Discussiones Mathematicae Graph Theory 22 (2002) 17–29

WEAKLY *P*-SATURATED GRAPHS

MIECZYSŁAW BOROWIECKI

AND

Elżbieta Sidorowicz

Institute of Mathematics University of Zielona Góra 65-246 Zielona Góra, Podqórna 50, Poland

e-mail: M.Borowiecki@im.uz.zgora.pl e-mail: E.Sidorowicz@im.uz.zgora.pl

Abstract

For a hereditary property \mathcal{P} let $k_{\mathcal{P}}(G)$ denote the number of forbidden subgraphs contained in G. A graph G is said to be *weakly* \mathcal{P} saturated, if G has the property \mathcal{P} and there is a sequence of edges of \overline{G} , say e_1, e_2, \ldots, e_l , such that the chain of graphs $G = G_0 \subset G_0 + e_1 \subset$ $G_1 + e_2 \subset \ldots \subset G_{l-1} + e_l = G_l = K_n \ (G_{i+1} = G_i + e_{i+1})$ has the following property: $k_{\mathcal{P}}(G_{i+1}) > k_{\mathcal{P}}(G_i), \ 0 \le i \le l-1$.

In this paper we shall investigate some properties of weakly saturated graphs. We will find upper bound for the minimum number of edges of weakly \mathcal{D}_k -saturated graphs of order n. We shall determine the number weak (n, \mathcal{P}) for some hereditary properties.

Keywords: graph, extremal problems, hereditary property, weakly saturated graphs.

1991 Mathematics Subject Classification: 05C35.

1. INTRODUCTION AND NOTATION

We consider finite undirected graphs without loops or multiple edges. A graph G has a vertex set V(G) and an edge set E(G). Let v(G), e(G) denote the number of vertices and the number of edges of G, respectively. We say that G contains H whenever G contains a subgraph isomorphic to H.

The degree of $v \in V(G)$ is denoted by $d_G(v)$. The number of edges of a path is called the *length* of the path.

Let \mathcal{I} denote the class of all graphs with isomorphic graphs being regarded as equal. If \mathcal{P} is a proper nonempty subclass of \mathcal{I} , then \mathcal{P} will also denote the property of being in \mathcal{P} . We shall use the terms *class of graphs* and *property of graphs* interchangeably.

A property \mathcal{P} is called *hereditary* if every subgraph of a graph G with property \mathcal{P} also has property \mathcal{P} .

We list some properties to introduce the necessary notation which will be used in the paper. Let k be a non-negative integer.

 $\mathcal{O} = \{ G \in \mathcal{I} : G \text{ is totally disconnected} \},\$

 $\mathcal{O}_k = \{ G \in \mathcal{I} : \text{ each component of } G \text{ has at most } k+1 \text{ vertices} \},$

 $\mathcal{I}_k = \{ G \in \mathcal{I} : G \text{ contains no subgraph isomorphic to } K_{k+2} \},\$

 $\mathcal{S}_k = \{ G \in \mathcal{I} : \Delta(G) \le k \},\$

 $\mathcal{D}_k = \{ G \in \mathcal{I} : G \text{ is } k \text{-degenerated, i.e., } \delta(H) \le k \text{ for any } H \le G \},$

 $\mathcal{W}_k = \{ G \in \mathcal{I} : \text{the length of the longest path in } G \text{ is at most } k \}.$

Let \mathcal{P} be a nontrivial hereditary property. Then there is a nonnegative integer $c(\mathcal{P})$, called the *completeness* of \mathcal{P} , such that $K_{c(p)+1} \in \mathcal{P}$ but $K_{c(p)+2} \notin \mathcal{P}$. Obviously

$$c(\mathcal{O}_k) = c(\mathcal{I}_k) = c(\mathcal{S}_k) = c(\mathcal{D}_k) = c(\mathcal{W}_k) = k.$$

For a hereditary property \mathcal{P} the set of all *minimal forbidden subgraphs* of \mathcal{P} is defined by

 $F(\mathcal{P}) = \{ G \in I : G \notin \mathcal{P} \text{ but each proper subgraph } H \text{ of } G \text{ belongs to } \mathcal{P} \}.$

A graph is called \mathcal{P} -maximal if it does not contain any forbidden subgraph but it will contain a forbidden subgraph when any new edge is added to the graph. Let $M(\mathcal{P})$ be the set of all \mathcal{P} -maximal graphs. The set of \mathcal{P} -maximal graphs of order n is denoted by $M(n, \mathcal{P})$.

Many problems of extremal graph theory can be formulated as follows: What is the maximum (minimum) number of edges in a \mathcal{P} -maximal graph of order n? For a given hereditary property \mathcal{P} we define those two numbers in the following manner:

$$ex(n, \mathcal{P}) = \max\{e(G) : G \in M(n, \mathcal{P})\},\$$

$$sat(n, \mathcal{P}) = \min\{e(G) : G \in M(n, \mathcal{P})\}.$$

The set of all \mathcal{P} -maximal graphs of order n with exactly $ex(n, \mathcal{P})$ edges is denoted by $Ex(n, \mathcal{P})$. The members of $Ex(n, \mathcal{P})$ are called \mathcal{P} -extremal graphs. By the symbol $Sat(n, \mathcal{P})$ is denoted the set of all \mathcal{P} -maximal graphs of order n with $sat(n, \mathcal{P})$ edges. These graphs are called \mathcal{P} -saturated.

The most famous Turán's Theorem [6] establishes the number of edges of \mathcal{I}_k -extremal graphs. On the other hand, Erdös, Hajnal and Moon [2] calculated the number sat (n, \mathcal{I}_k) .

Bollobás [1] introduced the concept of a weakly k-saturated graph. Consider a graph of order n and add all those edges which are the only missing edge of complete graph of order k (i.e., we add the edge e if there are k such vertices of the graph, that the graph contains all the edges spanned by these k vertices, saving e). If by repeating this process a sufficient number of times the complete graph of order n is obtained, the original graph will be called *weakly k-saturated*.

Bollobás showed that if a graph G of order n is weakly k-saturated (for $3 \le k \le 7$) with the minimum number of edges then $e(G) = (k-2)n - \binom{k-1}{2}$. In the general case (i.e., for $k \ge 3$) the equality has been proved by Kalai [5].

Let \mathcal{P} be a hereditary property and let $k_{\mathcal{P}}(G)$ denote the number of forbidden subgraphs contained in G. A graph G is said to be *weakly* \mathcal{P} *saturated*, if G has the property \mathcal{P} and there is a sequence of edges of \overline{G} , say e_1, e_2, \ldots, e_l , such that the chain of graphs $G = G_0 \subset G_0 + e_1 \subset G_1 + e_2 \subset$ $\ldots \subset G_{l-1} + e_l = G_l = K_n \ (G_{i+1} = G_i + e_{i+1})$ has the following property: $k_{\mathcal{P}}(G_{i+1}) > k_{\mathcal{P}}(G_i), \ 0 \leq i \leq l-1$. This sequence of edges will be called the *complementary sequence of* G with respect to \mathcal{P} or briefly the *complementary sequence* if it does not lead us to misunderstanding.

According to our terminology a weakly k-saturated graph is called weakly \mathcal{I}_{k-2} -saturated.

Let us denote a set of all weakly \mathcal{P} -saturated graphs of order n by $WSat(n, \mathcal{P})$. Let the minimum and the maximum number of edges in a

graph of $WSat(n, \mathcal{P})$ be denoted by

wsat
$$(n, \mathcal{P}) = \min\{e(G) : G \in WSat(n, \mathcal{P})\},\$$

wex $(n, \mathcal{P}) = \max\{e(G) : G \in WSat(n, \mathcal{P})\}.$

From Theorem of Kalai and Theorem of Erdös, Hajnal, Moon it follows that wsat $(n, \mathcal{I}_k) = \operatorname{sat}(n, \mathcal{I}_k)$. In Section 2 we shall describe a hereditary property \mathcal{P} such that wsat $(n, \mathcal{P}) < \operatorname{sat}(n, \mathcal{P})$. We will also investigate some properties of weakly saturated graphs. In Section 3 examples of weakly \mathcal{D}_k -saturated graphs and an upper bound for the number wsat (n, \mathcal{D}_k) will be given. In Section 4 we shall determine the number wsat (n, \mathcal{P}) for some hereditary properties.

2. Some Properties of Weakly \mathcal{P} -Saturated Graphs

From the definition of weakly \mathcal{P} -saturated graphs it follows that any \mathcal{P} -maximal graph is weakly \mathcal{P} -saturated. First we prove that the maximum number of edges of weakly \mathcal{P} -saturated graphs is equal to the maximum number of edges of \mathcal{P} -maximal graphs.

Theorem 1. Let $n \ge 1$. If \mathcal{P} is a hereditary property, then wex $(n, \mathcal{P}) = ex(n, \mathcal{P})$.

Proof. Every \mathcal{P} -maximal graph is weakly \mathcal{P} -saturated. Thus wex $(n, \mathcal{P}) \geq \exp(n, \mathcal{P})$. On the other hand, if a graph of order n has more than $\exp(n, \mathcal{P})$ edges then it contains a forbidden subgraph. Hence wex $(n, \mathcal{P}) \leq \exp(n, \mathcal{P})$.

Any non-negative integer valued function $f : \mathcal{I} \to N$ is called the *graph invariant* (*invariant*, for short). For a hereditary property \mathcal{P} let us define the number

$$f(\mathcal{P}) = \min\{f(H) : H \in F(\mathcal{P})\}.$$

Theorem 2. Let f(G) be an invariant satisfying:

- (1) $f(H) \leq f(G)$ for $H \subseteq G$,
- (2) $f(G+e) \le f(G) + 1$ for $e \in E(\overline{G})$.

Then for any graph $G \in WSat(n, \mathcal{P})$ with $n \geq c(\mathcal{P}) + 2$, we have

$$f(G) \ge f(\mathcal{P}) - 1.$$

Proof. From the definition of weakly \mathcal{P} -saturated graphs, it follows that there is an edge $e \in E(\overline{G})$ and a graph $F \in F(\mathcal{P})$ such that $F \subseteq G + e$. Thus $f(\mathcal{P}) \leq f(F) \leq f(G + e) \leq f(G) + 1$.

The chromatic number and the clique number are examples of invariant satisfying assumptions of Theorem 2. The edge connectivity $\lambda(G)$ does not satisfy the assumption (1) of Theorem 2, but we shall prove that for $G \in WSat(n, \mathcal{P})$ the inequality $\lambda(G) \geq \lambda(\mathcal{P}) - 1$ also holds.

Theorem 3. Let $\lambda(\mathcal{P}) = \lambda > 0$ and $G \in WSat(n, \mathcal{P})$. Then

$$\lambda(G) \ge \lambda - 1.$$

Proof. Let S be an edge cutset of G such that $\lambda(G) = |S|$. Let G', G" be two components of G - S. Since G is weakly \mathcal{P} -saturated, it follows that there is a complementary sequence e_1, e_2, \ldots, e_l of G. Let e_i be the first edge of the sequence e_1, e_2, \ldots, e_l , which joins a vertex of G' with a vertex of G". Let F denote a subgraph of $G_{i-1} + e_i$, which contains the edge e_i and is isomorphic with some graph of $F(\mathcal{P})$. Then the set $S \cup \{e_i\}$ is an edge cutset of F. Thus $\lambda \leq \lambda(F) \leq |S| + 1 = \lambda(G) + 1$.

From the next theorem it follows that the behaviour of $wsat(n, \mathcal{P})$ is not monotone in general.

Theorem 4. Let \mathcal{P} be the hereditary property such that $F(\mathcal{P}) = \{2K_2\}$. Then

wsat
$$(n, \mathcal{P}) = \begin{cases} 3, & \text{for } n = 4, \\ 1, & \text{for } n \ge 5. \end{cases}$$

Proof. It is easy to see that there is no weakly \mathcal{P} -saturated graph of order 4 with two edges. Since the graphs $K_{1,3}$ and $K_3 \cup K_1$ are weakly \mathcal{P} -saturated, we have weak $(4, \mathcal{P}) = 3$.

If $n \geq 5$ then $K_2 \cup (n-2)K_1$ is a weakly \mathcal{P} -saturated graph. By adding (as long as possible) an edge joining two vertices of $(n-2)K_1$ we obtain two independent edges, i.e., $2K_2$, and results in K_{n-2} . Since $n-2 \geq 3$, it follows that every vertex of K_2 (in the original graph), we can join with every vertex of just obtained K_{n-2} .

From Theorem of Kalai and Theorem of Erdös, Hajnal and Moon, it follows that wsat $(n, \mathcal{I}_k) = \operatorname{sat}(n, \mathcal{I}_k)$. Such equality also holds for the property \mathcal{D}_1 . **Theorem 5.** Let $n \ge 1$. Then

$$\operatorname{sat}(n, \mathcal{D}_1) = \operatorname{wsat}(n, \mathcal{D}_1) = n - 1.$$

Proof. Since $F(\mathcal{D}_1) = \{C_p : p \geq 3\}$, $\lambda(\mathcal{D}_1) = 2$ and every tree is weakly \mathcal{D}_1 -saturated, it follows that $wsat(n, \mathcal{D}_1) \leq n - 1$. From Theorem 3 we have $\lambda(G) \geq 1$ for $G \in WSat(n, \mathcal{D}_1)$ then $wsat(n, \mathcal{D}_1) \geq n - 1$. Thus $wsat(n, \mathcal{D}_1) = n - 1$. Since the only \mathcal{D}_1 -maximal graphs are trees, we have $sat(n, \mathcal{D}_1) = n - 1$.

The next theorem describes a hereditary property \mathcal{P} for which the minimum number of edges of weakly \mathcal{P} -saturated graphs of order n is less than the number of edges of \mathcal{P} -saturated graphs of order n.

Theorem 6. Let \mathcal{P} be the hereditary property such that $ex(n, \mathcal{P}) = sat(n, \mathcal{P}), \ \lambda(\mathcal{P}) = \lambda(H_0) = 1, \ H_0 \in F(\mathcal{P}) \ and \ every \ \mathcal{P}\text{-maximal graph}$ is connected. Then $wsat(n, \mathcal{P}) < sat(n, \mathcal{P}), \ n \ge v(H_0).$

Proof. Let $H_0 \in F(\mathcal{P})$ with $\lambda(H_0) = 1$ and let e be a cutedge of H_0 . Denote by H_1, H_2 components of $H_0 - e$. Let $v(H_1) = n_1, v(H_2) = n_2$. We define the graph $G = G_1 \cup G_2$ of order n assuming that $v(G_1) = n_1, v(G_2) = n - n_1$ and for $i = 1, 2, G_i$ is \mathcal{P} -maximal. Obviously $n - n_1 \ge n_2$. Since all forbidden subgraphs are connected it follows that the graph G has property \mathcal{P} . Defined graph G is not connected, then by the assumption of the theorem, G is not \mathcal{P} -maximal. Thus $e(G) < ex(n, \mathcal{P}) = sat(n, \mathcal{P})$.

On the other hand, we will show that the graph G is weakly \mathcal{P} - saturated. Since each component of G is a \mathcal{P} -maximal graph, it follows that if we add any edge of \overline{G} which joins two vertices of the same component we obtain a new forbidden subgraph containing the edge e. After adding all missing edges of each component we obtain the graph being a sum of complete graphs. Then each edge, which joins a vertex of the component of order n_1 with a vertex of the component of order $n - n_1$, belongs to a subgraph isomorphic to H_0 . Thus the graph G is weakly \mathcal{P} -saturated and $e(G) \geq \operatorname{wsat}(n, \mathcal{P})$.

In the next section we will show that the assumptions of Theorem 6 for the property \mathcal{D}_k $(k \ge 2)$ holds.

3. Weakly \mathcal{D}_k -Saturated Graphs

The set of minimal forbidden subgraphs for property \mathcal{D}_k was characterized by Mihók [4]. To describe the set $F(\mathcal{D}_k)$ we need some more notations. For a nonnegative integer k and a graph G, we denote the set of all vertices of G of degree k + 1 by M(G). If $S \subseteq V(G)$ is a cutset of vertices of G and $G_1, \ldots, G_s, s \geq 2$ are the components of G - S, then the graph $G - V(G_i)$ is denoted by $H_i, i = 1, \ldots, s$.

Theorem 7. [4] A graph G belongs to $F(\mathcal{D}_k)$ if and only if G is connected, $\delta(G) \ge k + 1$, V(G) - M(G) is an independent set of vertices of G and for each cutset $S \subset V(G) - M(G)$ we have that $\delta(H_i) \le k$ for each $i = 1, \ldots, s$.

Let us present some useful examples of $F(\mathcal{D}_k)$.

Example 1. Let H_k , $k \geq 2$, be the graph such that $V(H_k) = \{x_1, \ldots, x_k, y_1, \ldots, y_k, v_1, v_2, w_1, w_2\}$ with the following properties: vertices x_1, \ldots, x_k and y_1, \ldots, y_k induce two complete graphs and $v_i w_i, v_i x_j, w_i y_j \in E(H_k)$ for $i = 1, 2, j = 1, \ldots, k$.

Figure 3.1. The graph H_k for k = 2

Example 2. Let H'_k , $k \geq 2$, be the graph such that $V(H'_k) = \{x_1, \ldots, x_k, y_1, \ldots, y_k, v_1, v_2, v_3, w_1, w_2, w_3\}$ with the following properties: verices x_1, \ldots, x_k and y_1, \ldots, y_k induce two graphs obtained from K_k by removing $\lfloor \frac{k}{2} \rfloor$ independent edges and $v_i x_j$, $w_i y_j \in E(H'_k)$ for $i = 1, 2, 3, j = 1, \ldots, k$, and $v_1 w_1$, $v_2 v_3$, $w_2 w_3 \in E(H'_k)$.

Figure 3.2. The graph H'_k for k = 2

By Example 2 we have that $\lambda(\mathcal{D}_k) = 1$ for $k \geq 2$. Since \mathcal{D}_k -maximal graphs are connected and sat $(n, \mathcal{D}_k) = \exp(n, \mathcal{D}_k)$ (see e.g. [3]), it follows that the assumptions of Theorem 6 holds. Then we immediately have

Corollary 8. wsat $(n, \mathcal{D}_k) < \operatorname{sat}(n, \mathcal{D}_k)$ for $n \ge 2(k+3), k \ge 2$.

To determine upper bound for the number $wsat(n, \mathcal{D}_k)$ we need the following lemma.

Lemma 9. Let $k \ge 2$. Then the graph $H_k - v_2w_2$ is weakly \mathcal{D}_k -saturated. **Proof.** Put $G = H_k - v_2w_2$. If the edge v_2w_2 is added to G then $G = H_k \in F(\mathcal{D}_k)$ is obtained. If we add v_1v_2 or w_1w_2 to H_k then we obtain the graph K_{k+2} which belongs to $F(\mathcal{D}_k)$. After adding the edge x_iy_j , $(1 \le i, j \le k)$, edges $(E(G) \cup \{v_1v_2, w_1w_2, x_iy_j\}) - \{v_1x_i, w_1y_j\}$ induce H_k . Now we can add the edge v_1y_j , $1 \le j \le k$ since edges $(E(G) \cup \{v_2w_2, w_1w_2, v_1y_j\}) - \{w_2y_j, v_1w_1\}$ induce H_k . If we add the edge v_2w_j $(1 \le j \le k)$, we obtain the graph H_k induced by $(E(G) \cup \{w_1w_2, v_2y_j\}) - \{w_1y_j\}$. In a similar manner we can show that if we add edges x_iw_1 and x_iw_2 $(1 \le i \le k)$, a new forbidden subgraph appears. The last two edges v_1w_2, v_2w_1 we can add because edges $(E(G) \cup \{x_1y_1, v_1w_2, v_1v_2, w_1w_2\}) - \{x_1v_1, w_2y_1, v_1w_1\}$ and $(E(G) \cup \{x_1y_1, v_2w_1, v_1v_2, w_1w_2\}) - \{x_1v_2, w_1y_1, v_1w_1\}$ induce H_k .

Theorem 10. Let $k \ge 2$ and n = 2(k+2)q+r, where $q \ge 1$, $0 \le r \le 2k+3$. Then

$$\operatorname{wsat}(n, \mathcal{D}_k) \leq \begin{cases} \frac{(k+2)(k+1)-1}{2(k+2)}n, & \text{for } r = 0, \\\\ \frac{(k+2)(k+1)-1}{2(k+2)}(n-r-(k+2)) + \\ (r+k+2)k - \binom{k+1}{2}, & \text{for } 0 < r < k+3, \\\\ \frac{(k+2)(k+1)-1}{2(k+2)}(n-r) + rk - \binom{k+1}{2}, & \text{for } r \ge k+3. \end{cases}$$

Proof. To prove the theorem it is enough to show that there is a weakly \mathcal{D}_k -saturated graph G of order n with such number of edges. Let $k \geq 2$ and n = 2(k+2)q + r, where $q \geq 1$, $0 \leq r \leq 2k + 3$. Put $G' = H_k - v_2 w_2$. If $r \geq k + 3$, then $G = qG' \cup H$, where $H \in M(r, \mathcal{D}_k)$. If $0 \leq r < k + 3$, then $G = qG' \cup H$, where $H \in M(2(k+2) + r, \mathcal{D}_k)$. If r = 0, then G = qG'. By Lemma 9 it follows that each component of G is a weakly \mathcal{D}_k -saturated graph. Then we can add edges in each component of G to obtain a complete graph. After having added those edges we can join any vertices of two different components.

4. The Number wsat (n, \mathcal{P}) for Some Hereditary Properties

In this section we will calculate the minimum number of edges of weakly saturated graphs for some hereditary properties.

Theorem 11. Let $k \ge 1$ and $n \ge k+2$. Then $WSat(n, \mathcal{O}_k) \supseteq \{T_r \cup T_s \cup tT_1 : r+s = k+2, r+s+t = n \text{ and } T_i$ is an abitrary tree of order $i\}$

and

wsat
$$(n, \mathcal{O}_k) = k$$
.

Proof. First we prove that the graph $G = T_r \cup T_s \cup tT_1$, where r + s = k + 2, r + s + t = n is weakly \mathcal{O}_k -saturated. If we add an edge of \overline{G} , which joins a vertex of T_r and a vertex of T_s then we obtain a tree of order k + 2, i.e., we obtain a forbidden subgraph for property \mathcal{O}_k . If we join a vertex of the subgraph tT_1 with a vertex of the obtained tree of order k + 2 we have a connected graph of order k + 3. Thus new edge belongs to a tree of order k + 2. Repeating this process we obtain a connected graph of order n in which each vertex of tT_1 is adjacent with any vertex of the tree of order k + 2. Since for each edge of the complement of a connected graph there is a spanning tree which contains this edge, it follows that G is weakly \mathcal{O}_k -saturated. Hence weat $(n, \mathcal{O}_k) \leq e(G) = k$.

On the other hand, let G be a graph such that $G \in WSat(n, \mathcal{O}_k)$ and $e(G) = wsat(n, \mathcal{O}_k)$. Let e_1 be the first edge such that $G + e_1$ contains a forbidden subgraph, i.e., the graph $G + e_1$ contains a tree of order k + 2. Thus $wsat(n, \mathcal{O}_k) = e(G) \ge k$.

The proof of the next theorem is very similar to the proof of Theorem 11, then it is omitted.

Theorem 12. Let $k \ge 1$ and $n \ge k+2$. Then

$$WSat(n, \mathcal{W}_k) \supseteq \{P_r \cup P_s \cup tP_1 : r+s = k+2, r+s+t = n\}$$

and

$$wsat(n, \mathcal{W}_k) = k.$$

It is easy to see that the graphs $K_{k+1} + tK_1$, where k+1+t = n are weakly S_k -saturated. There are some other weakly S_k -saturated graphs of order n. For example the graph G_1 (Figure 4.1) is weakly S_2 -saturated and the graph G_2 (Figure 4.1) is weakly S_3 -saturated.

Figure 4.1. The graphs G_1 and G_2

Theorem 13. Let $n \ge k + 2 \ge 4$. Then

wsat
$$(n, \mathcal{S}_k) = \binom{k+1}{2}.$$

Proof. Let G be a weakly S_k -saturated graph of order n with the minimum number of edges. Then there is a complementary sequence e_1, e_2, \ldots, e_l of G. Let $e_1 = u_1v_1$ and $d_G(u_1) = k$. Let $e_{f(1)}, \ldots, e_{f(t_1)}$ be the subsequence of e_1, e_2, \ldots, e_l such that every edge $e_{f(i)}, (1 \le i \le t_1)$ is adjacent with the vertex u_1 . If in the graph $G' = ((G + e_{f(1)}) + e_{f(2)}) + \ldots + e_{f(t_1)}$ there is no vertex of degree less than k then let $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ be the new sequence of e_1, e_2, \ldots, e_l such that every edge $e_{f(i)}, (1 \le i \le t_1)$ is adjacent with the vertex u_1 and $e_{f(t_1)+1}, \ldots, e_{f(l)}$ is the subsequence of e_1, e_2, \ldots, e_l such that every edge $e_{f(i)}, (1 \le i \le t_1)$ is adjacent with the vertex u_1 and $e_{f(t_1)+1}, \ldots, e_{f(l)}$ is the subsequence of e_1, e_2, \ldots, e_l such that any edge $e_{f(i)}, (t_1 \le i \le l)$ is not adjacent with the vertex u_1 . If in the graph G' there is a vertex of degree less than k

26

then let $e_{f(t_1+1)}$ be the first edge of e_1, e_2, \ldots, e_l , which is not adjacent with the vertex u_1 . Let $e_{f(t_1+1)} = u_2v_2$ and u_2 be a vertex of G' such that $d_{G'}(u_2) \geq k$ and $u_1 \neq u_2$. Let $e_{f(t_1+1)}, \ldots, e_{f(t_2)}$ denote edges of $\{e_1, e_2, \dots, e_l\} - \{e_{f(1)}, \dots, e_{f(t_1)}, e_{f(t_1)+1}\}$ which are adjacent with the vertex u_2 . If in the graph $G'' = ((G' + e_{f(t_1)+1}) + e_{f(t_1)+2}) + \dots + e_{f(t_2)}$ there is no vertex of degree less than k we form a new sequence of edges of $E(\overline{G})$, $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ with the following property: $e_{f(1)}, \ldots, e_{f(t_1)}$ is a subsequence of e_1, e_2, \ldots, e_l such that every edge $e_{f(i)}, (1 \leq i \leq t_1)$ is adjacent with the vertex u_1 and $e_{f(t_1)+1}, \ldots, e_{f(t_2)}$ is a subsequence of e_1, e_2, \ldots, e_l such that every edge $e_{f(i)}, (t_1 < i \leq t_2)$ is adjacent with the vertex u_2 and $e_{f(t_2)+1}, \ldots, e_{f(l)}$ is the subsequence of e_1, e_2, \ldots, e_l such that any edge $e_{f(i)}$, $(t_2 < i \leq l)$ is not adjacent with the vertex u_1 and u_2 . If in the graph G'' there is a vertex of degree less than k, we will repeat this steps until we will obtain a new sequence $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ of edges of \overline{G} . With this sequence of edges $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ is related a sequence of vertices u_1, u_2, \ldots, u_r . It is easy to see that $r \leq k$, because after k steps there is no vertex of degree less than k. Then for the vertex $u_t \in \{u_1, \ldots, u_r\}$ we have

(1)
$$d_G(u_t) + t - 1 - |N_G(u_t) \cap \{u_1, \dots, u_{t-1}\}| \ge k,$$

for the vertex $x \in V(G) - \{u_1, \ldots, u_r\}$ we have

(2)
$$d_G(x) + r - |N_G(x) \cap \{u_1, \dots, u_r\}| \ge k.$$

Thus

$$e(G) \ge \sum_{1 \le t \le r} (d_G(u_t) - |N_G(u_t) \cap \{u_1, \dots, u_{t-1}\}|) \\ + \frac{1}{2} \sum_{x \in V(G) - \{u_1, \dots, u_r\}} (d_G(x) - |N_G(x) \cap \{u_1, \dots, u_r\}|) \\ \ge \sum_{1 \le t \le r} (k+1-t) + \frac{1}{2}(n-r)(k-r).$$

The right side of inequality achieves the minimum for r = k. Thus $e(G) \ge \sum_{1 \le t \le r} (k+1-t) = \frac{1}{2}(k+1)k$.

On the other hand, the graph $K_{k+1} \cup (n-k-1)K_1$ is weakly \mathcal{S}_k -saturated. Thus wsat $(n, \mathcal{S}_k) \leq {\binom{k+1}{2}}$.

In the next theorem we determine the number $wsat(n, \mathcal{P})$ for a hereditary property with one forbidden subgraph which is a cycle of odd length.

Theorem 14. Let $k \ge 1$ and $n \ge 2k + 2$. If \mathcal{P} is the hereditary property such that $F(\mathcal{P}) = \{C_{2k+1}\}$, then $wsat(n, \mathcal{P}) = n - 1$.

Proof. Since $\lambda(\mathcal{P}) = 2$, by Theorem 3 it follows that every weakly \mathcal{P} -saturated graph is connected. Then $\operatorname{wsat}(n, \mathcal{P}) \ge n - 1$. To prove that the inequality $\operatorname{wsat}(n, \mathcal{P}) \le n - 1$ holds it is sufficient to show that there is a weakly \mathcal{P} -saturated graph of order n with n - 1 edges.

Let us show first that P_{2k+2} is a weakly \mathcal{P} -saturated graph. Let $V(P_{2k+2}) = \{v_1, \ldots, v_{2k+2}\}$ and $d(v_1) = d(v_{2k+2}) = 1$. It is easy to see that if we add the edge v_1v_{2k+1} then we obtain a cycle of order 2k + 1. Similarly if we add the edge v_2v_{2k+2} a new cycle of order 2k + 1 appears. Now we can add the edge v_1v_4 . The edge v_1v_4 belongs to the cycle $v_1, v_2, v_{2k+2}, v_{2k+1}, \ldots, v_4, v_1$. To prove that if we add any edge v_1v_{2t} then a new cycles of order 2k + 1 appears we will use induction on t. This is true for t = 1, 2. When the edges v_1v_{2i} for i < t are added the vertices $v_1, v_{2t-2}, v_{2t-3}, \ldots, v_2, v_{2k+2}, v_{2k+1}, \ldots, v_{2t}, v_1$ induce a cycle of order 2k + 1 which contains the edge v_1v_{2t} . In the same manner, after having added edges v_1v_{2i+1} for $k \geq i > t$ we can add the edge v_1v_{2t+1} . A new cycle $v_1, v_{2t+3}, \ldots, v_{2k+2}, v_2, \ldots, v_{2t+1}, v_1$ of order 2k + 1 appears. Finally the vertex v_1 with all vertices of P_{2k+2} is joined. Similarly we can join each vertex v_t ($2 \leq t \leq 2k + 2$) with all vertices of P_{2k+2} . Thus we obtain a graph K_{2k+2} . Hence P_{2k+2} is a weakly \mathcal{P} -saturated graph.

Let G be the graph of order $n \ge 2k+2$ with the following properties: G contains an induced path of order 2k+2, the remaining vertices of G form an independent set and each vertex of this set is adjacent with exactly one vertex of the path. Since the path of order 2k+2 is weakly \mathcal{P} -saturated, it follows that the graph G is weakly \mathcal{P} -saturated. Hence weat $(n, \mathcal{P}) \le n-1$.

In order to determine the number $wsat(n, \mathcal{P})$ for hereditary property such that $F(\mathcal{P}) = \{C_{2k}\}$ we need the following lemma.

Lemma 15. Let $k \geq 2$ and \mathcal{P} be the hereditary property such that $F(\mathcal{P}) = \{C_{2k}\}$, and G be a bipartite graph of order $n \geq 2k + 1$. Then $G \notin WSat(n, \mathcal{P})$.

Proof. On the contrary, suppose that there is a weakly \mathcal{P} -saturated bipartite graph G of order n. Let e_1, e_2, \ldots, e_l be a complementary sequence of G. Let $e_i = xy$ be the first edge of the sequence e_1, e_2, \ldots, e_l such that its ends x, y belong to the same colour class of G. (Notice, that the colour classes of G are uniquely determined because of connectivity of G.) Since the edge e_i belongs to an even cycle C_{2k} then there is an edge $e_j, j < i$ of this cycle (and the sequence given above) with both ends in one colour class which is impossible.

Theorem 16. Let $k \ge 2$ and $n \ge 2k + 1$. Let \mathcal{P} be the hereditary property such that $F(\mathcal{P}) = \{C_{2k}\}$. Then

$$wsat(n, \mathcal{P}) = n.$$

Proof. Let $G \in WSat(n, \mathcal{P})$. By Theorem 3 and Lemma 15 it follows that G is connected and contains an odd cycle. Thus $wsat(n, \mathcal{P}) \ge n$.

To prove that the inequality $\operatorname{wsat}(n, \mathcal{P}) \leq n$ holds it is sufficient to show that there is a weakly \mathcal{P} -saturated graph of order n with n edges. First we prove that C_{2k+1} is a weakly \mathcal{P} -saturated graph. Let $V(C_{2k+1}) =$ $\{v_1, v_2, \ldots, v_{2k+1}\}$. It is easy to see that if we add the edge v_1v_3 or the edge v_2v_{2k+1} , a cycle (containing this edge) of order 2k appears. To prove that if we add any edge v_1v_t ($3 \leq t \leq 2k$) then we obtain a new cycle of order 2k we use induction on t. This is true for t = 3. After adding edges v_1v_i for $3 \leq i < t$ the vertices $v_1, v_{t-2}, v_{t-3}, \ldots, v_2, v_{2k+1}, v_{2k}, \ldots, v_t, v_1$ induce a cycle of order 2k which contains the edge v_1v_t . Then the vertex v_1 can be joined with all vertices of C_{2k+1} . In the similar manner we can show that we can join any vertex $v_t \in V(C_{2k+1})$ with all vertices of C_{2k+1} . Hence C_{2k+1} is weakly \mathcal{P} -saturated.

Let G be the graph with the following properties: G contains an induced cycle of order 2k + 1, remaining vertices of G form an independent set and each vertex of this set is adjacent with exactly one vertex of the cycle. Since the cycle of order 2k + 1 is weakly \mathcal{P} - saturated (can be extended to K_{2k+1}), it follows that the graph G also has this property, i.e., G is weakly \mathcal{P} -saturated. Hence wsat $(n, \mathcal{P}) \leq n$.

References

- B. Bollobás, Weakly k-saturated graphs, in: H. Sachs, H.-J. Voss and H. Walther, eds, Proc. Beiträge zur Graphentheorie, Manebach, 9–12 May, 1967 (Teubner Verlag, Leipzig, 1968) 25–31.
- [2] P. Erdös, A. Hajnal and J.W. Moon, A Problem in Graph Theory, Amer. Math. Monthly 71 (1964) 1107–1110.
- [3] R. Lick and A. T. White, *k*-degenerated graphs, Canadian J. Math. 22 (1970) 1082–1096.
- [4] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123–126.

- [5] G. Kalai, Weakly saturated graphs are rigid, Annals of Discrete Math. 20 (1984) 189–190.
- [6] P. Turán, On the Theory of Graphs, Colloq. Math. 3 (1954) 19–30.

Received 20 August 2000 Revised 3 December 2001