WEAKLY \mathcal{P}-SATURATED GRAPHS

Mieczystaw Borowiecki
AND
Elżbieta Sidorowicz
Institute of Mathematics
University of Zielona Góra
65-246 Zielona Góra, Podgórna 50, Poland
e-mail: M.Borowiecki@im.uz.zgora.pl
e-mail: E.Sidorowicz@im.uz.zgora.pl

Abstract

For a hereditary property \mathcal{P} let $k_{\mathcal{P}}(G)$ denote the number of forbidden subgraphs contained in G. A graph G is said to be weakly \mathcal{P} saturated, if G has the property \mathcal{P} and there is a sequence of edges of \bar{G}, say $e_{1}, e_{2}, \ldots, e_{l}$, such that the chain of graphs $G=G_{0} \subset G_{0}+e_{1} \subset$ $G_{1}+e_{2} \subset \ldots \subset G_{l-1}+e_{l}=G_{l}=K_{n}\left(G_{i+1}=G_{i}+e_{i+1}\right)$ has the following property: $k_{\mathcal{P}}\left(G_{i+1}\right)>k_{\mathcal{P}}\left(G_{i}\right), 0 \leq i \leq l-1$.

In this paper we shall investigate some properties of weakly saturated graphs. We will find upper bound for the minimum number of edges of weakly \mathcal{D}_{k}-saturated graphs of order n. We shall determine the number $\operatorname{wsat}(n, \mathcal{P})$ for some hereditary properties.

Keywords: graph, extremal problems, hereditary property, weakly saturated graphs.
1991 Mathematics Subject Classification: 05C35.

1. Introduction and Notation

We consider finite undirected graphs without loops or multiple edges. A graph G has a vertex set $V(G)$ and an edge set $E(G)$. Let $v(G), e(G)$ denote the number of vertices and the number of edges of G, respectively. We say that G contains H whenever G contains a subgraph isomorphic to H.

The degree of $v \in V(G)$ is denoted by $d_{G}(v)$. The number of edges of a path is called the length of the path.
Let \mathcal{I} denote the class of all graphs with isomorphic graphs being regarded as equal. If \mathcal{P} is a proper nonempty subclass of \mathcal{I}, then \mathcal{P} will also denote the property of being in \mathcal{P}. We shall use the terms class of graphs and property of graphs interchangeably.

A property \mathcal{P} is called hereditary if every subgraph of a graph G with property \mathcal{P} also has property \mathcal{P}.

We list some properties to introduce the necessary notation which will be used in the paper. Let k be a non-negative integer.
$\mathcal{O}=\{G \in \mathcal{I}: G$ is totally disconnected $\}$,
$\mathcal{O}_{k}=\{G \in \mathcal{I}:$ each component of G has at most $k+1$ vertices $\}$,
$\mathcal{I}_{k}=\left\{G \in \mathcal{I}: G\right.$ contains no subgraph isomorphic to $\left.K_{k+2}\right\}$,
$\mathcal{S}_{k}=\{G \in \mathcal{I}: \Delta(G) \leq k\}$,
$\mathcal{D}_{k}=\{G \in \mathcal{I}: G$ is k-degenerated, i.e., $\delta(H) \leq k$ for any $H \leq G\}$,
$\mathcal{W}_{k}=\{G \in \mathcal{I}:$ the length of the longest path in G is at most $k\}$.
Let \mathcal{P} be a nontrivial hereditary property. Then there is a nonnegative integer $c(\mathcal{P})$, called the completeness of \mathcal{P}, such that $K_{c(p)+1} \in \mathcal{P}$ but $K_{c(p)+2} \notin \mathcal{P}$. Obviously

$$
c\left(\mathcal{O}_{k}\right)=c\left(\mathcal{I}_{k}\right)=c\left(\mathcal{S}_{k}\right)=c\left(\mathcal{D}_{k}\right)=c\left(\mathcal{W}_{k}\right)=k
$$

For a hereditary property \mathcal{P} the set of all minimal forbidden subgraphs of \mathcal{P} is defined by
$\mathrm{F}(\mathcal{P})=\{G \in I: G \notin \mathcal{P}$ but each proper subgraph H of G belongs to $\mathcal{P}\}$.
A graph is called \mathcal{P}-maximal if it does not contain any forbidden subgraph but it will contain a forbidden subgraph when any new edge is added to the graph. Let $\mathrm{M}(\mathcal{P})$ be the set of all \mathcal{P}-maximal graphs. The set of \mathcal{P}-maximal graphs of order n is denoted by $\mathrm{M}(n, \mathcal{P})$.

Many problems of extremal graph theory can be formulated as follows: What is the maximum (minimum) number of edges in a \mathcal{P}-maximal graph
of order n ? For a given hereditary property \mathcal{P} we define those two numbers in the following manner:

$$
\begin{aligned}
& \operatorname{ex}(n, \mathcal{P})=\max \{e(G): G \in \mathrm{M}(n, \mathcal{P})\}, \\
& \operatorname{sat}(n, \mathcal{P})=\min \{e(G): G \in \mathrm{M}(n, \mathcal{P})\}
\end{aligned}
$$

The set of all \mathcal{P}-maximal graphs of order n with exactly ex (n, \mathcal{P}) edges is denoted by $\operatorname{Ex}(n, \mathcal{P})$. The members of $\operatorname{Ex}(n, \mathcal{P})$ are called \mathcal{P}-extremal graphs. By the symbol $\operatorname{Sat}(n, \mathcal{P})$ is denoted the set of all \mathcal{P}-maximal graphs of order n with $\operatorname{sat}(n, \mathcal{P})$ edges. These graphs are called \mathcal{P}-saturated.

The most famous Turán's Theorem [6] establishes the number of edges of \mathcal{I}_{k}-extremal graphs. On the other hand, Erdös, Hajnal and Moon [2] calculated the number $\operatorname{sat}\left(n, \mathcal{I}_{k}\right)$.

Bollobás [1] introduced the concept of a weakly k-saturated graph. Consider a graph of order n and add all those edges which are the only missing edge of complete graph of order k (i.e., we add the edge e if there are k such vertices of the graph, that the graph contains all the edges spanned by these k vertices, saving e). If by repeating this process a sufficient number of times the complete graph of order n is obtained, the original graph will be called weakly k-saturated.

Bollobás showed that if a graph G of order n is weakly k-saturated (for $3 \leq k \leq 7$) with the minimum number of edges then $e(G)=(k-2) n$ $-\binom{k-1}{2}$. In the general case (i.e., for $k \geq 3$) the equality has been proved by Kalai [5].

Let \mathcal{P} be a hereditary property and let $k_{\mathcal{P}}(G)$ denote the number of forbidden subgraphs contained in G. A graph G is said to be weakly \mathcal{P} saturated, if G has the property \mathcal{P} and there is a sequence of edges of \bar{G}, say $e_{1}, e_{2}, \ldots, e_{l}$, such that the chain of graphs $G=G_{0} \subset G_{0}+e_{1} \subset G_{1}+e_{2} \subset$ $\ldots \subset G_{l-1}+e_{l}=G_{l}=K_{n}\left(G_{i+1}=G_{i}+e_{i+1}\right)$ has the following property: $k_{\mathcal{P}}\left(G_{i+1}\right)>k_{\mathcal{P}}\left(G_{i}\right), 0 \leq i \leq l-1$. This sequence of edges will be called the complementary sequence of G with respect to \mathcal{P} or briefly the complementary sequence if it does not lead us to misunderstanding.

According to our terminology a weakly k-saturated graph is called weakly \mathcal{I}_{k-2}-saturated.

Let us denote a set of all weakly \mathcal{P}-saturated graphs of order n by $\operatorname{WSat}(n, \mathcal{P})$. Let the minimum and the maximum number of edges in a
graph of $\operatorname{WSat}(n, \mathcal{P})$ be denoted by

$$
\begin{aligned}
& \operatorname{wsat}(n, \mathcal{P})=\min \{e(G): G \in \operatorname{WSat}(n, \mathcal{P})\}, \\
& \operatorname{wex}(n, \mathcal{P})=\max \{e(G): G \in \operatorname{WSat}(n, \mathcal{P})\} .
\end{aligned}
$$

From Theorem of Kalai and Theorem of Erdös, Hajnal, Moon it follows that $\operatorname{wsat}\left(n, \mathcal{I}_{k}\right)=\operatorname{sat}\left(n, \mathcal{I}_{k}\right)$. In Section 2 we shall describe a hereditary property \mathcal{P} such that $\operatorname{wsat}(n, \mathcal{P})<\operatorname{sat}(n, \mathcal{P})$. We will also investigate some properties of weakly saturated graphs. In Section 3 examples of weakly \mathcal{D}_{k}-saturated graphs and an upper bound for the number $\operatorname{wsat}\left(n, \mathcal{D}_{k}\right)$ will be given. In Section 4 we shall determine the number $\operatorname{wsat}(n, \mathcal{P})$ for some hereditary properties.

2. Some Properties of Weakly \mathcal{P}-Saturated Graphs

From the definition of weakly \mathcal{P}-saturated graphs it follows that any \mathcal{P} maximal graph is weakly \mathcal{P}-saturated. First we prove that the maximum number of edges of weakly \mathcal{P}-saturated graphs is equal to the maximum number of edges of \mathcal{P}-maximal graphs.

Theorem 1. Let $n \geq 1$. If \mathcal{P} is a hereditary property, then $\operatorname{wex}(n, \mathcal{P})=$ ex (n, \mathcal{P}).

Proof. Every \mathcal{P}-maximal graph is weakly \mathcal{P}-saturated. Thus wex $(n, \mathcal{P}) \geq$ $\operatorname{ex}(n, \mathcal{P})$. On the other hand, if a graph of order n has more than $\operatorname{ex}(n, \mathcal{P})$ edges then it contains a forbidden subgraph. Hence $\operatorname{wex}(n, \mathcal{P}) \leq \operatorname{ex}(n, \mathcal{P})$.

Any non-negative integer valued function $f: \mathcal{I} \rightarrow N$ is called the graph invariant (invariant, for short). For a hereditary property \mathcal{P} let us define the number

$$
f(\mathcal{P})=\min \{f(H): H \in \mathrm{~F}(\mathcal{P})\} .
$$

Theorem 2. Let $f(G)$ be an invariant satisfying:
(1) $f(H) \leq f(G)$ for $H \subseteq G$,
(2) $f(G+e) \leq f(G)+1$ for $e \in E(\bar{G})$.

Then for any graph $G \in \operatorname{WSat}(n, \mathcal{P})$ with $n \geq c(\mathcal{P})+2$, we have

$$
f(G) \geq f(\mathcal{P})-1
$$

Proof. From the definition of weakly \mathcal{P}-saturated graphs, it follows that there is an edge $e \in E(\bar{G})$ and a graph $F \in \mathrm{~F}(\mathcal{P})$ such that $F \subseteq G+e$. Thus $f(\mathcal{P}) \leq f(F) \leq f(G+e) \leq f(G)+1$.

The chromatic number and the clique number are examples of invariant satisfying assumptions of Theorem 2 . The edge connectivity $\lambda(G)$ does not satisfy the assumption (1) of Theorem 2, but we shall prove that for $G \in \operatorname{WSat}(n, \mathcal{P})$ the inequality $\lambda(G) \geq \lambda(\mathcal{P})-1$ also holds.

Theorem 3. Let $\lambda(\mathcal{P})=\lambda>0$ and $G \in \operatorname{WSat}(n, \mathcal{P})$. Then

$$
\lambda(G) \geq \lambda-1
$$

Proof. Let S be an edge cutset of G such that $\lambda(G)=|S|$. Let $G^{\prime}, G^{\prime \prime}$ be two components of $G-S$. Since G is weakly \mathcal{P}-saturated, it follows that there is a complementary sequence $e_{1}, e_{2}, \ldots, e_{l}$ of G. Let e_{i} be the first edge of the sequence $e_{1}, e_{2}, \ldots, e_{l}$, which joins a vertex of G^{\prime} with a vertex of $G^{\prime \prime}$. Let F denote a subgraph of $G_{i-1}+e_{i}$, which contains the edge e_{i} and is isomorphic with some graph of $\mathrm{F}(\mathcal{P})$. Then the set $S \cup\left\{e_{i}\right\}$ is an edge cutset of F. Thus $\lambda \leq \lambda(F) \leq|S|+1=\lambda(G)+1$.

From the next theorem it follows that the behaviour of $\operatorname{wsat}(n, \mathcal{P})$ is not monotone in general.

Theorem 4. Let \mathcal{P} be the hereditary property such that $\mathrm{F}(\mathcal{P})=\left\{2 K_{2}\right\}$. Then

$$
\operatorname{wsat}(n, \mathcal{P})= \begin{cases}3, & \text { for } n=4 \\ 1, & \text { for } n \geq 5\end{cases}
$$

Proof. It is easy to see that there is no weakly \mathcal{P}-saturated graph of order 4 with two edges. Since the graphs $K_{1,3}$ and $K_{3} \cup K_{1}$ are weakly \mathcal{P}-saturated, we have $\operatorname{wsat}(4, \mathcal{P})=3$.

If $n \geq 5$ then $K_{2} \cup(n-2) K_{1}$ is a weakly \mathcal{P}-saturated graph. By adding (as long as possible) an edge joining two vertices of $(n-2) K_{1}$ we obtain two independent edges, i.e., $2 K_{2}$, and results in K_{n-2}. Since $n-2 \geq 3$, it follows that every vertex of K_{2} (in the original graph), we can join with every vertex of just obtained K_{n-2}.

From Theorem of Kalai and Theorem of Erdös, Hajnal and Moon, it follows that $\operatorname{wsat}\left(n, \mathcal{I}_{k}\right)=\operatorname{sat}\left(n, \mathcal{I}_{k}\right)$. Such equality also holds for the property \mathcal{D}_{1}.

Theorem 5. Let $n \geq 1$. Then

$$
\operatorname{sat}\left(n, \mathcal{D}_{1}\right)=\operatorname{wsat}\left(n, \mathcal{D}_{1}\right)=n-1
$$

Proof. Since $F\left(\mathcal{D}_{1}\right)=\left\{C_{p}: p \geq 3\right\}, \lambda\left(\mathcal{D}_{1}\right)=2$ and every tree is weakly \mathcal{D}_{1}-saturated, it follows that $\operatorname{wsat}\left(n, \mathcal{D}_{1}\right) \leq n-1$. From Theorem 3 we have $\lambda(G) \geq 1$ for $G \in \operatorname{WSat}\left(n, \mathcal{D}_{1}\right)$ then $\operatorname{wsat}\left(n, \mathcal{D}_{1}\right) \geq n-1$. Thus $\operatorname{wsat}\left(n, \mathcal{D}_{1}\right)=n-1$. Since the only \mathcal{D}_{1}-maximal graphs are trees, we have $\operatorname{sat}\left(n, \mathcal{D}_{1}\right)=n-1$.

The next theorem describes a hereditary property \mathcal{P} for which the minimum number of edges of weakly \mathcal{P}-saturated graphs of order n is less than the number of edges of \mathcal{P}-saturated graphs of order n.

Theorem 6. Let \mathcal{P} be the hereditary property such that $\operatorname{ex}(n, \mathcal{P})=$ $\operatorname{sat}(n, \mathcal{P}), \lambda(\mathcal{P})=\lambda\left(H_{0}\right)=1, H_{0} \in \mathrm{~F}(\mathcal{P})$ and every \mathcal{P}-maximal graph is connected. Then $\operatorname{wsat}(n, \mathcal{P})<\operatorname{sat}(n, \mathcal{P}), n \geq v\left(H_{0}\right)$.

Proof. Let $H_{0} \in \mathrm{~F}(\mathcal{P})$ with $\lambda\left(H_{0}\right)=1$ and let e be a cutedge of H_{0}. Denote by H_{1}, H_{2} components of $H_{0}-e$. Let $v\left(H_{1}\right)=n_{1}, v\left(H_{2}\right)=n_{2}$. We define the graph $G=G_{1} \cup G_{2}$ of order n assuming that $v\left(G_{1}\right)=n_{1}, v\left(G_{2}\right)=$ $n-n_{1}$ and for $i=1,2, G_{i}$ is \mathcal{P}-maximal. Obviously $n-n_{1} \geq n_{2}$. Since all forbidden subgraphs are connected it follows that the graph G has property \mathcal{P}. Defined graph G is not connected, then by the assumption of the theorem, G is not \mathcal{P}-maximal. Thus $e(G)<\operatorname{ex}(n, \mathcal{P})=\operatorname{sat}(n, \mathcal{P})$.

On the other hand, we will show that the graph G is weakly \mathcal{P} - saturated. Since each component of G is a \mathcal{P}-maximal graph, it follows that if we add any edge of \bar{G} which joins two vertices of the same component we obtain a new forbidden subgraph containing the edge e. After adding all missing edges of each component we obtain the graph being a sum of complete graphs. Then each edge, which joins a vertex of the component of order n_{1} with a vertex of the component of order $n-n_{1}$, belongs to a subgraph isomorphic to H_{0}. Thus the graph G is weakly \mathcal{P}-saturated and $e(G) \geq \operatorname{wsat}(n, \mathcal{P})$. Hence $\operatorname{wsat}(n, \mathcal{P})<\operatorname{sat}(n, \mathcal{P})$.

In the next section we will show that the assumptions of Theorem 6 for the property $\mathcal{D}_{k}(k \geq 2)$ holds.

3. Weakly \mathcal{D}_{k}-Saturated Graphs

The set of minimal forbidden subgraphs for property \mathcal{D}_{k} was characterized by Mihók [4]. To describe the set $\mathrm{F}\left(\mathcal{D}_{k}\right)$ we need some more notations. For a nonnegative integer k and a graph G, we denote the set of all vertices of G of degree $k+1$ by $M(G)$. If $S \subseteq V(G)$ is a cutset of vertices of G and $G_{1}, \ldots, G_{s}, s \geq 2$ are the components of $G-S$, then the graph $G-V\left(G_{i}\right)$ is denoted by $H_{i}, i=1, \ldots, s$.

Theorem 7. [4] A graph G belongs to $\mathrm{F}\left(\mathcal{D}_{k}\right)$ if and only if G is connected, $\delta(G) \geq k+1, V(G)-M(G)$ is an independent set of vertices of G and for each cutset $S \subset V(G)-M(G)$ we have that $\delta\left(H_{i}\right) \leq k$ for each $i=1, \ldots, s$.

Let us present some useful examples of $\mathrm{F}\left(\mathcal{D}_{k}\right)$.

Example 1. Let $H_{k}, k \geq 2$, be the graph such that $V\left(H_{k}\right)=$ $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, v_{1}, v_{2}, w_{1}, w_{2}\right\}$ with the following properties: vertices x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} induce two complete graphs and $v_{i} w_{i}, v_{i} x_{j}, w_{i} y_{j} \in$ $E\left(H_{k}\right)$ for $i=1,2, j=1, \ldots, k$.

Figure 3.1. The graph H_{k} for $k=2$

Example 2. Let $H_{k}^{\prime}, k \geq 2$, be the graph such that $V\left(H_{k}^{\prime}\right)=$ $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$ with the following properties: verices x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} induce two graphs obtained from K_{k} by removing $\left\lfloor\frac{k}{2}\right\rfloor$ independent edges and $v_{i} x_{j}, w_{i} y_{j} \in E\left(H_{k}^{\prime}\right)$ for $i=1,2,3, j=$ $1, \ldots, k$, and $v_{1} w_{1}, v_{2} v_{3}, w_{2} w_{3} \in E\left(H_{k}^{\prime}\right)$.

Figure 3.2. The graph H_{k}^{\prime} for $k=2$
By Example 2 we have that $\lambda\left(\mathcal{D}_{k}\right)=1$ for $k \geq 2$. Since \mathcal{D}_{k}-maximal graphs are connected and $\operatorname{sat}\left(n, \mathcal{D}_{k}\right)=\operatorname{ex}\left(n, \mathcal{D}_{k}\right)$ (see e.g. [3]), it follows that the assumptions of Theorem 6 holds. Then we immediately have

Corollary 8. wsat $\left(n, \mathcal{D}_{k}\right)<\operatorname{sat}\left(n, \mathcal{D}_{k}\right)$ for $n \geq 2(k+3), k \geq 2$.
To determine upper bound for the number $\operatorname{wsat}\left(n, \mathcal{D}_{k}\right)$ we need the following lemma.

Lemma 9. Let $k \geq 2$. Then the graph $H_{k}-v_{2} w_{2}$ is weakly \mathcal{D}_{k}-saturated.
Proof. Put $G=H_{k}-v_{2} w_{2}$. If the edge $v_{2} w_{2}$ is added to G then $G=H_{k} \in$ $\mathrm{F}\left(\mathcal{D}_{k}\right)$ is obtained. If we add $v_{1} v_{2}$ or $w_{1} w_{2}$ to H_{k} then we obtain the graph K_{k+2} which belongs to $\mathrm{F}\left(\mathcal{D}_{k}\right)$. After adding the edge $x_{i} y_{j}, \quad(1 \leq i, j \leq k)$, edges $\left(E(G) \cup\left\{v_{1} v_{2}, w_{1} w_{2}, x_{i} y_{j}\right\}\right)-\left\{v_{1} x_{i}, w_{1} y_{j}\right\}$ induce H_{k}. Now we can add the edge $v_{1} y_{j}, 1 \leq j \leq k$ since edges $\left(E(G) \cup\left\{v_{2} w_{2}, w_{1} w_{2}, v_{1} y_{j}\right\}\right)$ $\left\{w_{2} y_{j}, v_{1} w_{1}\right\}$ induce H_{k}. If we add the edge $v_{2} w_{j}(1 \leq j \leq k)$, we obtain the graph H_{k} induced by $\left(E(G) \cup\left\{w_{1} w_{2}, v_{2} y_{j}\right\}\right)-\left\{w_{1} y_{j}\right\}$. In a similar manner we can show that if we add edges $x_{i} w_{1}$ and $x_{i} w_{2}(1 \leq i \leq k)$, a new forbidden subgraph appears. The last two edges $v_{1} w_{2}, v_{2} w_{1}$ we can add because edges $\left(E(G) \cup\left\{x_{1} y_{1}, v_{1} w_{2}, v_{1} v_{2}, w_{1} w_{2}\right\}\right)-\left\{x_{1} v_{1}, w_{2} y_{1}, v_{1} w_{1}\right\}$ and $\left(E(G) \cup\left\{x_{1} y_{1}, v_{2} w_{1}, v_{1} v_{2}, w_{1} w_{2}\right\}\right)-\left\{x_{1} v_{2}, w_{1} y_{1}, v_{1} w_{1}\right\}$ induce H_{k}.

Theorem 10. Let $k \geq 2$ and $n=2(k+2) q+r$, where $q \geq 1,0 \leq r \leq 2 k+3$. Then

$$
\operatorname{wsat}\left(n, \mathcal{D}_{k}\right) \leq\left\{\begin{array}{cl}
\frac{(k+2)(k+1)-1}{2(k+2)} n, & \text { for } r=0, \\
\frac{(k+2)(k+1)-1}{2(k+2)}(n-r-(k+2))+ & \text { for } 0<r<k+3, \\
(r+k+2) k-\binom{k+1}{2}, & \text { for } r \geq k+3
\end{array}\right.
$$

Proof. To prove the theorem it is enough to show that there is a weakly \mathcal{D}_{k}-saturated graph G of order n with such number of edges. Let $k \geq 2$ and $n=2(k+2) q+r$, where $q \geq 1,0 \leq r \leq 2 k+3$. Put $G^{\prime}=H_{k}-v_{2} w_{2}$. If $r \geq k+3$, then $G=q G^{\prime} \cup H$, where $H \in \mathrm{M}\left(r, \mathcal{D}_{k}\right)$. If $0 \leq r<k+3$, then $G=(q-1) G^{\prime} \cup H$, where $H \in \mathrm{M}\left(2(k+2)+r, \mathcal{D}_{k}\right)$. If $r=0$, then $G=q G^{\prime}$. By Lemma 9 it follows that each component of G is a weakly \mathcal{D}_{k}-saturated graph. Then we can add edges in each component of G to obtain a complete graph. After having added those edges we can join any vertices of two different components.

4. The Number wsat (n, \mathcal{P}) for Some Hereditary Properties

In this section we will calculate the minimum number of edges of weakly saturated graphs for some hereditary properties.

Theorem 11. Let $k \geq 1$ and $n \geq k+2$. Then

$$
\begin{aligned}
\operatorname{WSat}\left(n, \mathcal{O}_{k}\right) \supseteq & \left\{T_{r} \cup T_{s} \cup t T_{1}: r+s=k+2, r+s+t=n \text { and } T_{i}\right. \\
& \text { is an abitrary tree of order } i\}
\end{aligned}
$$

and

$$
\operatorname{wsat}\left(n, \mathcal{O}_{k}\right)=k
$$

Proof. First we prove that the graph $G=T_{r} \cup T_{s} \cup t T_{1}$, where $r+s=$ $k+2, r+s+t=n$ is weakly \mathcal{O}_{k}-saturated. If we add an edge of \bar{G}, which joins a vertex of T_{r} and a vertex of T_{s} then we obtain a tree of order $k+2$, i.e., we obtain a forbidden subgraph for property \mathcal{O}_{k}. If we join a vertex of the subgraph $t T_{1}$ with a vertex of the obtained tree of order $k+2$ we have a connected graph of order $k+3$. Thus new edge belongs to a tree of order $k+2$. Repeating this process we obtain a connected graph of order n in which each vertex of $t T_{1}$ is adjacent with any vertex of the tree of order $k+2$. Since for each edge of the complement of a connected graph there is a spanning tree which contains this edge, it follows that G is weakly \mathcal{O}_{k}-saturated. Hence wsat $\left(n, \mathcal{O}_{k}\right) \leq e(G)=k$.

On the other hand, let G be a graph such that $G \in \operatorname{WSat}\left(n, \mathcal{O}_{k}\right)$ and $e(G)=\operatorname{wsat}\left(n, \mathcal{O}_{k}\right)$. Let e_{1} be the first edge such that $G+e_{1}$ contains a forbidden subgraph, i.e., the graph $G+e_{1}$ contains a tree of order $k+2$. Thus $\operatorname{wsat}\left(n, \mathcal{O}_{k}\right)=e(G) \geq k$.

The proof of the next theorem is very similar to the proof of Theorem 11, then it is omitted.

Theorem 12. Let $k \geq 1$ and $n \geq k+2$. Then

$$
\operatorname{WSat}\left(n, \mathcal{W}_{k}\right) \supseteq\left\{P_{r} \cup P_{s} \cup t P_{1}: r+s=k+2, r+s+t=n\right\}
$$

and

$$
\operatorname{wsat}\left(n, \mathcal{W}_{k}\right)=k
$$

It is easy to see that the graphs $K_{k+1}+t K_{1}$, where $k+1+t=n$ are weakly \mathcal{S}_{k}-saturated. There are some other weakly \mathcal{S}_{k}-saturated graphs of order n. For example the graph G_{1} (Figure 4.1) is weakly \mathcal{S}_{2}-saturated and the graph G_{2} (Figure 4.1) is weakly \mathcal{S}_{3}-saturated.

Figure 4.1. The graphs G_{1} and G_{2}
Theorem 13. Let $n \geq k+2 \geq 4$. Then

$$
\operatorname{wsat}\left(n, \mathcal{S}_{k}\right)=\binom{k+1}{2}
$$

Proof. Let G be a weakly \mathcal{S}_{k}-saturated graph of order n with the minimum number of edges. Then there is a complementary sequence $e_{1}, e_{2}, \ldots, e_{l}$ of G. Let $e_{1}=u_{1} v_{1}$ and $d_{G}\left(u_{1}\right)=k$. Let $e_{f(1)}, \ldots, e_{f\left(t_{1}\right)}$ be the subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that every edge $e_{f(i)},\left(1 \leq i \leq t_{1}\right)$ is adjacent with the vertex u_{1}. If in the graph $G^{\prime}=\left(\left(G+e_{f(1)}\right)+e_{f(2)}\right)+\ldots+e_{f\left(t_{1}\right)}$ there is no vertex of degree less than k then let $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ be the new sequence of edges of $E(\bar{G})$ with the following property: $e_{f(1)}, \ldots, e_{f\left(t_{1}\right)}$ is the subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that every edge $e_{f(i)},\left(1 \leq i \leq t_{1}\right)$ is adjacent with the vertex u_{1} and $e_{f\left(t_{1}\right)+1}, \ldots, e_{f(l)}$ is the subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that any edge $e_{f(i)}, \quad\left(t_{1} \leq i \leq l\right)$ is not adjacent with the vertex u_{1}. If in the graph G^{\prime} there is a vertex of degree less than k
then let $e_{f\left(t_{1}+1\right)}$ be the first edge of $e_{1}, e_{2}, \ldots, e_{l}$, which is not adjacent with the vertex u_{1}. Let $e_{f\left(t_{1}+1\right)}=u_{2} v_{2}$ and u_{2} be a vertex of G^{\prime} such that $d_{G^{\prime}}\left(u_{2}\right) \geq k$ and $u_{1} \neq u_{2}$. Let $e_{f\left(t_{1}+1\right)}, \ldots, e_{f\left(t_{2}\right)}$ denote edges of $\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}-\left\{e_{f(1)}, \ldots, e_{f\left(t_{1}\right)}, e_{f\left(t_{1}\right)+1}\right\}$ which are adjacent with the vertex u_{2}. If in the graph $G^{\prime \prime}=\left(\left(G^{\prime}+e_{f\left(t_{1}\right)+1}\right)+e_{f\left(t_{1}\right)+2}\right)+\ldots+e_{f\left(t_{2}\right)}$ there is no vertex of degree less than k we form a new sequence of edges of $E(\bar{G}), e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ with the following property: $e_{f(1)}, \ldots, e_{f\left(t_{1}\right)}$ is a subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that every edge $e_{f(i)},\left(1 \leq i \leq t_{1}\right)$ is adjacent with the vertex u_{1} and $e_{f\left(t_{1}\right)+1}, \ldots, e_{f\left(t_{2}\right)}$ is a subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that every edge $e_{f(i)},\left(t_{1}<i \leq t_{2}\right)$ is adjacent with the vertex u_{2} and $e_{f\left(t_{2}\right)+1}, \ldots, e_{f(l)}$ is the subsequence of $e_{1}, e_{2}, \ldots, e_{l}$ such that any edge $e_{f(i)},\left(t_{2}<i \leq l\right)$ is not adjacent with the vertex u_{1} and u_{2}. If in the graph $G^{\prime \prime}$ there is a vertex of degree less than k, we will repeat this steps until we will obtain a new sequence $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ of edges of \bar{G}. With this sequence of edges $e_{f(1)}, e_{f(2)}, \ldots, e_{f(l)}$ is related a sequence of vertices $u_{1}, u_{2}, \ldots, u_{r}$. It is easy to see that $r \leq k$, because after k steps there is no vertex of degree less than k. Then for the vertex $u_{t} \in\left\{u_{1}, \ldots, u_{r}\right\}$ we have

$$
\begin{equation*}
d_{G}\left(u_{t}\right)+t-1-\left|N_{G}\left(u_{t}\right) \cap\left\{u_{1}, \ldots, u_{t-1}\right\}\right| \geq k \tag{1}
\end{equation*}
$$

for the vertex $x \in V(G)-\left\{u_{1}, \ldots, u_{r}\right\}$ we have

$$
\begin{equation*}
d_{G}(x)+r-\left|N_{G}(x) \cap\left\{u_{1}, \ldots, u_{r}\right\}\right| \geq k \tag{2}
\end{equation*}
$$

Thus
$e(G) \geq \sum_{1 \leq t \leq r}\left(d_{G}\left(u_{t}\right)-\left|N_{G}\left(u_{t}\right) \cap\left\{u_{1}, \ldots, u_{t-1}\right\}\right|\right)$
$+\frac{1}{2} \sum_{x \in V(G)-\left\{u_{1}, \ldots, u_{r}\right\}}\left(d_{G}(x)-\left|N_{G}(x) \cap\left\{u_{1}, \ldots, u_{r}\right\}\right|\right)$
$\geq \sum_{1 \leq t \leq r}(k+1-t)+\frac{1}{2}(n-r)(k-r)$.
The right side of inequality achieves the minimum for $r=k$. Thus $e(G) \geq \sum_{1 \leq t \leq r}(k+1-t)=\frac{1}{2}(k+1) k$.
On the other hand, the graph $K_{k+1} \cup(n-k-1) K_{1}$ is weakly \mathcal{S}_{k}-saturated. Thus wsat $\left(n, \mathcal{S}_{k}\right) \leq\binom{ k+1}{2}$.

In the next theorem we determine the number $\operatorname{wsat}(n, \mathcal{P})$ for a hereditary property with one forbidden subgraph which is a cycle of odd length.

Theorem 14. Let $k \geq 1$ and $n \geq 2 k+2$. If \mathcal{P} is the hereditary property such that $\mathrm{F}(\mathcal{P})=\left\{C_{2 k+1}\right\}$, then $\operatorname{wsat}(n, \mathcal{P})=n-1$.

Proof. Since $\lambda(\mathcal{P})=2$, by Theorem 3 it follows that every weakly \mathcal{P} saturated graph is connected. Then $\operatorname{wsat}(n, \mathcal{P}) \geq n-1$. To prove that the inequality $\operatorname{wsat}(n, \mathcal{P}) \leq n-1$ holds it is sufficient to show that there is a weakly \mathcal{P}-saturated graph of order n with $n-1$ edges.

Let us show first that $P_{2 k+2}$ is a weakly \mathcal{P}-saturated graph. Let $V\left(P_{2 k+2}\right)=\left\{v_{1}, \ldots, v_{2 k+2}\right\}$ and $d\left(v_{1}\right)=d\left(v_{2 k+2}\right)=1$. It is easy to see that if we add the edge $v_{1} v_{2 k+1}$ then we obtain a cycle of order $2 k+1$. Similarly if we add the edge $v_{2} v_{2 k+2}$ a new cycle of order $2 k+1$ appears. Now we can add the edge $v_{1} v_{4}$. The edge $v_{1} v_{4}$ belongs to the cycle $v_{1}, v_{2}, v_{2 k+2}, v_{2 k+1}, \ldots, v_{4}, v_{1}$. To prove that if we add any edge $v_{1} v_{2 t}$ then a new cycles of order $2 k+1$ appears we will use induction on t. This is true for $t=1,2$. When the edges $v_{1} v_{2 i}$ for $i<t$ are added the vertices $v_{1}, v_{2 t-2}, v_{2 t-3}, \ldots, v_{2}, v_{2 k+2}, v_{2 k+1}, \ldots, v_{2 t}, v_{1}$ induce a cycle of order $2 k+1$ which contains the edge $v_{1} v_{2 t}$. In the same manner, after having added edges $v_{1} v_{2 i+1}$ for $k \geq i>t$ we can add the edge $v_{1} v_{2 t+1}$. A new cycle $v_{1}, v_{2 t+3}, \ldots, v_{2 k+2}, v_{2}, v_{3}, \ldots v_{2 t+1}, v_{1}$ of order $2 k+1$ appears. Finally the vertex v_{1} with all vertices of $P_{2 k+2}$ is joined. Similarly we can join each vertex $v_{t}(2 \leq t \leq 2 k+2)$ with all vertices of $P_{2 k+2}$. Thus we obtain a graph $K_{2 k+2}$. Hence $P_{2 k+2}$ is a weakly \mathcal{P}-saturated graph.

Let G be the graph of order $n \geq 2 k+2$ with the following properties: G contains an induced path of order $2 k+2$, the remaining vertices of G form an independent set and each vertex of this set is adjacent with exactly one vertex of the path. Since the path of order $2 k+2$ is weakly \mathcal{P}-saturated, it follows that the graph G is weakly \mathcal{P}-saturated. Hence $\operatorname{wsat}(n, \mathcal{P}) \leq n-1$.

In order to determine the number $\operatorname{wsat}(n, \mathcal{P})$ for hereditary property such that $\mathrm{F}(\mathcal{P})=\left\{C_{2 k}\right\}$ we need the folowing lemma.

Lemma 15. Let $k \geq 2$ and \mathcal{P} be the hereditary property such that $F(\mathcal{P})=$ $\left\{C_{2 k}\right\}$, and G be a bipartite graph of order $n \geq 2 k+1$. Then $G \notin$ WSat (n, \mathcal{P}).
Proof. On the contrary, suppose that there is a weakly \mathcal{P}-saturated bipartite graph G of order n. Let $e_{1}, e_{2}, \ldots, e_{l}$ be a complementary sequence of G. Let $e_{i}=x y$ be the first edge of the sequence $e_{1}, e_{2}, \ldots, e_{l}$ such that its ends x, y belong to the same colour class of G. (Notice, that the colour classes of G are uniquely determined because of connectivity of G.) Since the edge e_{i} belongs to an even cycle $C_{2 k}$ then there is an edge $e_{j}, j<i$ of this cycle (and the sequence given above) with both ends in one colour class which is impossible.

Theorem 16. Let $k \geq 2$ and $n \geq 2 k+1$. Let \mathcal{P} be the hereditary property such that $\mathrm{F}(\mathcal{P})=\left\{C_{2 k}\right\}$. Then

$$
\operatorname{wsat}(n, \mathcal{P})=n
$$

Proof. Let $G \in \mathrm{WSat}(n, \mathcal{P})$. By Theorem 3 and Lemma 15 it follows that G is connected and contains an odd cycle. Thus $\operatorname{wsat}(n, \mathcal{P}) \geq n$.

To prove that the inequality $\operatorname{wsat}(n, \mathcal{P}) \leq n$ holds it is sufficient to show that there is a weakly \mathcal{P}-saturated graph of order n with n edges. First we prove that $C_{2 k+1}$ is a weakly \mathcal{P}-saturated graph. Let $V\left(C_{2 k+1}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{2 k+1}\right\}$. It is easy to see that if we add the edge $v_{1} v_{3}$ or the edge $v_{2} v_{2 k+1}$, a cycle (containing this edge) of order $2 k$ appears. To prove that if we add any edge $v_{1} v_{t}(3 \leq t \leq 2 k)$ then we obtain a new cycle of order $2 k$ we use induction on t. This is true for $t=3$. After adding edges $v_{1} v_{i}$ for $3 \leq i<t$ the vertices $v_{1}, v_{t-2}, v_{t-3}, \ldots, v_{2}, v_{2 k+1}, v_{2 k}, \ldots, v_{t}, v_{1}$ induce a cycle of order $2 k$ which contains the edge $v_{1} v_{t}$. Then the vertex v_{1} can be joined with all vertices of $C_{2 k+1}$. In the similar manner we can show that we can join any vertex $v_{t} \in V\left(C_{2 k+1}\right)$ with all vertices of $C_{2 k+1}$. Hence $C_{2 k+1}$ is weakly \mathcal{P}-saturated.

Let G be the graph with the following properties: G contains an induced cycle of order $2 k+1$, remaining vertices of G form an independent set and each vertex of this set is adjacent with exactly one vertex of the cycle. Since the cycle of order $2 k+1$ is weakly \mathcal{P} - saturated (can be extended to $K_{2 k+1}$), it follows that the graph G also has this property, i.e., G is weakly \mathcal{P}-saturated. Hence $\operatorname{wsat}(n, \mathcal{P}) \leq n$.

References

[1] B. Bollobás, Weakly k-saturated graphs, in: H. Sachs, H.-J. Voss and H. Walther, eds, Proc. Beiträge zur Graphentheorie, Manebach, 9-12 May, 1967 (Teubner Verlag, Leipzig, 1968) 25-31.
[2] P. Erdös, A. Hajnal and J.W. Moon, A Problem in Graph Theory, Amer. Math. Monthly 71 (1964) 1107-1110.
[3] R. Lick and A. T. White, k-degenerated graphs, Canadian J. Math. 22 (1970) 1082-1096.
[4] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126.
[5] G. Kalai, Weakly saturated graphs are rigid, Annals of Discrete Math. 20 (1984) 189-190.
[6] P. Turán, On the Theory of Graphs, Colloq. Math. 3 (1954) 19-30.
Received 20 August 2000
Revised 3 December 2001

