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Abstract

Let P1,P2, . . . ,Pn be graph properties, a graph G is said to be
uniquely (P1,P2, . . . ,Pn)-partitionable if there is exactly one
(unordered) partition {V1, V2, . . . , Vn} of V (G) such that G[Vi] ∈ Pi

for i = 1, 2, . . . , n. We prove that for additive and induced-hereditary
properties uniquely (P1,P2, . . . ,Pn)-partitionable graphs exist if and
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only if Pi and Pj are either coprime or equal irreducible properties of
graphs for every i 6= j, i, j ∈ {1, 2, . . . , n}.
Keywords: induced-hereditary properties, reducibility, divisibility,
uniquely partitionable graphs.
2000 Mathematics Subject Classification: 05C15, 05C75.

1. Introduction

This paper is an extension of the paper [2] to induced-hereditary proper-
ties of graphs based on the Unique Factorization Theorem in the lattice of
additive induced-hereditary properties (see [6]).

A property of graphs is any non-empty isomorphism-closed subclass of
the class I of all simple finite graphs. A property P of graphs is said to
be induced-hereditary (hereditary) if H ≤ G (H ⊆ G) and G ∈ P implies
H ∈ P and additive if it is closed under disjoint union of graphs, i.e., if every
component of G has property P, then G ∈ P, too. Obviously every heredi-
tary property is induced-hereditary, but many important induced-hereditary
properties (”perfect graphs”, ”claw-free graphs”, ”line-graphs”, etc.) are not
hereditary.

Let P1,P2, . . . ,Pn be properties of graphs. A vertex (P1,P2, . . . ,Pn)-
partition of a graph G is a partition {V1, V2, . . . , Vn} of V (G) such that
G[Vi] ∈ Pi for each i = 1, 2, . . . , n. Let us denote by P1◦P2◦ · · · ◦Pn the
class of all vertex (P1,P2, . . . ,Pn)-partitionable graphs. If P1 = P2 =
· · · = Pn = P, then we write Pn = P1◦P2◦ · · · ◦Pn. A graph G of order
at least n is said to be uniquely (P1,P2, . . . ,Pn)-partitionable if there is ex-
actly one (unordered) (P1,P2, . . . ,Pn)-partition. The class of all uniquely
(P1,P2, . . . ,Pn)-partitionable graphs will be denoted by U(P1◦P2◦ · · · ◦Pn).

The binary operation “◦” of additive and hereditary properties have
been considered in details in [2]. For technical reasons we consider also the
null-graph K0 = (∅, ∅), so that property Θ = {K0} be the smallest property
of graphs in the lattice M a of all additive induced-hereditary properties
partially ordered by set-inclusion (see [1]). The properties I and Θ are
said to be trivial, since for every property P ∈ M a, Θ◦P = P◦Θ = P and
I◦P = P◦I = I.

The notion of divisibility for the binary operation “◦” on M a is used in
a natural way: Given any two graph properties R and P, with R,P ∈ M a,
we say that P is a divisor of R, if R = P◦Q for some property Q ∈ M a, we
can also say that P divides R and that R is divisible by P.
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If P and Q are additive induced-hereditary properties we say that the ad-
ditive induced-hereditary property D = gcd(P,Q) is a greatest common
divisor of P and Q, if

(1) D divides P and D divides Q;
(2) if D′

divides P and D′
divides Q, then D′

divides D.

If gcd(P,Q) = Θ, then we say that P and Q are coprime. A non-trivial
additive induced-hereditary property P is said to be irreducible, if the only
additive induced-hereditary properties which divide P are Θ and P itself
and reducible otherwise.

These notions are well-defined since any additive induced-hereditary
property can be expressed as a product of irreducible additive induced-
hereditary properties:

Theorem 1 [6]. Let R ∈ M a be a reducible property of graphs and suppose
that R = P1◦P2◦ · · · ◦Pn, n ≥ 2 is a factorization of R into irreducible
factors. Then this factorization is unique (up to the order of the factors).

Hence any reducible property R ∈ M a can be written as R = P1
e1◦P2

e2

◦ · · · ◦Pn
en , where P1,P2, . . . ,Pn are distinct irreducible properties and

e1, e2, . . . , er are positive integers. Using the symbol P0 to denote the prop-
erty Θ, one can clearly use this type of factorization to describe the great-
est common divisor of any two properties similar to the way it is done in
Number Theory.

The main result of this paper is:

Theorem 2. Let P1,P2, . . . ,Pn, n ≥ 2, be any non-trivial additive induced-
hereditary properties of graphs. Then there exists a uniquely (P1,P2, . . . ,Pn)-
partitionable graph if and only if for each i, j ∈ {1, 2, . . . , n} with i 6= j we
have that gcd(Pi,Pj) = Θ or Pi = Pj is an irreducible property.

This result is an extension of the following Theorem of [6].

Theorem 3 [6]. Let R = P1◦P2◦ . . . ◦Pn, n ≥ 2 be a factorization of a redu-
cible property R ∈ M a into irreducible factors. Then U(P1◦P2◦ · · · ◦Pn) 6= ∅
and moreover if H ∈ P1◦P2◦ . . . ◦Pn, then H is an induced subgraph of some
uniquely (P1,P2, . . . ,Pn)-partitionable graph G.
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2. Preliminary Results

In the next sections we will consider non-trivial properties only. In the proof
of our main result we will need some more notions and preliminary results.

Let R be an additive induced-hereditary property. For given graphs
G1, G2, . . . , Gn, n ≥ 2, denote by

G1 ∗G2 ∗ · · · ∗Gn =

{
G :

n⋃

i=1

Gi ⊆ G ⊆
n∑

i=1

Gi

}
,

where
⋃n

i=1 Gi denotes the disjoint union and
∑n

i=1 Gi the join of the graphs
G1, G2, . . . , Gn, respectively. A graph G ∈ R is said to be R-strict if
G ∗K1 6⊆ R.

The following Theorem describes the basic properties of the uniquely
partitionable graphs (see [3, 4, 5]).

Theorem 4. Let P1,P2, . . . ,Pn, n ≥ 2, be any additive induced-hereditary
properties of graphs, let G be a uniquely (P1,P2, . . . ,Pn)-partitionable graph
and let {V1, V2, . . . , Vn} be the unique (P1,P2, . . . ,Pn)-partition of V (G),
n ≥ 2. Then

1. G 6∈ P1◦P2◦ · · · ◦Pj−1◦Pj+1◦ · · · ◦Pn, for every j = 1, 2, . . . , n,
2. the subgraphs G[Vi] are Pi-strict, i = 1, 2, . . . , n,
3. for {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} the set Vi1 ∪ Vi2 ∪ . . . ∪ Vik induces a

uniquely (Pi1◦Pi2◦ · · · ◦Pik)-partitionable subgraph of G,

4. δ(G) ≥ max
j

n∑
i=1,i6=j

δ(Pi).

The next Lemmata will be used in the proof of our main result. They are
based on the analogous result for uniquely colourable graphs (see [4]).

Lemma 1. Let Pi ∈ M a, for i = 1, 2, . . . n. Let G be a uniquely (P1,P2, . . . ,
Pn)-partitionable graph and suppose that {V1, V2, . . . , Vn} is its unique (P1,
P2, . . . ,Pn)-partition. Then for every j = 1, 2, . . . , n the graph Gj

w obtained
from G by adding a vertex w and edges joining w to vertices of the set
Vi, i 6= j, such that G[Vi ∪ {w}] 6∈ Pi for i = 1, 2, . . . , j − 1, j + 1, . . . , n, is
uniquely (P1,P2, . . . ,Pn)-partitionable and {V1, . . . , Vj ∪ {w}, . . . , Vn} is its
unique (P1,P2, . . . ,Pn)-partition.
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Proof. Let G be any uniquely (P1,P2, . . . ,Pn)-partitionable graph and
let {V1, V2, . . . , Vn} be its unique (P1,P2, . . . ,Pn)-partition. By Theorem 4
it follows that the subgraphs G[Vi] are Pi-strict, i = 1, 2, . . . , n, thus since
G[Vi] ∗K1 6⊆ Pi for i = 1, 2, . . . , j− 1, j +1, . . . , n we can add edges between
w and vertices of Vi so that {V1, . . . , Vj ∪ {w}, . . . , Vn} be the only vertex
(P1,P2, . . . ,Pn)-partition of Gj

w.

Using Lemma 1 we immediately have the following:

Lemma 2. Let Pi ∈ M a, for i = 1, 2, . . . n. Let G be a uniquely (P1,P2,
. . . ,Pn)-partitionable graph and let {V1, V2, . . . , Vn} be its unique (P1,
P2, . . . ,Pn)-partition. Let H ∈ P1◦P2◦ . . . ◦Pn, V (H) ∩ V (G) = ∅ and
{W1,W2, . . . , Wn} be a (P1,P2, . . . ,Pn)-partition of V (H). Let the graph
GH = (V (G)∪V (H), E(G)∪E(H)∪E∗) be obtained from G∪H by adding
edges so that for every j = 1, 2, . . . , n and for each w ∈ Wj GH [V (G) ∪
{w}] = Gj

w, then GH is uniquely (P1,P2, . . . ,Pn)-partitionable and {V1 ∪
W1, V2 ∪W2, . . . , Vn ∪Wn} is its unique (P1,P2, . . . ,Pn)-partition.

Using the Unique Factorization Theorem 1, we have the following useful
technical Lemma:

Lemma 3. Let additive induced-hereditary properties P1,P2, . . . ,Pn,
Q1,Q2, . . . ,Qn satisfy Pi ⊆ Qi for each i = 1, 2, . . . , n, then P1◦P2◦ · · · ◦Pn ⊆
Q1◦Q2◦ · · · ◦Qn. If furthermore at least one of the inclusions Pi ⊆ Qi is strict
(i.e., Pj ⊂ Qj for some j), then P1◦P2◦ · · · ◦Pn ⊂ Q1◦Q2◦ · · · ◦Qn.

Proof. The inclusion P1◦P2◦ · · · ◦Pn ⊆ Q1◦Q2◦ · · · ◦Qn follows easily by
the definition of the product of properties. Let us suppose that for some
j ∈ {1, 2, . . . , n},Pj 6= Qj and R = P1◦P2◦ · · · ◦Pn = Q1◦Q2◦ · · · ◦Qn. Then
there are two different factorizations of the property R into irreducible fac-
tors, which contradicts Theorem 1.

3. Proof of the Main Result

We shall prove the Theorem 2 for n = 2 only, since the presented arguments
can be repeated in the case n ≥ 3, analogously.

Suppose there exists an irreducible propertyQ such that P1 = Q◦P ′
1 and

P2 = Q◦P ′
2 and at least P ′

1 6= Θ. Let {V1, V2} be any (P1,P2)-partition of a
graph G. Since P1 = Q◦P ′

1 and P2 = Q◦P ′
2 let {V11, V12} ({V21, V22}) be the
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(Q,P ′
1)-partition ((Q,P ′

2)-partition) of G[V1] (G[V2]). Then for every graph
G ∈ P1◦P2 we have at least the following two different (P1,P2)-partitions:
{V11 ∪V12, V21 ∪V22} and {V21 ∪V12, V11 ∪V22} because we can assume that
V11, V21 and V12 are not empty.

To prove the converse, Theorem 3 can be applied if P1 = P2 is an ir-
reducible property. Hence suppose that gcd(P1,P2) = Θ. By Theorem 1
let P1 = P11◦P12◦ · · · ◦P1n and P2 = P21◦P22◦ · · · ◦P2m be the unique factor-
izations of P1 and P2 into irreducible factors. From our assumption that
gcd(P1,P2) = Θ it follows that for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}
P1i 6= P2j .

Let us take a uniquely (P11, . . . ,P1n,P21, . . . ,P2m)-partitionable graph
G, which exists by Theorem 3. Let {V11, . . . , V1n, V22, . . . , V2m} be the unique
vertex (P11, . . . ,P1n,P21, . . . ,P2m)-partition of G. We shall now construct
a (P11, . . . ,P1n,P21, . . . ,P2m)-partitionable graph H with an appropriate
vertex partition {W11,W12 . . . ,W1n,W21,W22, . . . , W2m} with H[Wki] ∈ Pki

and prove that the graph GH constructed by Lemma 2 is uniquely (P1,P2)-
partitionable.

To construct the graph H we need some convenient notation. Let us
denote by

∏
i∈J Pi the product Pj1◦Pj2◦ · · · ◦Pjr for J = {j1, j2, . . . , jr}. For

any proper nonempty subsets X ⊂ {1, 2, . . . , n} and Y ⊂ {1, 2, . . . , m} we
define a property RXY =

∏
i∈X P1i◦

∏
j∈Y P2j . Then we have for all parti-

tions N1 ∪N2 and M1 ∪M2 of {1, 2, . . . , n} and {1, 2, . . . , m}, respectively,
that RN1M1

◦RN2M2 = P1◦P2. Note that this equation describes a decompo-
sition of P1◦P2 with different order of the same irreducible properties and
that RN1M1 = P1 and RN2M2 = P2 if and only if M1 = N2 = ∅, in a situation
described we call this partition trivial.

Now, according to Lemma 3, for any nontrivial partition N1 ∪N2,M1 ∪
M2 we cannot have RN1M1 ⊆ P1 and RN2M2 ⊆ P2, therefore for all nontrivial
partitions N1 ∪ N2 and M1 ∪ M2 there is a graph FN1M1 ∈ RN1M1 with
FN1M1 /∈ P1 or there is a graph F ∗

N2M2
∈ RN2M2 with F ∗

N2M2
/∈ P2 (in cases

where only one such graph exists, we take the other to be K0). Let us define
H =

⋃
(FN1M1 ∪F ∗

N2M2
) where the disjoint union of graphs is taken over all

nontrivial partitions N1 ∪N2 and M1 ∪M2. To construct the graph GH by
Lemma 2 we consider the vertex (P11, . . . ,P1n,P21, . . . ,P2m)-partition of H
formed with respect to the fact that FN1M1 ∈ RN1M1 and F ∗

N2M2
∈ RN2M2 .

Let us consider now any vertex (P1,P2)-partition of GH , say {U1, U2}
and let {V ∗

11, . . . , V
∗
1n, V ∗

21, . . . , V
∗
2m} be the unique (P11, . . . ,P1n,P21, . . . ,

P2m)-partition of GH . Since G[U1] ∈ P1 the set U1 can be further partitioned
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into n sets inducing subgraphs which are in the properties P1i. Similarly,
the set U2 can be partitioned into m sets inducing subgraphs which are
in the properties P2j . By the above these n + m sets are exactly the sets
{V ∗

11, . . . , V
∗
1n, V ∗

21, . . . , V
∗
2m}, but not necessarily in this order. However the

partition of U1 is exactly {V ∗
11, V

∗
12, . . . , V

∗
1n} since otherwise there is a non-

trivial partition N1 ∪N2, M1 ∪M2 such that FN1M1 ∈ P1 and F ∗
N2M2

∈ P2,
a contradiction. Since the partition of U1 is exactly {V ∗

11, V
∗
12, . . . , V

∗
1n} it

follows that the partition of U2 must be {V ∗
21, V

∗
22, . . . , V

∗
2m}.
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