraph and let L(M) be the line graph of M. The following statements are equivalent.

- (i) M is $\{C_2, P_3\}$ -decomposable.
- (ii) Each component of M has an even number of edges.
- (iii) Each component of L(M) has an even number of vertices.
- (iv) L(M) has a 1-factor.

Proof. Each of the implications in the cycle $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (iv) \Rightarrow (i)$ is obvious or well-known. Well-known is the implication $(iii) \Rightarrow (iv)$ following from the result of Summer [8] and Las Vergnas [6] which says that every connected claw-free graph of even order has a 1-factor.

3. $\{P_3, 2K_2\}$ -Decomposition

Theorem 7. Let M be a multigraph. Let $L^*(M)$ and $\overline{L(M)}$ be the *-line graph and the complement of the line graph L(M) of M, respectively. The following statements are mutually equivalent.

- (i) M is $\{P_3, 2K_2\}$ -decomposable.
- (ii) M has an even number, e(M), of edges and the multiplicity of any edge does not exceed e(M)/2.
- (iii) The graph $\tilde{L} := L^*(M) \cup \overline{L(M)}$ has a 1-factor.

Proof. Implication (i) \Rightarrow (ii) is true because e(M)/2 is the number of parts and parallel edges must be in different parts of a decomposition. Implication (ii) \Rightarrow (iii) is true because the order $v(\tilde{L}) = e(M)$ is even and the minimum degree $\delta(\tilde{L}) \geq \frac{1}{2}v(\tilde{L})$, whence, by Dirac's theorem, the graph \tilde{L} has a Hamiltonian cycle. Implication (iii) \Rightarrow (i) is obvious.

4. $\{C_2, 2K_2\}$ -Decomposition

Given a multigraph M, let G(M) denote the graph induced by the edge set $E(G(M)) := \{xy : p_M(x, y) \equiv 1 \pmod{2}\}$. Evidently, a graph isomorphic to G(M) is obtainable from M both by removing all edges of the maximal family of pairwise edge-disjoint copies of C_2 and by removing all resulting isolated vertices. Thus $2K_2$ -edges in any $\{C_2, 2K_2\}$ -decomposition of M induce a multigraph M' containing a subgraph isomorphic to G(M) (in fact, $p_{M'}(x, y) \geq 1$ whenever $xy \in E(G(M))$).

If $E' \subset E(M)$, $f \in E(M)$, and $w \in V(M)$ then M - E' (or M - f) is the spanning submultigraph of M obtained by removing the edges only (E'or f), while M - w is obtained from M by removing the vertex w together with all edges incident to w.

Figure 1. Eight families of multigraphs M

edge :	heavy	thin	doubled	dotted
multiplicity :	odd	1	$\operatorname{even} \geq 2$	$\operatorname{even} \geq 0$

116

Table 1. Codes in Figure 1

Theorem 8. Let M be a multigraph and let $\overline{L^*(M)}$ be the complement of the *-line graph $L^*(M)$ of M. The following three statements are mutually equivalent.

- (i) M is $\{C_2, 2K_2\}$ -decomposable.
- (ii) $L^*(M)$ has a 1-factor.
- (iii) Each of the following five conditions holds:
 - (0) e(M) is even,
 - (1) $\operatorname{val}_M(x) + \operatorname{deg}_{G(M)}(x) \le e(M)$ for every $x \in V(M)$,
 - (2) if $xy \in E(G(M))$ then $\operatorname{val}_M(x) + \operatorname{val}_M(y) p_M(x,y) < e(M)$,
 - (3) if $yx, xz \in E(G(M))$ then $1 + \operatorname{val}_M(x) + p_M(y, z) < e(M)$,
 - (4) M is different from each of the (forbidden) multigraphs shown in Figure 1.

A vertex y is called an *odd neighbour* of a vertex x if M has an edge xy whose multiplicity $p_M(x, y)$ is odd.

Proposition 9. The following condition (i') is an equivalent of (i) above for i = 1, 2, 3.

- (1') The number of odd neighbours of any vertex x does not exceed the number of all edges nonincident to x;
- (2') There is no edge xy adjacent to every other edge and with odd multiplicity $p_M(x, y)$;
- (3') There are no two adjacent edges yx, xz both with odd multiplicities and such that among the remaining edges at most one is not a neighbour of both yx and xz.

Proposition 10. Each multigraph depicted in Figure 1 satisfies all conditions (0)–(3) and is not $\{C_2, 2K_2\}$ -decomposable.

The following converse result is of importance.

Lemma 11. Every multigraph M which satisfies conditions (0)–(3), has $e(G(M)) \leq 4$, and is not $\{C_2, 2K_2\}$ -decomposable is depicted in Figure 1.

Proof. Suppose that M is a counterexample. Since M is not C_2 -decomposable, e(G(M)) > 0. Due to (0), G(M) has two or four edges. Consider two main cases A and B.

A. e(G(M)) = 4. As G(M) is not $2K_2$ -decomposable, either G(M) contains a triangle or otherwise $\Delta(G(M)) \geq 3$. Consider the following subcases.

A1. $\Delta(G(M)) = 4$. Then G(M) is a star with a central vertex w and M - w is C_2 -decomposable. Moreover, $e(M - w) \ge 4$ by (1). Since M satisfies (2), not all edges of M - w are incident to one vertex of G(M). On the other hand, each edge of M - w has both endvertices in G(M) as well as there is no $2K_2$ in M - w because otherwise G(M) together with any two pairs of parallel edges of M - w which do not intersect at G(M) is $2K_2$ -decomposable. Consequently, edges of M - w induce a "multiple triangle" on three hanging vertices of G(M). Therefore no parallel edges can join w to a vertex off the "triangle". Hence M appears in Figure 1, a contradiction.

A2. $\Delta(G(M)) = 3$ and G(M) contains no triangle. Let w be the degree-3 central vertex of the star of G(M), let f and wx_i with i = 1, 2, 3 be the four edges of G(M) with notation such that the edge f is incident to x_3 if G(M) is connected. Then e(M - w) > 2 by (1). It is easily seen that each pair of parallel edges of M - w has a vertex in $\{x_1, x_2, x_3\}$. Hence the multiplicity of f is one if f is not incident to x_3 . The multiplicity of f is one, too, otherwise. Namely, by (2), M has a pair of parallel edges which are nonadjacent to the edge wx_3 of G(M). These are x_1-x_2 edges because otherwise the pair together with G(M) is $2K_2$ -decomposable (the edge f being matched with wx_i if x_i is an endvertex of the pair, $i \neq 3$). Now, clearly, the multiplicity of f is one. Consequently, by (3), each vertex x_i is incident to parallel edges of M - w; moreover, one can see that all parallel edges of M - w are of the form x_ix_j only. Similarly, $\deg_M(w) = 3$ only, whence M appears in Figure 1, a contradiction.

A3. G(M) contains a triangle. Let the vertices of the triangle be denoted by x_i , i = 1, 2, 3. Let f stand for the remaining edge of G(M). Then each pair of parallel edges are incident to some x_i because otherwise the pair and G(M) make up a $2K_2$ -decomposable submultigraph. Assume that the edge f has no vertex in the triangle of G(M). Hence the multiplicity of f is one. Moreover, by (3), M has two pairs of parallel edges of the form $x_i z$ and $x_j \tilde{z}$ where x_i , x_j are distinct vertices of the triangle of G(M) and z, \tilde{z} are both off the triangle. Then $\tilde{z} = z$ because otherwise the two pairs and G(M) would be $2K_2$ -decomposable. Moreover, f is either incident to z or not; and in either case M appears in Figure 1, a contradiction.

Assume that f is incident to a vertex, say x_1 , in the triangle of G(M). Then, by (2), M has parallel edges of the form x_2z and $x_3\tilde{z}$ where z, \tilde{z} are vertices off the triangle of G(M). Hence $\tilde{z} = z$ can be seen. Moreover, the multiplicity of f is one if f is not incident to z. Then, as well as if $f = x_1z$, the multigraph M appears in Figure 1, a contradiction.

B. e(G(M)) = 2. As G(M) is not $2K_2$ -decomposable, $\Delta(G(M)) = 2$, i.e., $E(G(M)) = \{wx_1, wx_2\}$. Each pair of parallel edges of M - w has an endvertex in $\{x_1, x_2\}$ because otherwise G(M) together with a nonincident pair is $2K_2$ -decomposable. Then also two mutually nonadjacent pairs of parallel edges in M - w taken together with G(M) make up a $2K_2$ -decomposable submultigraph of M. By (2), however, M - w has parallel edges nonadjacent to either edge of G(M). Hence, there is a vertex y of M which is adjacent to both x_1 and x_2 and $y \neq w$. Moreover, one can see that no other vertex can be a neighbour of w. Therefore M appears in Figure 1, a contradiction.

Proof of Theorem 8. Note that the equivalence (i) \Leftrightarrow (ii) and implication (i) \Rightarrow (iii) are clear.

It remains to prove the converse implication (iii) \Rightarrow (i) for all M with $e(G(M)) \geq 6$. To this end, let us assume to the contrary that M is a multigraph with a minimum number of edges and $e(G(M)) \geq 6$, which satisfies (0)–(3) and still M is not $\{C_2, 2K_2\}$ -decomposable. Then M contains parallel edges because otherwise G(M) = M and, by (0), (1), (3) and Theorem 1, M is $2K_2$ -decomposable. By the minimality of M, for any pair of parallel edges f_1, f_2 , at least one of the conditions (1)–(3) is false if $M \leftarrow M - \{f_1, f_2\}$. Moreover, e(G(M)) is even by (0) and the definition of G(M). As the simple graph G(M) is not $2K_2$ -decomposable, $\Delta(G(M)) > \frac{e(G(M))}{2} \geq 3$ by Theorem 1. Let $w \in V(M)$ satisfy $\deg_{G(M)}(w) = \Delta(G(M))$. One can easily see that if we remove any pair of parallel edges incident to w, we get a multigraph satisfying (0)–(3), a contradiction to the minimality of M. Therefore $\deg_{G(M)}(w) = \operatorname{val}_M(w)$. By Theorem 1, since M is not $2K_2$ -decomposable, $\Delta(M) > \frac{e(M)}{2}$ or $e(M[\{x, y, z\}]) > \frac{e(M)}{2}$ for some $\{x, y, z\} \subset V(M)$. Consider the following cases.

A. $\Delta(M) > \frac{e(M)}{2}$. Let $u \in V(M)$ satisfy $\operatorname{val}_M(u) = \Delta(M)$. Then $u \neq w$ because otherwise (1) would be violated. Moreover, $\deg_{G(M)}(w) > \deg_{G(M)}(u)$ is clear. Therefore u is incident to some parallel edges.

Let $t \in V(M)$ satisfy $p_M(u,t) \ge p_M(u,x)$ for any $x \in V(M)$. Then

 $p_M(u,t) \ge 2$ whence $t \ne w$. Define M' to be a submultigraph of M obtained by removing two parallel u - t edges. By the minimality of M, one of the conditions (1)–(3) is false if $M \leftarrow M'$.

A1. Suppose that (1) is false for a vertex x of M'. Then x = w is the only possibility whence $e(M) - 2 = e(M') < 2\text{val}_M(w) \leq e(M)$, i.e., $\text{val}_M(w) = \frac{e(M)}{2}$. Hence, since $\text{val}_M(u) > \text{val}_M(w)$, the vertices u and w are adjacent and the edge wu is adjacent to all remaining edges of M. This contradicts (2) since clearly $p_M(u, w) < 2$ by the choice of w.

A2. Suppose that (2) is false for M'. Then there is a vertex $y \in V(M)$ such that $wy \in E(G(M))$ and wy is adjacent to all remaining edges of M'. As M satisfies (2), $y \notin \{u,t\}$ whence $p_M(u,t) = 2$ (and moreover, $p_M(u,x) \leq 2$ for any $x \in V(M)$). Thus $4 \leq \Delta(G(M)) < \Delta(M) =$ $\operatorname{val}_M(u) = p_M(u,t) + p_M(u,y) + p_M(u,w) \leq 5$. Hence $\Delta(M) = 5$ and $p_M(u,y) = 2$. Therefore $10 = 2\Delta(M) > e(M) \geq e(G(M)) + p_M(u,t) + p_M(u,y) \geq 10$, a contradiction.

A3. Suppose that (3) is false for M'. As M satisfies (3) as well as $\operatorname{val}_M(w) = \deg_M(w) \ge 4$ and $\operatorname{val}_M(u) \ge 5$, there is a vertex $y \notin \{t, u, w\}$ such that $uw, wy \in E(G(M))$ and $e(M) > 1 + \operatorname{val}_M(w) + p_M(u, y) \ge e(M') = e(M) - 2$. Since M satisfies (2), M' has an edge different from and nonadjacent to uw. Hence $p_M(u,t) = 2$ (and $p_M(u,x) \le 2$ for any $x \in V(M)$) whence $5 \ge p_M(u,t) + p_M(u,y) + p_M(u,w) = \operatorname{val}_M(u) \ge 5$. Therefore $\Delta(M) = 5, p_M(u,y) = 2$ and $10 = 2\Delta(M) > e(M) \ge e(G(M)) + p_M(u,t) + p_M(u,y) \ge 10$, a contradiction.

B. $\Delta(M) \leq \frac{e(M)}{2}$. Then there are three vertices $x, y, z \in V(M)$ such that $e(M[\{x, y, z\}]) > \frac{e(M)}{2}$ where the notation is chosen so that $p_M(y, z) \geq p_M(z, x) \geq p_M(x, y) \geq 1$. As $e(M) \geq 8$, $p_M(y, z) \geq 2$. Let M^+ be a multigraph obtained from M by removing two y-z edges. Clearly, one of the conditions (1)-(3) is false if $M \leftarrow M^+$.

B1. Suppose that (1) is false for M^+ . Then $e(M) - 2 = e(M^+) < 2\operatorname{val}_M(w) \le e(M)$, i.e., $\operatorname{val}_M(w) = \frac{e(M)}{2}$. Since $e(M[\{x, y, z\}]) > \frac{e(M)}{2}$, it follows that x = w, $p_M(y, z) \ge \frac{e(M)}{2} - 1$ and $wy, wz \in E(G(M))$, contrary to (3).

B2. Suppose that (2) is false for M^+ . As M satisfies (2), $p_M(y, z) = 2$. Hence $6 \ge e(M[\{x, y, z\}]) > \operatorname{val}_M(w) \ge 4$, i.e., $p_M(z, x) = 2 \ge p_M(x, y)$. Therefore a contradiction arises since either $p_M(x, y) = 1$ and $10 = 2e(M[\{x, y, z\}]) > e(M) \ge e(G(M)) + p_M(y, z) + p_M(x, z) \ge 10 \text{ or } p_M(x, y) = 2$ and $12 = 2e(M[\{x, y, z\}]) > e(M) \ge e(G(M)) + p_M(y, z) + p_M(x, z) + p_M(x, z) + p_M(x, z) + p_M(x, z) = 2$ $p_M(x, y) \ge 12.$

B3. Suppose that (3) is false for M^+ . As M satisfies (3), $w \notin \{x, y, z\}$ and $p_M(y,z) = 2$. Since $e(M) \ge 8$, $e(M[\{x, y, z\}]) \ge 5$ and therefore $p_M(x,z) = 2$. Thus $wx, wz \in E(G(M))$ and $1 + \operatorname{val}_M(w) + p_M(x,z) \ge e(M^+) = e(M) - 2$. Hence $p_M(x, y) = 1$. This implies $5 = e(M[\{x, y, z\}]) > \frac{e(M)}{2} \ge \operatorname{val}_M(z) = p_M(y, z) + p_M(x, z) + p_M(w, z) = 5$, a contradiction.

Acknowledgement

Research of the second author was partially supported by the Foundation for Polish Science Grant for Young Scholars.

References

- K. Bryś, M. Kouider, Z. Lonc and M. Mahéo, *Decomposition of multigraphs*, Discuss. Math. Graph Theory 18 (1998) 225–232.
- [2] Y. Caro, The decomposition of graphs into graphs having two edges, a manuscript.
- [3] Y. Caro and J. Schönheim, Decompositions of trees into isomorphic subtrees, Ars Comb. 9 (1980) 119–130.
- [4] J. Ivančo, M. Meszka and Z. Skupień, Decomposition of multigraphs into isomorphic graphs with two edges, Ars Comb. 51 (1999) 105–112.
- [5] E.B. Yavorskiĭ, Representations of oriented graphs and φ-transformations [Russian], in: A. N. Šarkovskiĭ, ed., Theoretical and Applied Problems of Differential Equations and Algebra [Russian] (Nauk. Dumka, Kiev, 1978) 247–250.
- [6] M. Las Vergnas, A note on matchings in graphs, Cahiers Centre Etudes Rech. Opér. 17 (1975) 257–260.
- [7] Z. Skupień, Problem 270 [on 2-edge-decomposable multigraphs], Discrete Math. 164 (1997) 320–321.
- [8] D.P. Sumner, *Graphs with 1-factors*, Proc. Amer. Math. Soc. 42 (1974) 8–12.

Received 4 October 2000 Revised 28 May 2001