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Abstract
A k-gon « of a polyhedral graph G(V, E, F) is of type (b1, b, ..., bg)
if the vertices incident with « in cyclic order have degrees by, ba, .. ., by
and (b1, ba, ..., bg) is the lexicographic minimum of all such sequences

available for a. A polyhedral graph G is oblique if it has no two faces
of the same type. Among others it is shown that an oblique graph

contaings vertices of degree 3.

1. INTRODUCTION

In a polyhedral graph G = G(V, E, F') with the vertex set V = V(G), the
edge set £ = E(G), and the face set F = F(G) the number d(x) of edges
(= number of faces) incident with z € V is the degree of z. The number
d(a) of edges (= number of vertices) incident with « € F is the degree of a.

« is a d(a)-gon.

*The work of this author was supported by grants from Russian Foundation of Funda-
mental Research (project codes 99-01-00581 and 00-07-90296) and INTAS (project code
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If £ € V is incident with o € F we write x € a.

Vii={z € V:d(z) =1}, i = 3,4,... is the set of vertices of degree ¢ and
v; = |V;| its cardinality. Anedgezy € E : z,y € V withd(z) < d(y) is of type
(d(z),d(y)). a € F(G) is an (a1, a9, ...,a;)-face if @ is an [-gon and the de-

gree d(x;) of the vertex z; incident with ais a;, 4 = 1,2,... 1 in the cyclic or-
der. Obviously, « is also an (a9, as, . .., a;,a1)-face, an (a3, a4, - .., a;, a1, a2)-
face,. .., and an {(a;,a;_1, - . ., a2, a1 )-face, too.

The lexicographic minimum (b, b2, ..., ;) : @ is a (b1, bo, ..., b;)-face is

called the type of a. For a triangle « of type {(a,b,¢) we have a < b<c. A
polyhedral graph G is called oblique if all its faces are of different type. G is
superobligue if both G and its dual G* are oblique and they have no common
face type. Let z > 1 be any given natural number. A polyhedral graph G is
z-oblique if F(G) contains at most z faces of the same type for any type of
faces. Obviously, a 1-oblique graph is oblique and vice versa. A polyhedral
graph is a triangulation if all its faces are triangles. B. Griinbaum and
C.J. Shephard [2] listed all face transitive polyhedral graphs. Such graphs
have only one type of faces. In [4] it has been shown that besides the face
transitive polyhedral graphs there is exactly one polyhedral graph with only
one type of faces (see Figure 1).

G:I,,3,3,4

Figure 1 Figure 2 Figure 3
G G*

Figure 4 Figure 5
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Moreover, it has been shown that the set of oblique triangulations is finite
but not empty, and an oblique triangulation contains a vertex of degree 3.

An example of an oblique triangulation has been drawn in Figure 2.
In [3] it has been proved that for any z the set of z-oblique graphs is finite.
From a result by O. Borodin [1] it follows that an oblique graph contains a
vertex of degree 3 or 4.

2. REsuULTS

Theorem 1. An oblique graph contains a vertex of degree 3.

Theorem 2. An oblique graph contains at least eight faces. There are
exactly two non isomorphic oblique graphs with eight faces (see Figure 3).

Theorem 3. There are selfdual oblique graphs (see Figure 4) and super-
oblique graphs as well (see Figure 5).

Theorem 4. An oblique triangulation G contains vertices with at least siz
different degrees, and G contains at least sizteen faces. There is exactly one
such triangulation with sixteen faces.

Proof of Theorem 1. Let us suppose there is an oblique graph G® =
GA(VA, EA, FA) with maximum degree A without vertices of degree 3.

For any polyhedral graph G we define the charge w(a) of a face a € F(G)
in the following way:

d(z;) — 6
w(a) :=2(d(a) — 3) + —_—
(@)= 20d(e) 9+ 3 T

From Euler’s polyhedral formula it is easy to see that

(1) w(G) = Z w(a) = —12.

a€cF(G)

In the following we will show the contradiction w(G?) > —12 for any oblique
graph G2 without vertices of degree 3.

F;:= Fj(G?*) .= {a € F® : maxd(z) =i}, i=3,4,...,A,

TCco

F~:=F(G?):={a € F*: w(a) <0},
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F=F (G®):=F NF;, i=34,... A,

w(F) = w(F(G?) = Y wle), i=34,...,A
aEFf

Remark. F~ consists only of triangles, because any I-gon 8 € F~: [ >4
has a non negative charge. By w(z,y,2) we denote the charge w(a) of a
face a of type (z,y, z).

Any type of faces is present in an oblique graph at most once, so we have:
F; =0, w(F;) =0, as there is no vertex of degree 3,

Fr ({449}, w(F)> -,

27
Fo C{(4,4,5),(4,5,5),(5,5,5)}, w(F5)> 10
(for w(F;"): 4 <i <15 see table, 5 column).
Lemma 1. A > 9.
Proof. For A < 8 (see table, last column) we have
A 8
1541
A
> s
w(G*) > w(F;) > w(F)> a0 > 1%
j=4 j=4
a contradiction to (1). |

Remark. Let 8 € Fa beanl-gon (I incident with a vertex of maximum

> 4)
degree A. Then w(B) > w(4,4,4,A) >2 -3 4+ 86=3_56>5

@ |

SA = §A(GA) = Z w(a)

acFA

is the sum of the charges of all faces o € F2 incident with at least one
vertex of maximum degree A.

In the third column of the table it can be found the charge contribution
w;(a, b) of vertices z and y with degrees a = d(z), b = d(y), resp. to the
charge w(e) in a triangle o = (z,y,2) of type (a,b,c) (increasing, up to
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i = 18). Since there are at least A face types containing a vertex of degree
A it is easy to see that

5% > w(4,4,9) + w({4,5,9) + w(4,6,9) + w(5,5,9) + w({4,7,9)
+ w(4,8,9) + w(5,6,9) + w({4,9,9) + w(5,7,9)

1 1 1 2 3 5%
>7(== ) 420042 (=) +1(2)+10(2) =25 1
_7( 2)+5( 5)+ 0) + (7)+ (8)+ 0(9) B>

113 5653 12 o 10273 15 o 14893

10 5, 119 1 1
§7 23005 > 1 572 40 < 1620

9055 9
420 Z 1620 >2, 8

>3,...

Lemma 2. S2 > A — 10.

Proof. For A € {9,...,13} it is shown above. For j > 12 we have
wj(a,b) > 0 (see table, third column), consequently {>=%_; w;(a,b) }i=11,12,...
is an increasing sequence. That means

d 17447 :
]z::le(a,b) > ~ 1630 >—4 forall i=1,2,...

In each of the A faces « incident with z € V2 the vertex z contributes %
to the charge of «, therefore S > ZjA:l wi(a,b) + ARLE > —4+ (A —6) =

A —10. []

Lemma 3. A <12.
Proof. For A > 13 we have

A—1
w(GA) = Z w(a) > S + Z w(F; ).
acFA j=4

The sequence {w(F; )}i=¢ 7,.. is increasing, and together with Lemma 2 we
obtain

12 A—1
w(GA) > 8%+ w(F )+ > w(F))
j=4 j=13

68533 81
> A - 10 — 22292 _ 2=
>A=10- 2 2F 4 (A 13)( 130)
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_ 49 . 19 68533
~ 1307 10 4620
49 19 68533
> s 13 - - >
130 10~ 4620

a contradition to (1). |

-12,

Lemma 4. A > 10.

Proof. Supposing A = 9. The 9 faces ¢, incident with a vertex z of
degree 9 have together a charge > —g—i because the case i = 9 (see table)
does not occur. So we have

8
53 1541
w(G?) > S° w(FP) > - — —— > —12
a contradiction to (1). |
i i
(i) |a b |wi(a,b) lej(a, b) w(F;) Wi_:Z4w(Fj_)
Jj= J=
(1) |4 4] -1 -1 =-1
2 |45 ]| -F% I
3) (46| -5 -2 = 22
4) |5 5| -2 - =-26 -3 -3 =-15
Gy |[47| -F% | -2 =-29571...| -Z -2 =-42
1 449 _ 28 7 —
6) |4 8| —3 -4 = -32071...| - -5 =-70
1 LY 161 1
(7) |56 | -t -4 = —34071...| -3 | -8 =93
1 1501 __ 239 1541 __
8 (49| -L | -L% —_35738...| 28 | L3 — _11007...
9 |410| -4 | -8 = -36738...| -3 | 518 — 12297 ..
2 1567 __ 5 —
(1) (5 7| -2 ~ o = -3.7309... | -1 | —3%85 — .13.207...
1 1 _ 46 65299 __
(1) (411 - | -7 =-3.7764... | —38 | 5299 — .14133...
17447 __ 7 68533 _
(12) (412 0 " -3.7764... | —& | 88588 — _14833...
1 _ 81 928351 __
(13) [ 6 6 0 —LT = —3.7764... | —35 | —9285L — 15.457...
1 224501 __ 39 961813 __
(14) (413 | +4& |20 — _3.7379... | -3 |28 — 16,014...
1 110749 __ 1 991843 __
(15) |5 8 | 495 | —Hor? = —36879...| —3 |—288 —.16.514...
(16) |4 14| +7; |~ = —3.6165... | > —3
(17) |415| +45 | —hep = —3:5165... | >—3
(18) [4 16| -+ | —7107388 = -33915... | > —3
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The three cases A € {10,11, 12} remain.

Lemma 5. For each k € {9,10,...,A — 1} the graph G2 contains a vertez
y* of degree k.

A simple calculation yields the proof, we will show it in case A = 12:
If there is no vertex of a fixed degree k € {9,10,11} we have F,, =
therefore w(F), ) = 0. Having a look into the table (fifth column) we obtain

iw(F_)>_65299+§__5585
o 7T 4620 T 55 4207

together with Lemma 2 we obtain

S 5585
12) > g12 Fry>2———>-12.
w(G*)> S +j2:;1w(])_ 0 >
The cases A € {10,11} can be settled in an analogous way ]

Now, let us complete the proof of Theorem 1:

In case of A = 12 there are 12 faces incident with a fixed vertex z of degree
12, moreover there are at least 9 faces incident with a vertex u of degree 11
but not incident with z. With the help of our table we obtain

(012)>SI2+§9: i( b)+9(5)+§: (F7)
w > w;la, 11 Z.:lw i

i=1

1543 45 5585

> T209 20 9% g

- 420 + 11 420 >
The cases A € {10, 11} can be settled in a similar way using S'* > 2853 and
S0 > %, resp. This completes the proof of Theorem 1. [ ]

Proof of Theorem 2. The correctness of Theorem 2 has been shown by
computers. It is easy but a little bit costly to prove it without computers.
[ ]
Proof of Theorem 3. It is easy to see that the graph of Figure 4 is a
selfdual oblique one as well as the graph of Figure 5 is a superoblique one.
[ ]
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Proof of Theorem 4. Let G = G(V, E, F) be an oblique triangulation
with p <5 different degrees. [ ]

Lemma 6. There is no edge vy € E : d(z) = d(y) = 3.

u u

v

Figure 6 Figure 7

Proof. Otherwise, because of the triangulation, there are two edges uv € E
(see Figure 6), but a polyhedral graph has no multiple edges. [ ]

Lemma 7. G contains exactly one vertex z of degree 3.

Proof. Because of Theorem 1 there is at least one vertex of degree 3.
Provided that there are at least two vertices z1, zo of degree 3 (see Figure 7).
The three vertices u, v, w incident with z; as well as the three vertices f, g, h
incident with zo have pairwise different degrees because of the obliqueness
of G.

Moreover, with the same argument the set {u, v, w, f, g, h} consists of at
least 5 vertices and in this set there are at least 5 different degrees. Together
with the degree 3 of the vertices 21, zo there are at least 6 different degrees
in G. [ |

Case 1. p=4.
Let 3 < a < b < A be the four different degrees in G with A > 6. The
following face types may occur:
(3,a,b),(3,a,A),(3,b,A),{a,a,a),{a,a,b),{a,a, A),
(a,b,b),{a,b,A),{a, A, A), (b,b,b), (b,b, A), (b, A, A}, (A, A, A).
There are only 5 face types containing exactly one vertex of degree A, but a
vertex of degree A is incident with 6 faces. That means there are at least two
vertices of degree A. Consequently there are at least 64+4=10 faces incident
with a vertex of degree A, but there are only 8 face types containing A, a
contradiction.
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Case 2. p = 5.
Let 3 < a < b < ¢ < A be the five different degrees in G. The following face
types containing a vertex of degree A may be present:
(3,a,A),(3,b,A), (3,¢,A),{a,a,A),{a,b, A), {a,c, A),{a, A, A),
(b, b, A), (b, c, A), (b, A, A), {c,c, A), (¢, A, A), (A, A, A).
Because of Lemmata 6 and 7 there occur at most two of the three face types
(3,a,A),(3,b,A), (3,¢c,A).

Case 2.1. A > 9.
There are only 8 face types containing exactly one A, therefore there are at
least two vertices of degree A in G. Then there are at least 9+7=16 faces
incident with a vertex of degree A, but G contains at most 12 face types
with a A-degree vertex, a contradiction.

Case 2.2. A =8.
With arguments like Case 2.1 there is exactly one vertex of degree A = 8 in
G, and all the 8 face types
(3,0, A), (3,9, A),{a,a,A), (a,b, A), (a,c, A), (b, b, A), (b, c, A, {c, ¢, A),
with ¢ # ¢ and {¢, ¢} C {a,b,c} occur in G.
The edge (¢, A) occurs in the 8 face types (and therefore in G) exactly 5
times, but this number has to be an even one, a contradiction.

Case 2.3. A=T.
The p = 5 different degrees are 3 <4 < 5 < 6 < 7= A. The following nine
face types with one 7-degree vertex are conceivable:
(3,4,7),(3,5,7),(3,6,7),(4,4,7),(4,5,7),(4,6,7),(5,5,7),(5,6,7),(6,6,7).
Since the vertex of degree 3 in G can be incident to at most one vertex of
degree 7 only the three face types (4,7,7),(5,7,7), (6,7,7) with two 7-degree
vertices are conceivable, and (7,7, 7) is the only face type with three 7-degree
vertices. 0 or 2 of the three types (3,4,7),(3,5,7),(3,6,7) may occur in G,
because this number has to be even.

Let g be the number of vertices of degree 7 in G.
If ¢ = 2 we have in G at least 74+5=12 faces incident with a vertex of degree
7, but there are only 11 face types with one or two 7-degree vertices.
If ¢ > 3 we have at least 7+5+3 faces incident with a vertex of degree 7 but
only twelve face types with a 7-degree vertex.
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< [T

Figure 8a Figure 8b Figure 8c

If ¢ = 1 exactly 7 of the 9 face types collected above are incident with the
only vertex x7 of degree 7.

Exactly two of the three types (3,4,7),(3,5,7),(3,6,7) occur in G be-
cause if no of these face types occur in G we have at most 6 face types
incident with the 7-degree vertex z7.

We discuss the three possible cases (see Figure 8): The index of a vertex
describes its degree.

Case 2.3.1. The neighbours x4, x5, 27 of the 3-degree vertex z3 have
degrees 4,5,7, resp. (see Figure 8a).

Claim 1. (4,5,7) does not occur in G. The edge type (4,7) occurs b times
in the following conceivable face types:

(3,4,7),(4,4,7),(4,5,7),(4,6,7). That means exactly one of the two face
types (4,5,7),(4,6,7) does not occur.

With the same argument one of the two face types (4,5,7),(5,6,7) can-
not occur. As we need seven face types with a 7-degree vertex in G the type
(4,5,7) does not occur.

The following seven face types occur:
(3,4,7),(3,5,7),(4,4,7),(4,6,7),(5,5,7),(5,6,7),(6,6,7).

The only distribution of the face types around z7 is drawn in Figure 8a.
= z5y4 € E(G), because x4 is saturated. Now, y4 and x5 are saturated,
in contradiction with the fact that G is a triangulation.

Case 2.3.2. The neighbours z4,x¢, 27 of the 3-degree vertex z3 have
degrees 4,6,7, resp. (see Figure 8b).
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The only distribution of the face types around 7 is drawn in Figure 8b. With
arguments similar to the Case 2.3.1 there are edges ysz¢, T5%s, 5ys € E(G),
and G is not 3-connected because there is a cut set x5, ys of G consisting of
less than three vertices, a contradiction.

Case 2.3.3. The neighbours x5, g, 27 of the 3-degree vertex z3 have
degrees 5,6,7, resp. (see Figure 8c). The only distribution of the face types
around z7 is drawn in Figure 8c.

1. There is a vertex r incident with x4 and y4. Now, x4 and y4 are saturated,
consequently (r,ys), (r,y6) € E(G).

2. There is a vertex s with (s,ys), (s,25), (s,z6) € E(G). Now, ys is satu-
rated, consequently (r, s) € E(G).

3. There is a vertex ¢t with (¢, zg), (t,ys), (¢, $) € E(G).

4. There is a vertex u and (u, t), (u, ys), (u,r) € E(G), because t must have a
degree greater than 3. Now, r is saturated, because there is only one vertex of
degree 7, consequently (u,s) € E(G). Now, s is saturated, G is constructed,
otherwise G is only 1-connected. The arising graph has two faces of the
same type (4,4,6), namely (u,t,ys) and (r,z4,y4), a contradiction. This
completes the proof of Theorem 4. [ |

Conclusions. With the help of computers it has been shown that there
is an oblique triangulation with eighty four vertices and thirteen different
degrees. Furthermore, the superoblique graph G of Figure 5 is the smallest
one with regard to the number of vertices, and is unique in this sense.

Open problems.
1. What is the greatest number & such that there is an oblique graph with
k different degrees?

. The same question for oblique triangulations.
. Is there an oblique graph without triangles?

. Is there an oblique graph consisting of quadrangles only?

U = W N

. What is the greatest number g(z) such that a z-oblique graph has g(z)
different degrees?
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