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A PROOF OF MENGER’S THEOREM

BY CONTRACTION
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Abstract

A short proof of the classical theorem of Menger concerning the
number of disjoint AB-paths of a finite graph for two subsets A and
B of its vertex set is given. The main idea of the proof is to contract
an edge of the graph.
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Proofs of Menger’s Theorem are given in [7, 6, 4, 8, 2]. A short proof is given
by T. Böhme, F. Göring and J. Harant in [1]; another short proof based on
edge deletion is given by the author in [5]. The new idea here is to get a
short proof by contracting an arbitrary edge of the original graph.

For terminology and notation not defined here we refer to [3]. A graph
with no edges is denoted by its vertex set. Let G be a finite graph (loops and
multiple edges being allowed). For an edge e of G let G− e and G/e denote
the graphs obtained from G by removing e and contracting e to one vertex
ve, respectively. For (possibly empty) sets of vertices A and B of G let an
AB-separator be a set of vertices of G such that the graph obtained from G
by deleting these vertices contains no path from A to B. Note that a single
vertex of A∩B is considered as a path from A to B, too. An AB-connector
is a subgraph of G such that each of its components is a path from A to B
having only one vertex in common with A and B, respectively. In particular
the empty graph is also an AB-connector. If we contract an egde incident
with a vertex of A or B then the resulting vertex is considered to be a vertex
of A or B, respectively.
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Theorem (Menger, 1927). Let G be a finite graph, A and B sets of vertices
of G, and s the minimum number of vertices forming an AB-separator.
Then there is an AB-connector C with |C ∩A| = s.

Proof. If G is edgeless then set C = A∩B. Suppose, G is a counterexample
with |E(G)| minimal. Then G contains an edge e from x to y and G/e has
an AB-separator S with |S| < s, otherwise we are done. Obviously, ve ∈ S.
Then P = (S \{ve})∪{x, y} is an AB-separator of G with |P | = |S|+1 = s.
An AP -separator (as well as an PB-separator) of G− e is an AB-separator
of G. Consequently, G− e has an AP -connector X and a PB-connector Y
containing P . Since X ∩ Y = P , the set C = (X ∪ Y ) is an AB-connector
of G with |C ∩A| = s, a contradiction.
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