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Abstract

Given graphs G and H, a mapping f : V (G) → V (H) is a homo-
morphism if (f(u), f(v)) is an edge of H for every edge (u, v) of G. In
this paper, we initiate the study of computational complexity of locally
injective homomorphisms called partial covers of graphs. We motivate
the study of partial covers by showing a correspondence to generalized
(2,1)-colorings of graphs, the notion stemming from a practical prob-
lem of assigning frequencies to transmitters without interference. We
compare the problems of deciding existence of partial covers and of
full covers (locally bijective homomorphisms), which were previously
studied.
Keywords: covering projection, computational complexity, graph
homomorphism
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1. Introduction

Given graphs G and H, a mapping f : V (G) → V (H) is a homomorphism
if (f(u), f(v)) is an edge of H for every edge (u, v) of G. A homomorphism
from G to H is also called an H-coloring of G (since homomorphisms to
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the complete graphs correspond to ordinary colorings). Hell and Nešetřil
[14, 15] considered the complexity of deciding if an input graph G allows
a homomorphism into a fixed parameter graph H. They proved that this
question is polynomially solvable for graphs H which contain a loop or are
bipartite, and NP-complete otherwise. Dyer and Greenhill [7] extended the
research in this direction and characterized the graphs H for which counting
homomorphisms from G into H is #P -complete.

A homomorphism which is a local isomorphism (i.e., for every node
u of G, the morphism f maps the neighborhood of u bijectively onto the
neighborhood of f(u)) is called a covering projection, and if such a homo-
morphism exists, we say that G covers H. The motivation for the study of
graph covers comes from the algebraic graph theory [4]. As special cases of
covering spaces from algebraic topology [22], graph covers are used in many
applications in topological graph theory [12].

Computational applications of graph covers are used by Angluin [2] to
study ”local knowledge” in distributed computing environments, and by
Courcelle and Métivier [6] to show that nontrivial minor closed classes of
graphs cannot be recognized by local computations.

Bodlaender in [3] raised the question of computational complexity of
H-cover problems. The H-(partial) cover problem asks if a given input
graph G (partially) covers H, the latter graph is considered a fixed param-
eter of the problem. In [1] Abello et al. it is shown that there are both
polynomial-time solvable (easy) and NP-complete (difficult) versions of this
problem depending on the parameter graph H. The complexity of the H-
cover problem was further studied in [17, 18, 19]. Several infinite classes
of both polynomial and NP-complete instances were recognized, however,
currently no good conjecture about the characterization of graphs H, for
which the H-cover problem is polynomially solvable, is at hand (assuming,
of course, P 6= NP).

In this paper, we initiate the study of computational complexity of par-
tial covers. We say that G is a partial cover of H, if G is an induced subgraph
of a (full) cover of H. In the algebraic setting, a partial covering projection
is a locally injective homomorphism, i.e., a homomorphism which maps the
neighborhood of every vertex injectively into the neighborhood of the image
of this vertex. Partial covers of graphs are used in [17] as a tool in the gadget
construction for NP-completeness reduction in the proof of Proposition 2.5.

We believe that the study of the computational complexity of partial
covers is worthwhile for two reasons. First, as it is shown in Section 3, partial
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covers correspond to generalized (2, 1)-colorings of graphs, while the notion
of a (2, 1)-coloring stems from a practical problem of assigning frequencies
to transmitters to avoid interference. Secondly, as our results show, from
the computational complexity point of view partial covers seem to be more
difficult than full covers. This raises a hope that the number of polynomially
solvable instances may be so restricted that it would allow a characterization
theorem.

The paper is organized as follows. In Section 2 we compare the problems
of deciding existence of full and partial covers. In Section 3 we reveal the
connection to generalized (2, 1)-colorings.

2. Partial Covers Versus Full Covers

It is well known that the existence of a covering projection between two
graphs implies that they have the same degree refinement matrix. The
converse is not true, but it is shown in [21] that graphs with the same degree
refinement matrix have a common finite cover. In general, partial covers do
not preserve the degree refinement matrix. However, if two graphs happen to
have the same degree refinement matrix, then any partial covering projection
between them is necessarily a full covering (Proposition 2.3). This fact will
be used in this subsection to derive our first complexity results on partial
covers.

The degree partition of a graph G is the coarsest partition (i.e., the
partition of the minimum number of classes) of the vertex set of G into
classes (called blocks) B1, B2, . . . , Bk, such that for every i, j and any two
vertices u, v ∈ Bi, |N(u)∩Bj | = |N(v)∩Bj |. The symbol N(u) denotes the
neighborhood of the vertex u. Given an ordering of classes B1, . . . , Bk, the
weight t(u) of a vertex u ∈ V (G) is the index t(u) = j, such that u ∈ Bj .

The degree partition is unique and can be obtained by the following
procedure which recursively refines partitions by the numbers of neighbors
of vertices in the blocks of the partition. The symbol ki denotes the number
of classes in the partition after i rounds of refining, and Bij , j = 1, 2, . . . , ki

are the classes of this partition.
1. Define k0 = 1 and B01 = V (G).
2. Set i = 0.
3. Repeat until ki = ki+1:

3.1. For every vertex u ∈ V (G), compute the
neighbor vector ni(u) = (n1, n2, . . . , nki) where nj = |N(u) ∩Bij |.
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3.2. Define a new partition of V (G) so that u, v belong to the same
class, if and only if ni(u) = ni(v).

3.3. Let ki+1 be the number of the classes in the new partition.
3.4. Order the classes of the partition lexicographically according to

the neighbor vectors, so that u ∈ Bi+1,j and v ∈ Bi+1,h with j < h
imply ni(u) >lex ni(v).

3.5. Set i = i + 1 and continue Step 3.
4. Set k = ki and Bj = Bij for j = 1, 2, . . . , k.

Note that the first round distributes vertices into classes according to their
degrees, and so k1 = 1 and B11 = V (G) for regular graphs, and the degree
partition of a regular graph consists of a single block. Note also that this
procedure does not only compute the degree partition, but also gives a
unique ordering of the blocks of the degree partition (e.g., B11 contains
the vertices of the maximum degree and B1,k1 the vertices of the minimum
degree).

Having the degree partition, let rij = |N(u) ∩ Bj | for any u ∈ Bi, for
1 ≤ i, j ≤ k. The degree refinement matrix MG of the graph G is the k by
k square matrix

MG = (rij)k
i,j=1.

The unique ordering of blocks of the degree partition implies that the degree
refinement matrix is defined uniquely as well.

For purposes of the proof of Proposition 2.3, we introduce a lemma,
which glues together the execution of the refining procedure on graphs G
and H, which share a common degree refinement matrix.

Lemma 2.1. Suppose graphs G and H have the same degree refinement
matrix and let Bj(G), Bj(H), j = 1, 2, . . . , k be the degree partitions. Then
for every i ≥ 0 and j, 1 ≤ j ≤ ki, there exists Xij ⊆ {1, 2, . . . , k}, such that
Bij(G) =

⋃
h∈Xij

Bh(G) and Bij(H) =
⋃

h∈Xij
Bh(H). Moreover, ni

G(u) =
ni

H(v) for every i ≥ 0, whenever tG(u) = tH(v).

Proof. We prove the statement by induction.
For i = 0, X01 = {1, 2, . . . , k}. Let u ∈ Bt(G) and v ∈ Bt(H) be vertices

of the same weight t = tG(u) = tH(v). Then degG(u) =
∑k

j=1 rtj = degH(v)
and hence n0(u) = (degG(u)) = (degH(v)) = n0(v).

For i > 0 and vertices u, v of the same weight t, the assumption ni−1
G (u) =

ni−1
H (v) and the fact that the final neighbor vectors of u and v are equal (be-

ing the tth row of the degree refinement matrix) imply ni
G(u) = ni

H(v).
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Then the existence of Xij follows from the equality (ni
G(u))j = (ni

H(v))j =∑
h∈Xij

rth.

The following theorem is folklore:

Proposition 2.2. If a graph G covers a connected graph H, then MG =
MH .

It is obvious that for regular graphs of the same valency, a locally injective
homomorphism is a local isomorphism, i.e., every partial covering projection
is a full cover. An analogous statement is true for graphs with the same
degree refinement matrix:

Proposition 2.3 [8]. If connected graphs G and H have the same degree
refinement matrix, then every partial covering projection of G to H is also
a full covering projection.

Proof. Let f be a partial covering projection of G to H. For every vertex
u ∈ V (G), degG(u) ≤ degH(f(u)) follows from local injectivity of f .

We first prove that tG(u) ≥ tH(f(u)) for every u ∈ V (G). As in the
proof of Lemma 2.1, run the refinement procedure simultaneously on G and
H. Let tiG(u) denote the weight of vertex u in the partition of G after the
i-th run of Step 3, and similarly for H. We prove by induction on i that
tiG(u) ≥ tiH(f(u)) for every u ∈ V (G).

For i = 0, t0G(u) = t0H(f(u)) = 1, since k0(G) = k0(H) = 1. Suppose
i > 0. The weights of u and f(u) depend on their neighbor vectors ni−1

G (u)
and ni−1

H (f(u)). For every neighbor z of u in G, f(z) is a neighbor of f(u)
in H and, by induction hypothesis, ti−1

G (z) ≥ ti−1
H (f(z)). Hence in the

lexicographic ordering ni−1
G (u) ≤lex ni−1

H (f(u)). By Step 3.4, this means
that tiG(u) ≥ tiH(f(u)). Note that here we are implicitly using Lemma 2.1,
as we are comparing neighbor vectors in G and H.

For u ∈ B1(G), tG(u) = 1 ≥ tH(f(u)) and hence tH(f(u)) = 1 as well.
Thus vertices from the block B1(G) are mapped to vertices from B1(H).
For the rest of the proof let v be an arbitrary vertex from B1(G).

Suppose there exists a vertex u ∈ V (G), for which tG(u) > tH(f(u)).
Consider a path from v to u in G. This path must contain an edge (v′, u′) ∈
E(G), such that tG(v′) = tH(f(v′)) and tG(u′) > tH(f(u′)). Since v′ and
f(v′) have the same number of neighbors of each weight, this implies the
existence of a neighbor w′ of v′ for which t(w′) < t(f(w′)), a contradiction.
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Now for all vertices u ∈ V (G) we have tG(u) = tH(f(u)), and in particular
degG(u) = degH(f(u)). Hence, f is a local epimorphism, and thus a full
covering projection of G onto H.

The consequence for the complexity of partial covers follows:

Corollary 2.4. For any connected graph H, the H-cover problem is poly-
nomially reducible to the H-partial cover problem.

Proof. Given a graph G subject to the question if G covers H, determine
(in polynomial time) if G has the same degree refinement matrix as H. If
not, G cannot cover H. In the affirmative case, G partially covers H, if and
only if it covers H fully.

So all NP-completeness results about graph covers carry on to partial covers.
We certainly do not wish to restate here all the results of [1, 17, 18, 19, 8], but
let us mention two results which have consequence for the circular channel
assignment problem of Leese [20], discussed in Section 3.

Proposition 2.5 [17]. The H-cover problem is NP-complete when the graph
H is k-regular bk+1

2 c-edge connected or k-regular k-edge-colorable, for every
k ≥ 3.

Moreover, Proposition 2.5 can be extended to the class of all k-regular graphs
with k ≥ 3:

Theorem 2.6 [8]. The H-cover problem is NP-complete for all k-regular
graphs H with k ≥ 3.

Proof. Without loss of generality we assume that H is connected and that
H is not bipartite, since bipartite k-regular graphs by König-Hall marriage
theorem are k-edge colorable and hence Proposition 2.5 would apply.

The Kronecker double cover H̃ = H×K2
1 is k-edge colorable k-regular

connected graph and hence the H̃-cover problem is NP-complete due to
Proposition 2.5.

We show a reduction of the H̃-cover problem to the H-cover problem.
Consider a graph G whose covering projection G → H̃ is questioned. We
claim that G covers H̃ if and only if G is bipartite and G covers H.

1V (H̃) = V (H)× {0, 1}, E(H̃) = {((u, 1), (v, 0)), ((u, 0), (v, 1))) : (u, v) ∈ E(H)}
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The only if statement is trivial since H̃ is bipartite and only bipartite graphs
can cover a bipartite graph (this holds even for a general graph homomor-
phism). Moreover any covering projection G → H̃ can be extended to H by
a composition with a covering projection H̃ → H.

In the other direction, assume that f : G → H is a covering projection
and that G is bipartite, and a proper bicoloring using black and white colors
is given. For each vertex u of H denote by (u, 0) and (u, 1) its two copies in
u ×K2 ⊂ H ×K2 = H̃. We define a mapping f̃ : G → H̃ by f̃(v) = (u, 0)
if f(v) = u and v is white, and f̃(v) = (u, 1) if f(v) = u and v is black.

Since each vertex has all neighbors colored by the complementary color,
the above mentioned mapping satisfies all properties of a covering projection.

Corollary 2.7. The H-partial cover problem is NP-complete for all k-regular
graphs, k ≥ 3.

All graphs H with at most one cycle in each component of connectivity are
polynomial instances both for the H-cover and H-partial cover problems,
hence we get that the computational complexity for both these problems is
completely classified for regular graphs H.

3. Generalized Distance Two Colorings of Graphs

Roberts proposed the following distance two constrained labelings of graphs,
a notion stemming from the radio frequency assignment problem, where the
task is to assign radio frequencies to transmitters at different locations with-
out interference. Assuming that the distance function of the transmitters
can be modelled by a graph distance, it is asked that transmitters which are
close to each other receive different channels, and transmitters that are very
close together receive channels that are at least two apart:

A λ(2,1)-labeling of a graph G is an assignment of labels from the set
{0, . . . , λ} to the vertices of G such that vertices at distance two are assigned
different labels and adjacent vertices are assigned labels which differ by at
least 2. The minimum value λ, for which G admits a λ(2,1)-labeling, is
denoted by λ(2,1)(G).

An upperbound for λ(2,1)(G) in terms of the maximum degree ∆(G)
(λ(2,1)(G) ≤ ∆2(G)+2∆(G)) was obtained in [11, 23] and this was improved
in [5] to λ(2,1)(G) ≤ ∆2(G) + ∆(G). The conjecture if λ(2,1)(G) ≤ ∆2(G) is
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still open, though it was proven true for some special graph classes (chordal
graphs, graphs of diameter 2). From the complexity point of view, the
problem to decide if a given graph allows a λ(2,1)-labeling was proven NP-
complete in [11, 23] if λ is part of the input, and in [10] for every fixed
λ ≥ 4.

A natural generalization of the distance two constrained labeling prob-
lem is considering channel (frequency) spaces with nonlinear metric. This
would model the case when frequencies which are multiples can also interfere
or when a fixed number of frequencies has to be assigned to every transmit-
ter. The circular metric in the channel space was considered by Heuvel,
Leese and Shepherd [16, 20]. Assuming that the distance function in the
channel space can be modelled by a graph theoretical distance in a graph,
whose vertices are the possible channels (frequencies), we arrive to a natural
generalization of the concept of λ(2,1)-labelings:

Definition 3.1. Let H be a graph. An H(2,1)-labeling of a graph G is a
mapping f : V (G) → V (H) which satisfies

1. distH(f(u), f(v)) ≥ 2 for every two adjacent vertices u, v ∈ V (G);
2. distH(f(u), f(v)) ≥ 1 for every two vertices u, v ∈ V (G), such that

distG(u, v) = 2,
where the distance dist(u, v) is the number of edges of the shortest path
connecting vertices u and v.

The notion of H(2,1)-labelings straightforwardly relates to partial covers of
graphs.

Observation 3.2. A mapping f : V (G) → V (H) is an H(2,1)-labeling, if
and only if it is a partial covering projection of G to H, the complement of
the graph H.

Proof. Recall that the local injectivity for a partial covering projection
f from the graph G to the graph H can be expressed by the following
conditions:

1. (f(u), f(v)) ∈ E(H) for each edge (u, v) ∈ E(G);
2. f(u) 6= f(v) for any two distinct vertices u, v ∈ V (G) which have a

common neighbor in G.
Now, consider a mapping f : V (G) → V (H). For any two vertices x, y ∈
V (H), the distance distH(x, y) ≥ 1 if and only if x 6= y, and so conditions
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(2.) of Definition 3.1 and above are equivalent. The condition (1.) of
Definition 3.1 states that the existence of an edge (u, v) ∈ E(G) implies
(f(u), f(v)) 6∈ E(H), that is (f(u), f(v)) ∈ E(H), which is exactly the
condition (1.) presented here for the complement of H.

Obviously, a graph G allows a λ(2,1)-labeling if and only if it allows a
(Pλ)(2,1)-labeling (here Pk denotes the path with k edges). Similarly, G
allows a circular λ(2,1)-labeling, if and only if it allows a (Cλ+1)(2,1)-labeling
(Ck denotes the cycle with k edges).

We have shown in [10] that deciding existence of (Pλ)(2,1)-labeling is
NP-complete for every fixed λ ≥ 4. Here we have a similar result for the
circular metric:

Theorem 3.3. The (Cλ+1)(2,1)-labeling problem is NP-complete for every
λ ≥ 5.

Proof. Since the complement of Ck is (k − 3)-regular and (k − 3)-edge-
connected, the NP-completeness of Ck-cover (for k ≥ 6) follows from Propo-
sition 2.5. By Corollary 2.4, the Ck-partial cover problem is NP-complete,
and Theorem 3.3 follows.

In view of this observation, we may ask for the most detailed computational
complexity characterization of partial covers of graphs, having in mind its
impact on distance two constrained graph labelings.
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