DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH TWO EDGES

Jaroslav Ivančo
Department of Geometry and Algebra
Šafárik University
Jesenná 5, 04154 Košice, Slovakia
e-mail: ivanco@duro.upjs.sk
Mariusz Meszka and Zdziseaw Skupień
Faculty of Applied Mathematics AGH
University of Mining and Metallurgy
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: grmeszka@cyf-kr.edu.pl
e-mail: skupien@uci.agh.edu.pl

Abstract

Given a family \mathcal{F} of multigraphs without isolated vertices, a multigraph M is called \mathcal{F}-decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of \mathcal{F}. We present necessary and sufficient conditions for the existence of such decompositions if \mathcal{F} comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges. Keywords: edge decomposition, multigraph, line graph, 1-factor. 2000 Mathematics Subject Classification: 05C70.

1. Introduction

All multigraphs considered in what follows are loopless. Given a family \mathcal{F} of multigraphs without isolated vertices, an \mathcal{F}-decomposition of a multigraph M is a collection of submultigraphs which partition the edge set $E(M)$ of M
and are all isomorphic to members of \mathcal{F}. If such a decomposition exists, M is called \mathcal{F}-decomposable; and also H-decomposable if H is the only member of \mathcal{F}. Let $\mathcal{F}=\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$. By an H_{i}-edge in an \mathcal{F}-decomposition of M we mean an edge belonging to any decomposition part isomorphic to H_{i} for some $i=1,2, \ldots, t$.

If M is a multigraph, we write $M=(V, E)$ where $V=V(M)$ and $E=$ $E(M)$ stand for the vertex set and edge set of M, respectively. Cardinalities of those sets, denoted by $v(M)$ and $e(M)$, are called the order and size of M, respectively. For $S \subset V(M), M[S]$ denotes the submultigraph of M induced by S. The number of edges incident to a vertex x in M, denoted by $\operatorname{val}_{M}(x)$, is called the valency of x, whilst the number of neighbours of x in M, denoted by $\operatorname{deg}_{M}(x)$, is called the degree of x. As usual $\Delta(M)$ stands for the maximum valency among vertices of M. For any two vertices x, y of M, let $p_{M}(x, y)$ denote the number of edges joining x and y. We call $p_{M}(x, y)$ the multiplicity of an edge $x y$ in M. Edges joining the same vertices are called parallel edges (if they are distinct).

The aim of our paper is to provide necessary and sufficient conditions for a multigraph M to be $\left\{H_{1}, H_{2}\right\}$-decomposable, where H_{1}, H_{2} are any two multigraphs out of C_{2} (2-cycle), P_{3} (path with two edges), and $2 K_{2}$ (2-matching). Obviously, if M is H_{i}-decomposable for some $i=1,2$, then M is $\left\{H_{1}, H_{2}\right\}$-decomposable. Therefore the following known results are quoted.

Theorem 1 (Skupień [7], see [4] for a proof). A multigraph M is $2 K_{2}$ decomposable iff its size $e(M)$ is even, $\Delta(M) \leq \frac{e(M)}{2}$ and $e(M[\{x, y, z\}]) \leq$ $\frac{e(M)}{2}$ for all $\{x, y, z\} \subset V(M)$.

If M is a simple graph then the very last condition in Theorem 1 means that $M \neq K_{3} \cup \dot{\cup} K_{2}$, cf. Caro [2].

Proposition 2. A multigraph M is C_{2}-decomposable iff $p_{M}(x, y) \equiv 0$ $(\bmod 2)$ for all $x, y \in V(M)$.

Theorem 3 [5, 3]. A simple graph G is P_{3}-decomposable iff each component of G is of even size.

Corollary 4. A graph G is $\left\{P_{3}, 2 K_{2}\right\}$-decomposable iff the size e (G) of G is even.

Given a multigraph M, define the $*$-line graph of M, denoted by $L^{*}(M)$, to be the graph with vertex set $V\left(L^{*}(M)\right)=E(M)$ and edge set $E\left(L^{*}(M)\right)=$ $\left\{w_{1} w_{2}: w_{1}, w_{2} \in E(M),\left|w_{1} \cap w_{2}\right|=1\right\}$. Evidently, $L^{*}(M)$ is obtainable from the ordinary line graph $L(M)$ by removal of all edges which represent multiple adjacency of edges in the root multigraph M. In other words, the operator L^{*} represents doubly adjacent edges in M as if they were nonadjacent in M.

Theorem 5 [4]. Given a multigraph M, the following statements are equivalent.
(i) M is P_{3}-decomposable.
(ii) $L^{*}(M)$ has a 1-factor.

Therefore checking whether a multigraph M is P_{3}-decomposable can be done in polynomial time $O\left(e(M)^{2.5}\right)$, cf [4]. Some original sufficient conditions for M to be P_{3}-decomposable may be found in $[1,4]$.

2. $\left\{C_{2}, P_{3}\right\}$-Decomposition

Theorem 6. Let M be a multigraph and let $L(M)$ be the line graph of M. The following statements are equivalent.
(i) M is $\left\{C_{2}, P_{3}\right\}$-decomposable.
(ii) Each component of M has an even number of edges.
(iii) Each component of $L(M)$ has an even number of vertices.
(iv) $L(M)$ has a 1-factor.

Proof. Each of the implications in the cycle (i) \Rightarrow (ii) \Rightarrow (iii) $\Rightarrow($ iv $) \Rightarrow($ i) is obvious or well-known. Well-known is the implication (iii) \Rightarrow (iv) following from the result of Sumner [8] and Las Vergnas [6] which says that every connected claw-free graph of even order has a 1-factor.

3. $\left\{P_{3}, 2 K_{2}\right\}$-Decomposition

Theorem 7. Let M be a multigraph. Let $L^{*}(M)$ and $\overline{L(M)}$ be the *-line graph and the complement of the line graph $L(M)$ of M, respectively. The following statements are mutually equivalent.
(i) M is $\left\{P_{3}, 2 K_{2}\right\}$-decomposable.
(ii) M has an even number, $e(M)$, of edges and the multiplicity of any edge does not exceed $e(M) / 2$.
(iii) The graph $\tilde{L}:=L^{*}(M) \cup \overline{L(M)}$ has a 1-factor.

Proof. Implication (i) \Rightarrow (ii) is true because $e(M) / 2$ is the number of parts and parallel edges must be in different parts of a decomposition. Implication (ii) \Rightarrow (iii) is true because the order $v(\tilde{L})=e(M)$ is even and the minimum degree $\delta(\tilde{L}) \geq \frac{1}{2} v(\tilde{L})$, whence, by Dirac's theorem, the graph \tilde{L} has a Hamiltonian cycle. Implication (iii) \Rightarrow (i) is obvious.

4. $\left\{C_{2}, 2 K_{2}\right\}$-Decomposition

Given a multigraph M, let $G(M)$ denote the graph induced by the edge set $E(G(M)):=\left\{x y: p_{M}(x, y) \equiv 1(\bmod 2)\right\}$. Evidently, a graph isomorphic to $G(M)$ is obtainable from M both by removing all edges of the maximal family of pairwise edge-disjoint copies of C_{2} and by removing all resulting isolated vertices. Thus $2 K_{2}$-edges in any $\left\{C_{2}, 2 K_{2}\right\}$-decomposition of M induce a multigraph M^{\prime} containing a subgraph isomorphic to $G(M)$ (in fact, $p_{M^{\prime}}(x, y) \geq 1$ whenever $\left.x y \in E(G(M))\right)$.

If $E^{\prime} \subset E(M), f \in E(M)$, and $w \in V(M)$ then $M-E^{\prime}($ or $M-f)$ is the spanning submultigraph of M obtained by removing the edges only (E^{\prime} or f), while $M-w$ is obtained from M by removing the vertex w together with all edges incident to w.

Figure 1. Eight families of multigraphs M

edge :	heavy	thin	doubled	dotted
multiplicity :	odd	1	even ≥ 2	even ≥ 0

Table 1. Codes in Figure 1

Theorem 8. Let M be a multigraph and let $\overline{L^{*}(M)}$ be the complement of the *-line graph $L^{*}(M)$ of M. The following three statements are mutually equivalent.
(i) M is $\left\{C_{2}, 2 K_{2}\right\}$-decomposable.
(ii) $\overline{L^{*}(M)}$ has a 1-factor.
(iii) Each of the following five conditions holds:
(0) $e(M)$ is even,
(1) $\operatorname{val}_{M}(x)+\operatorname{deg}_{G(M)}(x) \leq e(M)$ for every $x \in V(M)$,
(2) if $x y \in E(G(M))$ then $\operatorname{val}_{M}(x)+\operatorname{val}_{M}(y)-p_{M}(x, y)<e(M)$,
(3) if $y x, x z \in E(G(M))$ then $1+\operatorname{val}_{M}(x)+p_{M}(y, z)<e(M)$,
(4) M is different from each of the (forbidden) multigraphs shown in Figure 1.

A vertex y is called an odd neighbour of a vertex x if M has an edge $x y$ whose multiplicity $p_{M}(x, y)$ is odd.

Proposition 9. The following condition (i^{\prime}) is an equivalent of (i) above for $i=1,2,3$.
(1') The number of odd neighbours of any vertex x does not exceed the number of all edges nonincident to x;
(2') There is no edge xy adjacent to every other edge and with odd multiplicity $p_{M}(x, y)$;
(3') There are no two adjacent edges $y x, x z$ both with odd multiplicities and such that among the remaining edges at most one is not a neighbour of both $y x$ and $x z$.

Proposition 10. Each multigraph depicted in Figure 1 satisfies all conditions (0)-(3) and is not $\left\{C_{2}, 2 K_{2}\right\}$-decomposable.

The following converse result is of importance.
Lemma 11. Every multigraph M which satisfies conditions (0)-(3), has $e(G(M)) \leq 4$, and is not $\left\{C_{2}, 2 K_{2}\right\}$-decomposable is depicted in Figure 1.

Proof. Suppose that M is a counterexample. Since M is not C_{2}-decomposable, $e(G(M))>0$. Due to (0), $G(M)$ has two or four edges. Consider two main cases A and B.
A. $e(G(M))=4$. As $G(M)$ is not $2 K_{2}$-decomposable, either $G(M)$ contains a triangle or otherwise $\Delta(G(M)) \geq 3$. Consider the following subcases.

A1. $\Delta(G(M))=4$. Then $G(M)$ is a star with a central vertex w and $M-w$ is C_{2}-decomposable. Moreover, $e(M-w) \geq 4$ by (1). Since M satisfies (2), not all edges of $M-w$ are incident to one vertex of $G(M)$. On the other hand, each edge of $M-w$ has both endvertices in $G(M)$ as well as there is no $2 K_{2}$ in $M-w$ because otherwise $G(M)$ together with any two pairs of parallel edges of $M-w$ which do not intersect at $G(M)$ is $2 K_{2}$-decomposable. Consequently, edges of $M-w$ induce a "multiple triangle" on three hanging vertices of $G(M)$. Therefore no parallel edges can join w to a vertex off the "triangle". Hence M appears in Figure 1, a contradiction.

A2. $\Delta(G(M))=3$ and $G(M)$ contains no triangle. Let w be the degree-3 central vertex of the star of $G(M)$, let f and $w x_{i}$ with $i=1,2,3$ be the four edges of $G(M)$ with notation such that the edge f is incident to x_{3} if $G(M)$ is connected. Then $e(M-w)>2$ by (1). It is easily seen that each pair of parallel edges of $M-w$ has a vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$. Hence the multiplicity of f is one if f is not incident to x_{3}. The multiplicity of f is one, too, otherwise. Namely, by (2), M has a pair of parallel edges which are nonadjacent to the edge $w x_{3}$ of $G(M)$. These are $x_{1}-x_{2}$ edges because otherwise the pair together with $G(M)$ is $2 K_{2}$-decomposable (the edge f being matched with $w x_{i}$ if x_{i} is an endvertex of the pair, $i \neq 3$). Now, clearly, the multiplicity of f is one. Consequently, by (3), each vertex x_{i} is incident to parallel edges of $M-w$; moreover, one can see that all parallel edges of $M-w$ are of the form $x_{i} x_{j}$ only. Similarly, $\operatorname{deg}_{M}(w)=3$ only, whence M appears in Figure 1, a contradiction.

A3. $G(M)$ contains a triangle. Let the vertices of the triangle be denoted by $x_{i}, i=1,2,3$. Let f stand for the remaining edge of $G(M)$. Then each pair of parallel edges are incident to some x_{i} because otherwise the pair and $G(M)$ make up a $2 K_{2}$-decomposable submultigraph. Assume that the edge f has no vertex in the triangle of $G(M)$. Hence the multiplicity of f is one. Moreover, by (3), M has two pairs of parallel edges of the form $x_{i} z$ and $x_{j} \tilde{z}$ where x_{i}, x_{j} are distinct vertices of the triangle of $G(M)$ and z, \tilde{z} are both off the triangle. Then $\tilde{z}=z$ because otherwise the two pairs
and $G(M)$ would be $2 K_{2}$-decomposable. Moreover, f is either incident to z or not; and in either case M appears in Figure 1, a contradiction.

Assume that f is incident to a vertex, say x_{1}, in the triangle of $G(M)$. Then, by (2), M has parallel edges of the form $x_{2} z$ and $x_{3} \tilde{z}$ where z, \tilde{z} are vertices off the triangle of $G(M)$. Hence $\tilde{z}=z$ can be seen. Moreover, the multiplicity of f is one if f is not incident to z. Then, as well as if $f=x_{1} z$, the multigraph M appears in Figure 1, a contradiction.
B. $e(G(M))=2$. As $G(M)$ is not $2 K_{2}$-decomposable, $\Delta(G(M))=2$, i.e., $E(G(M))=\left\{w x_{1}, w x_{2}\right\}$. Each pair of parallel edges of $M-w$ has an endvertex in $\left\{x_{1}, x_{2}\right\}$ because otherwise $G(M)$ together with a nonincident pair is $2 K_{2}$-decomposable. Then also two mutually nonadjacent pairs of parallel edges in $M-w$ taken together with $G(M)$ make up a $2 K_{2}$-decomposable submultigraph of M. By (2), however, $M-w$ has parallel edges nonadjacent to either edge of $G(M)$. Hence, there is a vertex y of M which is adjacent to both x_{1} and x_{2} and $y \neq w$. Moreover, one can see that no other vertex can be a neighbour of w. Therefore M appears in Figure 1, a contradiction.

Proof of Theorem 8. Note that the equivalence (i) \Leftrightarrow (ii) and implication (i) \Rightarrow (iii) are clear.

It remains to prove the converse implication (iii) \Rightarrow (i) for all M with $e(G(M)) \geq 6$. To this end, let us assume to the contrary that M is a multigraph with a minimum number of edges and $e(G(M)) \geq 6$, which satisfies (0)-(3) and still M is not $\left\{C_{2}, 2 K_{2}\right\}$-decomposable. Then M contains parallel edges because otherwise $G(M)=M$ and, by (0), (1), (3) and Theorem $1, M$ is $2 K_{2}$-decomposable. By the minimality of M, for any pair of parallel edges f_{1}, f_{2}, at least one of the conditions (1)-(3) is false if $M \leftarrow M-\left\{f_{1}, f_{2}\right\}$. Moreover, $e(G(M))$ is even by (0) and the definition of $G(M)$. As the simple graph $G(M)$ is not $2 K_{2}$-decomposable, $\Delta(G(M))>$ $\frac{e(G(M))}{2} \geq 3$ by Theorem 1. Let $w \in V(M)$ satisfy $\operatorname{deg}_{G(M)}(w)=\Delta(G(M))$. One can easily see that if we remove any pair of parallel edges incident to w, we get a multigraph satisfying (0)-(3), a contradiction to the minimality of M. Therefore $\operatorname{deg}_{G(M)}(w)=\operatorname{val}_{M}(w)$. By Theorem 1, since M is not $2 K_{2}$-decomposable, $\Delta(M)>\frac{e(M)}{2}$ or $e(M[\{x, y, z\}])>\frac{e(M)}{2}$ for some $\{x, y, z\} \subset V(M)$. Consider the following cases.
A. $\Delta(M)>\frac{e(M)}{2}$. Let $u \in V(M)$ satisfy $\operatorname{val}_{M}(u)=\Delta(M)$. Then $u \neq w$ because otherwise (1) would be violated. Moreover, $\operatorname{deg}_{G(M)}(w)>$ $\operatorname{deg}_{G(M)}(u)$ is clear. Therefore u is incident to some parallel edges.

Let $t \in V(M)$ satisfy $p_{M}(u, t) \geq p_{M}(u, x)$ for any $x \in V(M)$. Then
$p_{M}(u, t) \geq 2$ whence $t \neq w$. Define M^{\prime} to be a submultigraph of M obtained by removing two parallel $u-t$ edges. By the minimality of M, one of the conditions (1)-(3) is false if $M \leftarrow M^{\prime}$.

A1. Suppose that (1) is false for a vertex x of M^{\prime}. Then $x=w$ is the only possibility whence $e(M)-2=e\left(M^{\prime}\right)<2 \operatorname{val}_{M}(w) \leq e(M)$, i.e., $\operatorname{val}_{M}(w)=\frac{e(M)}{2}$. Hence, since $\operatorname{val}_{M}(u)>\operatorname{val}_{M}(w)$, the vertices u and w are adjacent and the edge $w u$ is adjacent to all remaining edges of M. This contradicts (2) since clearly $p_{M}(u, w)<2$ by the choice of w.

A2. Suppose that (2) is false for M^{\prime}. Then there is a vertex $y \in V(M)$ such that $w y \in E(G(M))$ and $w y$ is adjacent to all remaining edges of M^{\prime}. As M satisfies (2), $y \notin\{u, t\}$ whence $p_{M}(u, t)=2$ (and moreover, $p_{M}(u, x) \leq 2$ for any $\left.x \in V(M)\right)$. Thus $4 \leq \Delta(G(M))<\Delta(M)=$ $\operatorname{val}_{M}(u)=p_{M}(u, t)+p_{M}(u, y)+p_{M}(u, w) \leq 5$. Hence $\Delta(M)=5$ and $p_{M}(u, y)=2$. Therefore $10=2 \Delta(M)>e(M) \geq e(G(M))+p_{M}(u, t)+$ $p_{M}(u, y) \geq 10$, a contradiction.

A3. Suppose that (3) is false for M^{\prime}. As M satisfies (3) as well as $\operatorname{val}_{M}(w)=\operatorname{deg}_{M}(w) \geq 4$ and $\operatorname{val}_{M}(u) \geq 5$, there is a vertex $y \notin\{t, u, w\}$ such that $u w, w y \in E(G(M))$ and $e(M)>1+\operatorname{val}_{M}(w)+p_{M}(u, y) \geq e\left(M^{\prime}\right)=$ $e(M)-2$. Since M satisfies (2), M^{\prime} has an edge different from and nonadjacent to $u w$. Hence $p_{M}(u, t)=2$ (and $p_{M}(u, x) \leq 2$ for any $\left.x \in V(M)\right)$ whence $5 \geq p_{M}(u, t)+p_{M}(u, y)+p_{M}(u, w)=\operatorname{val}_{M}(u) \geq 5$. Therefore $\Delta(M)=5, p_{M}(u, y)=2$ and $10=2 \Delta(M)>e(M) \geq e(G(M))+p_{M}(u, t)+$ $p_{M}(u, y) \geq 10$, a contradiction.
B. $\Delta(M) \leq \frac{e(M)}{2}$. Then there are three vertices $x, y, z \in V(M)$ such that $e(M[\{x, y, z\}])>\frac{e(M)}{2}$ where the notation is chosen so that $p_{M}(y, z) \geq$ $p_{M}(z, x) \geq p_{M}(x, y) \geq 1$. As $e(M) \geq 8, p_{M}(y, z) \geq 2$. Let M^{+}be a multigraph obtained from M by removing two $y-z$ edges. Clearly, one of the conditions $(1)-(3)$ is false if $M \leftarrow M^{+}$.

B1. Suppose that (1) is false for M^{+}. Then $e(M)-2=e\left(M^{+}\right)<$ $2 \operatorname{val}_{M}(w) \leq e(M)$, i.e., $\operatorname{val}_{M}(w)=\frac{e(M)}{2}$. Since $e(M[\{x, y, z\}])>\frac{e(M)}{2}$, it follows that $x=w, p_{M}(y, z) \geq \frac{e(M)}{2}-1$ and $w y, w z \in E(G(M))$, contrary to (3).

B2. Suppose that (2) is false for M^{+}. As M satisfies (2), $p_{M}(y, z)=2$. Hence $6 \geq e(M[\{x, y, z\}])>\operatorname{val}_{M}(w) \geq 4$, i.e., $p_{M}(z, x)=2 \geq p_{M}(x, y)$. Therefore a contradiction arises since either $p_{M}(x, y)=1$ and $10=$ $2 e(M[\{x, y, z\}])>e(M) \geq e(G(M))+p_{M}(y, z)+p_{M}(x, z) \geq 10$ or $p_{M}(x, y)=$ 2 and $12=2 e(M[\{x, y, z\}])>e(M) \geq e(G(M))+p_{M}(y, z)+p_{M}(x, z)+$
$p_{M}(x, y) \geq 12$.
B3. Suppose that (3) is false for M^{+}. As M satisfies (3), $w \notin\{x, y, z\}$ and $p_{M}(y, z)=2$. Since $e(M) \geq 8, e(M[\{x, y, z\}]) \geq 5$ and therefore $p_{M}(x, z)=2$. Thus $w x, w z \in E(G(M))$ and $1+\operatorname{val}_{M}(w)+p_{M}(x, z) \geq$ $e\left(M^{+}\right)=e(M)-2$. Hence $p_{M}(x, y)=1$. This implies $5=e(M[\{x, y, z\}])>$ $\frac{e(M)}{2} \geq \operatorname{val}_{M}(z)=p_{M}(y, z)+p_{M}(x, z)+p_{M}(w, z)=5$, a contradiction.

Acknowledgement

Research of the second author was partially supported by the Foundation for Polish Science Grant for Young Scholars.

References

[1] K. Bryś, M. Kouider, Z. Lonc and M. Mahéo, Decomposition of multigraphs, Discuss. Math. Graph Theory 18 (1998) 225-232.
[2] Y. Caro, The decomposition of graphs into graphs having two edges, a manuscript.
[3] Y. Caro and J. Schönheim, Decompositions of trees into isomorphic subtrees, Ars Comb. 9 (1980) 119-130.
[4] J. Ivančo, M. Meszka and Z. Skupień, Decomposition of multigraphs into isomorphic graphs with two edges, Ars Comb. 51 (1999) 105-112.
[5] E.B. Yavorskiĭ, Representations of oriented graphs and φ-transformations [Russian], in: A. N. Šarkovskiĭ, ed., Theoretical and Applied Problems of Differential Equations and Algebra [Russian] (Nauk. Dumka, Kiev, 1978) 247-250.
[6] M. Las Vergnas, A note on matchings in graphs, Cahiers Centre Etudes Rech. Opér. 17 (1975) 257-260.
[7] Z. Skupień, Problem 270 [on 2-edge-decomposable multigraphs], Discrete Math. 164 (1997) 320-321.
[8] D.P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974) 8-12.

