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Abstract

Diirer’s engraving Melencolia I famously includes a perspective
view of a solid polyhedral block of which the visible portion is an
8-circuit bounding a pentagon-triple+triangle patch. The polyhedron
is usually taken to be a cube truncated on antipodal corners, but
an infinity of others are compatible with the visible patch. Con-
struction of all cubic polyhedra compatible with the visible portion
(i.e., Diirer Polyhedra) is discussed, explicit graphs and symmetries
are listed for small cases (< 18 vertices) and total counts are given for
10 < vertices < 26.
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1. INTRODUCTION

How well can we reconstruct a simple geometrical object from a single snap-
shot in which one hemisphere is lit and the other is in darkness? In Albrecht
Diirer’s famous engraving of 1514, Melencolia I, a winged figure broods over
a collection of objects that includes a large, strikingly irregular, polyhe-
dral stone block described variously by art historians as a rhomboid [1],
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a truncated rhomboid or truncated rhombo-hedron [2] (‘abgestumpfter Rhom-
boeder’ [3]). Four faces only of the block are visible (a triangle and three
pentagons). It is suggested [4] that the whole is a cube truncated on op-
posite vertices, a claim supported by a view of a truncated cube in Diirer’s
writings on perspective geometry [5], and a preliminary drawing in the Dres-
den Sketchbook [6] with hidden lines marked. The antipodally bi-truncated
cube is sometimes called ‘Diirer’s octahedron’ in the mathematical litera-
ture [7, 8], but this identification is clearly combinatorial rather than affine
in nature, as the angles of the figure as drawn are famously irregular, even
after allowance is made for perspective effects [9, 10, 11].

Here we ask another combinatorial question: what can we deduce with
certainty about the hidden dark side of the mysterious polyhedron, simply
from what we can see in the engraving? An infinite set of completions, each
equally deserving the appellation of Direr Polyhedron, is found. As the
reasoning has applications to problems of blind-side reconstruction of poly-
hedra in other contexts, and uses only elementary graph theory, it is briefly
summarised here along with the specific solutions for Diirer polyhedra.

2. METHOD

Assume that the object to be reconstructed is a cubic polyhedron P without
holes or handles (i.e., that the graph of vertices and edges has three edges
meeting at every vertex, is three-connected and can be drawn in the plane
without edge crossings [12]). Note that in [12, p. 235] is also given a proof
of the famous Steinitz theorem [13, 14]:

A graph G is (isomorphic to) the graph G(P) of a cubic polyhedron P
if and only if it is planar and three-connected;

which is important for our investigation.

PV and P’ are respectively the visible and invisible parts of P, separated
by a ‘terminator’ cycle C® = C(P?). Let P* denote the union of P' and C°.

The reconstruction problem is converted to one of finding suitable in-fillings
of a Schlegel diagram of P by using graphs embedded in the plane i.e.,
G = G(P), G* = G(PY), G* = G(P*). The terminator becomes the circuit
C? = C(PY) bounding a finite face of G°. Symbols v, e, f with appropriate
superscripts denote the numbers of vertices, edges and faces of G, G® and
G*. Clearly, v* =v — 1%, e* = e — € and f* = f — f¥ and, as P is cubic,
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e* = 3v*/2+30%/2 — €0,
f* = v /2+092+2- f0

In our case, P is a Direr polyhedron, P = D (i.e., one that contains the
triangle + triple-pentagon patch seen in the engraving). G(D°) has v = 10,
eV = 13, f9 = 4, with four divalent vertices in the circuit C°, and hence
e* > 2, f* > 3 for v* > 0, and, if fr denotes the number of faces of size r,
S (6 —r)f, = 12, thus 3,(6 — r) f* = 6. The in-filling problem is sketched
in Figure 1.
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Figure 1. Diirer polyhedron and its Schlegel diagram. Regions III and V denote the
triangular and pentagonal faces of the visible hemisphere of the polyhedron. e are
saturated trivalent vertices; o have two valencies in the visible portion, requiring
incidence with an edge within the hidden hemisphere (the shaded circular disk).

A systematic procedure for generating all solutions is now described.

Let G = G(P) with C° = C(G°) be a solution of our problem. Delete
all edges that are incident with vertices of degree 3 in G°, and after that,
all isolated vertices. The remaining graph B(G,C) has ¢ = ¢ (B(G, C"))
components B;, where 1 < ¢ < 2. Each component B; is an internal bridge
of G with respect to C°. Let B; = B,;(G,C°) denote the set of all bridges
B for which the number of vertices of degree 1 is 5° = b°(B) = j. Clearly,
in our case is § = 2 or 4.
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For j = 2 there exists exactly one solution (two bridges B;, Bs isomorphic
to the complete graph Ks). See Figure 2.

one bridge
two

bridges = 1

s*=0 =41

Figure 2. Possible bridges for j = 4. The complete set of possibilities with s* < 1.

For j = 4 there exist one-bridge solutions B, which have v* = v*(B) vertices
of degree 3, e* = ¢*(B) edges, and the number f* = f*(B) of faces of B is
defined by f* := f(G*) — 1. Clearly, 3v* = 2e* — b’. The general solutions
are therefore, for integer s* > —b%/2:

e* = 3s* +28°,
v* = 28° 4+ b,
f* = s*+0+1.

For § = 4 and small integers s*, the possible elements of B4 are listed in
Figure 2.
Small cases are easily checked by working through published complete
lists of graphs sorted by edge or vertex count [15] or generating new lists [16].
To solve our problem of finding polyhedra, we must take into account
the sequence of vertices in CY in order to decide on the number and placing
of the bridges within C°.
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The difficulty with the present approach is in assigning symmetry and check-
ing isomorphism for the polyhedra generated by the distinct placements
of the bridges within the Schegel diagram. The graph G° = G(D) has
C; symmetry, which may be broken, enhanced or reduced on filling in the
bridge(s). Hand enumeration of possibilities for bridges gives the set of the
first 78 Diirer polyhedra shown in Figure 3, listed in order of increasing v*.
Figure 4 shows the first 20 members of the series, drawn from the ‘topo-
logical coordinates’ [17], i.e., from scaled eigenvectors of their adjacency
matrices, and assigns them to their maximal point group symmetries; affine
realisations of any particular polyhedron may belong to subgroups of this
maximal group.

3. DISCUSSION

The smallest Diirer polyhedron is the Cs, object obtained by truncation of
a tetrahedron on three of its four vertices. Although it is a symmetrical,
uniquely minimal solution without hidden vertices, it would be balanced on
an edge when projected as in Melencolia I, and so can be rejected on physical
grounds as a candidate for the polyhedron that Diirer had in mind when
making the engraving, unless he was prepared to invoke hidden supports or
ignore impending collapse.

The two distinct solutions for v* = 2 are related by a Stone- Wales trans-
formation [18] i.e., a 90° rotation of the bridge B. One is the bi-truncated
cube (D3q4) which in an unsymmetrical realisation is the traditional expla-
nation for the solid in the engraving; the other has only C,; symmetry.

Clearly the class of Diirer polyhedra is infinite, as two distinct polyhedra
at any even value of v* can be obtained from the v* = 2 solutions by con-
verting the central hidden edge to a ladder of (v* —2)/2 fused squares. Each
solution for v* > 2 outside this series also generates an infinite set of larger
solutions by ladder extension. Some statistics on the initial growth of the
series of Diirer polyhedra can be obtained by filtering the Diirer polyhedra
from the lists of general cubic polyhedra available from the plantri program
of Brinkmann and Mckay [19]. As Table 1 shows, the Diirer polyhedra show
the expected combinatorial rise in absolute number as the number of ver-
tices increases, but appear to form a decreasing fraction of the population of
cubic polyhedra. Post hoc filtering is not an efficient way to generate subsets
of the cubic polyhedra, but the program could be adapted to generate only
Diirer polyhedra if it became important to have more complete lists.
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Figure 3. Diirer polyhedra on v = 10 + 2k vertices, (k = 0,1,2,3,4), shown
as bridges of the terminator circuit C(DP), each labelled with a multiplicity fac-
tor i.e., the number of non-isomorphic polyhedra derived by setting the given
bridge in C.
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10:3031 Cs, 12:1331 Cy  12:206: Dg;  14:1251 C;  14:2142 C;,
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14:21501 C5  14:3033 C, 16:12601: Cs; 16:1333 C;  16:2062 Cy
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Figure 4. The first 20 Diirer polyhedra, drawn from eigenvectors of the adjacency

matrix [17]. Polyhedra are labelled v : fafafs...: S, where v is the vertex count,
f» the number of faces of size r and S the maximal point group symmetry.
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Table 1. Comparison of counts for Diirer and general cubic polyhedra. N (D) and
N(c) are the respective numbers of Diirer and cubic polyhedra on v vertices, and
%D is their ratio, expressed as a percentage. The counts are obtained by filtering
the lists of distinct cubic polyhedra produced by the plantri program [19].

v 4 6 8 10 12 14 16 18 20 22 24 26
ND)y|loo0OO0O 1 2 4 13 58 308 1826 11810 80036
112
000

N(e) 5 14 50 233 1249 7595 49566 339722 2406841
%D | 2014 8 6 5 4 37 35 3.3

All these polyhedra are combinatorially compatible with what can be seen
in the engraving, though as the number of hidden vertices increases, the
implied metric and physical constraints become more severe. The identity
of the polyhedron in the engraving is a historical fact, recoverable or not,
and external evidence seems to point to the second-smallest Diirer polyhe-
dron, the bi-truncated cube, as the illustrated object. The purely internal
evidence is open to wider interpretation. Without making the anachronistic
claim that Diirer would have been able to find these polyhedra by the Fuler
theorem, we note that any one of the smaller members of the series could
have been found empirically by truncating the cube.
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