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Abstract

For a hereditary property P let kP(G) denote the number of for-
bidden subgraphs contained in G. A graph G is said to be weakly P-
saturated, if G has the property P and there is a sequence of edges of
G, say e1, e2, . . . , el, such that the chain of graphs G = G0 ⊂ G0+e1 ⊂
G1 + e2 ⊂ . . . ⊂ Gl−1 + el = Gl = Kn (Gi+1 = Gi + ei+1) has the
following property: kP (Gi+1) > kP(Gi), 0 ≤ i ≤ l − 1.

In this paper we shall investigate some properties of weakly satu-
rated graphs. We will find upper bound for the minimum number of
edges of weakly Dk-saturated graphs of order n. We shall determine
the number wsat(n,P) for some hereditary properties.

Keywords: graph, extremal problems, hereditary property, weakly
saturated graphs.
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1. Introduction and Notation

We consider finite undirected graphs without loops or multiple edges. A
graph G has a vertex set V (G) and an edge set E(G). Let v(G), e(G)
denote the number of vertices and the number of edges of G, respectively.
We say that G contains H whenever G contains a subgraph isomorphic toH.
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The degree of v ∈ V (G) is denoted by dG(v). The number of edges of a
path is called the length of the path.

Let I denote the class of all graphs with isomorphic graphs being regarded
as equal. If P is a proper nonempty subclass of I, then P will also denote
the property of being in P. We shall use the terms class of graphs and
property of graphs interchangeably.

A property P is called hereditary if every subgraph of a graph G with
property P also has property P.

We list some properties to introduce the necessary notation which will
be used in the paper. Let k be a non-negative integer.

O = {G ∈ I : G is totally disconnected},

Ok = {G ∈ I : each component of G has at most k + 1 vertices},

Ik = {G ∈ I : G contains no subgraph isomorphic to Kk+2},

Sk = {G ∈ I : ∆(G) ≤ k},

Dk = {G ∈ I : G is k-degenerated, i.e., δ(H) ≤ k for any H ≤ G},

Wk = {G ∈ I : the length of the longest path in G is at most k}.

Let P be a nontrivial hereditary property. Then there is a nonnegative
integer c(P), called the completeness of P, such that Kc(p)+1 ∈ P but
Kc(p)+2 /∈ P. Obviously

c(Ok) = c(Ik) = c(Sk) = c(Dk) = c(Wk) = k.

For a hereditary property P the set of all minimal forbidden subgraphs of P
is defined by

F(P) = {G ∈ I : G /∈ P but each proper subgraph H of G belongs to P}.

A graph is called P-maximal if it does not contain any forbidden subgraph
but it will contain a forbidden subgraph when any new edge is added to the
graph. Let M(P) be the set of all P-maximal graphs. The set of P-maximal
graphs of order n is denoted by M(n,P).

Many problems of extremal graph theory can be formulated as follows:
What is the maximum (minimum) number of edges in a P-maximal graph
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of order n? For a given hereditary property P we define those two numbers
in the following manner:

ex(n,P) = max{e(G) : G ∈ M(n,P)},

sat(n,P) = min{e(G) : G ∈ M(n,P)}.

The set of all P-maximal graphs of order n with exactly ex(n,P) edges
is denoted by Ex(n,P). The members of Ex(n,P) are called P-extremal

graphs. By the symbol Sat(n,P) is denoted the set of all P-maximal graphs
of order n with sat(n,P) edges. These graphs are called P-saturated.

The most famous Turán’s Theorem [6] establishes the number of edges
of Ik-extremal graphs. On the other hand, Erdös, Hajnal and Moon [2]
calculated the number sat(n,Ik).

Bollobás [1] introduced the concept of a weakly k-saturated graph. Con-
sider a graph of order n and add all those edges which are the only missing
edge of complete graph of order k (i.e., we add the edge e if there are k
such vertices of the graph, that the graph contains all the edges spanned by
these k vertices, saving e). If by repeating this process a sufficient number
of times the complete graph of order n is obtained, the original graph will
be called weakly k-saturated.

Bollobás showed that if a graph G of order n is weakly k-saturated
(for 3 ≤ k ≤ 7) with the minimum number of edges then e(G) = (k − 2)n
−
(k−1

2

)

. In the general case (i.e., for k ≥ 3) the equality has been proved
by Kalai [5].

Let P be a hereditary property and let kP (G) denote the number of
forbidden subgraphs contained in G. A graph G is said to be weakly P-
saturated, if G has the property P and there is a sequence of edges of G, say
e1, e2, . . . , el, such that the chain of graphs G = G0 ⊂ G0 + e1 ⊂ G1 + e2 ⊂
. . . ⊂ Gl−1 + el = Gl = Kn (Gi+1 = Gi + ei+1) has the following property:
kP(Gi+1) > kP(Gi), 0 ≤ i ≤ l− 1. This sequence of edges will be called the
complementary sequence of G with respect to P or briefly the complementary

sequence if it does not lead us to misunderstanding.

According to our terminology a weakly k-saturated graph is called
weakly Ik−2-saturated.

Let us denote a set of all weakly P-saturated graphs of order n by
WSat(n,P). Let the minimum and the maximum number of edges in a
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graph of WSat(n,P) be denoted by

wsat(n,P) = min{e(G) : G ∈ WSat(n,P)},

wex(n,P) = max{e(G) : G ∈ WSat(n,P)}.

From Theorem of Kalai and Theorem of Erdös, Hajnal, Moon it follows
that wsat(n,Ik) = sat(n,Ik). In Section 2 we shall describe a hereditary
property P such that wsat(n,P) < sat(n,P). We will also investigate some
properties of weakly saturated graphs. In Section 3 examples of weakly
Dk-saturated graphs and an upper bound for the number wsat(n,Dk) will
be given. In Section 4 we shall determine the number wsat(n,P) for some
hereditary properties.

2. Some Properties of Weakly P-Saturated Graphs

From the definition of weakly P-saturated graphs it follows that any P-
maximal graph is weakly P-saturated. First we prove that the maximum
number of edges of weakly P-saturated graphs is equal to the maximum
number of edges of P-maximal graphs.

Theorem 1. Let n ≥ 1. If P is a hereditary property, then wex(n,P) =
ex(n,P).

Proof. Every P-maximal graph is weakly P-saturated. Thus wex(n,P) ≥
ex(n,P). On the other hand, if a graph of order n has more than ex(n,P)
edges then it contains a forbidden subgraph. Hence wex(n,P) ≤ ex(n,P).

Any non-negative integer valued function f : I → N is called the graph

invariant (invariant, for short). For a hereditary property P let us define
the number

f(P) = min{f(H) : H ∈ F(P)}.

Theorem 2. Let f(G) be an invariant satisfying:

(1) f(H) ≤ f(G) for H ⊆ G,

(2) f(G+ e) ≤ f(G) + 1 for e ∈ E(G).

Then for any graph G ∈ WSat(n,P) with n ≥ c(P) + 2, we have

f(G) ≥ f(P)− 1.
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Proof. From the definition of weakly P-saturated graphs, it follows that
there is an edge e ∈ E(G) and a graph F ∈ F(P) such that F ⊆ G + e.
Thus f(P) ≤ f(F ) ≤ f(G+ e) ≤ f(G) + 1.

The chromatic number and the clique number are examples of invariant
satisfying assumptions of Theorem 2. The edge connectivity λ(G) does
not satisfy the assumption (1) of Theorem 2, but we shall prove that for
G ∈ WSat(n,P) the inequality λ(G) ≥ λ(P)− 1 also holds.

Theorem 3. Let λ(P) = λ > 0 and G ∈ WSat(n,P). Then

λ(G) ≥ λ− 1.

Proof. Let S be an edge cutset of G such that λ(G) = |S|. Let G′, G′′

be two components of G−S. Since G is weakly P-saturated, it follows that
there is a complementary sequence e1, e2, . . . , el of G. Let ei be the first
edge of the sequence e1, e2, . . . , el, which joins a vertex of G′ with a vertex
of G′′. Let F denote a subgraph of Gi−1 + ei, which contains the edge ei
and is isomorphic with some graph of F(P). Then the set S ∪ {ei} is an
edge cutset of F . Thus λ ≤ λ(F ) ≤ |S|+ 1 = λ(G) + 1.

From the next theorem it follows that the behaviour of wsat(n,P) is not
monotone in general.

Theorem 4. Let P be the hereditary property such that F(P) = {2K2}.
Then

wsat(n,P) =







3, for n = 4,

1, for n ≥ 5 .

Proof. It is easy to see that there is no weakly P-saturated graph of order
4 with two edges. Since the graphsK1,3 andK3∪K1 are weakly P-saturated,
we have wsat(4,P) = 3.

If n ≥ 5 then K2∪ (n−2)K1 is a weakly P-saturated graph. By adding
(as long as possible) an edge joining two vertices of (n − 2)K1 we obtain
two independent edges, i.e., 2K2, and results in Kn−2. Since n − 2 ≥ 3,
it follows that every vertex of K2 (in the original graph), we can join with
every vertex of just obtained Kn−2.

From Theorem of Kalai and Theorem of Erdös, Hajnal and Moon, it follows
that wsat(n,Ik) = sat(n,Ik). Such equality also holds for the property D1.
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Theorem 5. Let n ≥ 1. Then

sat(n,D1) = wsat(n,D1) = n− 1.

Proof. Since F (D1) = {Cp : p ≥ 3}, λ(D1) = 2 and every tree is weakly
D1-saturated, it follows that wsat(n,D1) ≤ n − 1. From Theorem 3 we
have λ(G) ≥ 1 for G ∈ WSat(n,D1) then wsat(n,D1) ≥ n − 1. Thus
wsat(n,D1) = n − 1. Since the only D1-maximal graphs are trees, we have
sat(n,D1) = n− 1.

The next theorem describes a hereditary property P for which the minimum
number of edges of weakly P-saturated graphs of order n is less than the
number of edges of P-saturated graphs of order n.

Theorem 6. Let P be the hereditary property such that ex(n,P) =
sat(n,P), λ(P) = λ(H0) = 1, H0 ∈ F(P) and every P-maximal graph

is connected. Then wsat(n,P) < sat(n,P), n ≥ v(H0).

Proof. Let H0 ∈ F(P) with λ(H0) = 1 and let e be a cutedge of H0.
Denote by H1,H2 components of H0 − e. Let v(H1) = n1, v(H2) = n2. We
define the graph G = G1∪G2 of order n assuming that v(G1) = n1, v(G2) =
n − n1 and for i = 1, 2, Gi is P-maximal. Obviously n − n1 ≥ n2. Since
all forbidden subgraphs are connected it follows that the graph G has prop-
erty P. Defined graph G is not connected, then by the assumption of the
theorem, G is not P-maximal. Thus e(G) < ex(n,P) = sat(n,P).

On the other hand, we will show that the graph G is weakly P- sat-
urated. Since each component of G is a P-maximal graph, it follows that
if we add any edge of G which joins two vertices of the same component
we obtain a new forbidden subgraph containing the edge e. After adding
all missing edges of each component we obtain the graph being a sum of
complete graphs. Then each edge, which joins a vertex of the component
of order n1 with a vertex of the component of order n − n1, belongs to a
subgraph isomorphic to H0. Thus the graph G is weakly P-saturated and
e(G) ≥ wsat(n,P). Hence wsat(n,P) < sat(n,P).

In the next section we will show that the assumptions of Theorem 6 for the
property Dk (k ≥ 2) holds.
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3. Weakly Dk-Saturated Graphs

The set of minimal forbidden subgraphs for property Dk was characterized
by Mihók [4]. To describe the set F(Dk) we need some more notations. For
a nonnegative integer k and a graph G, we denote the set of all vertices of
G of degree k + 1 by M(G). If S ⊆ V (G) is a cutset of vertices of G and
G1, . . . , Gs, s ≥ 2 are the components of G− S, then the graph G− V (Gi)
is denoted by Hi, i = 1, . . . , s.

Theorem 7. [4] A graph G belongs to F(Dk) if and only if G is connected,

δ(G) ≥ k + 1, V (G)−M(G) is an independent set of vertices of G and for

each cutset S ⊂ V (G)−M(G) we have that δ(Hi) ≤ k for each i = 1, . . . , s.

Let us present some useful examples of F(Dk).

Example 1. Let Hk, k ≥ 2, be the graph such that V (Hk) =
{x1, . . . , xk, y1, . . . , yk, v1, v2, w1, w2} with the following properties: vertices
x1, . . . , xk and y1, . . . , yk induce two complete graphs and viwi, vixj , wiyj ∈
E(Hk) for i = 1, 2, j = 1, . . . , k.

u u u u

uuuu
x1

x2 v2 w2 y2

y1w1v1

Figure 3.1. The graph Hk for k = 2

Example 2. Let H ′
k, k ≥ 2, be the graph such that V (H ′

k) =
{x1, . . . , xk, y1, . . . , yk, v1, v2, v3, w1, w2, w3} with the following properties:
verices x1, . . . , xk and y1, . . . , yk induce two graphs obtained from Kk by
removing ⌊k2⌋ independent edges and vixj , wiyj ∈ E(H ′

k) for i = 1, 2, 3, j =
1, . . . , k, and v1w1, v2v3, w2w3 ∈ E(H ′

k).
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Figure 3.2. The graph H ′

k
for k = 2

By Example 2 we have that λ(Dk) = 1 for k ≥ 2. Since Dk-maximal graphs
are connected and sat(n,Dk) = ex(n,Dk) (see e.g. [3]), it follows that the
assumptions of Theorem 6 holds. Then we immediately have

Corollary 8. wsat(n,Dk) < sat(n,Dk) for n ≥ 2(k + 3), k ≥ 2.

To determine upper bound for the number wsat(n,Dk) we need the following
lemma.

Lemma 9. Let k ≥ 2. Then the graph Hk − v2w2 is weakly Dk-saturated.

Proof. Put G = Hk−v2w2. If the edge v2w2 is added to G then G = Hk ∈
F(Dk) is obtained. If we add v1v2 or w1w2 to Hk then we obtain the graph
Kk+2 which belongs to F(Dk). After adding the edge xiyj, (1 ≤ i, j ≤ k),
edges (E(G) ∪ {v1v2, w1w2, xiyj}) − {v1xi, w1yj} induce Hk. Now we can
add the edge v1yj, 1 ≤ j ≤ k since edges (E(G) ∪ {v2w2, w1w2, v1yj}) −
{w2yj, v1w1} induce Hk. If we add the edge v2wj (1 ≤ j ≤ k), we obtain
the graph Hk induced by (E(G) ∪ {w1w2, v2yj}) − {w1yj}. In a similar
manner we can show that if we add edges xiw1 and xiw2 (1 ≤ i ≤ k), a new
forbidden subgraph appears. The last two edges v1w2, v2w1 we can add
because edges (E(G) ∪ {x1y1, v1w2, v1v2, w1w2}) − {x1v1, w2y1, v1w1} and
(E(G) ∪ {x1y1, v2w1, v1v2, w1w2})− {x1v2, w1y1, v1w1} induce Hk.

Theorem 10. Let k ≥ 2 and n = 2(k+2)q+r, where q ≥ 1, 0 ≤ r ≤ 2k+3.
Then

wsat(n,Dk) ≤







































(k+2)(k+1)−1
2(k+2) n, for r = 0,

(k+2)(k+1)−1
2(k+2) (n− r − (k + 2))+

(r + k + 2)k −
(k+1

2

)

, for 0 < r < k + 3,

(k+2)(k+1)−1
2(k+2) (n− r) + rk −

(k+1
2

)

, for r ≥ k + 3.
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Proof. To prove the theorem it is enough to show that there is a weakly
Dk-saturated graph G of order n with such number of edges. Let k ≥ 2 and
n = 2(k + 2)q + r, where q ≥ 1, 0 ≤ r ≤ 2k + 3. Put G′ = Hk − v2w2.
If r ≥ k + 3, then G = qG′ ∪ H, where H ∈ M(r,Dk). If 0 ≤ r < k + 3,
then G = (q − 1)G′ ∪ H, where H ∈ M(2(k + 2) + r,Dk). If r = 0, then
G = qG′. By Lemma 9 it follows that each component of G is a weakly
Dk-saturated graph. Then we can add edges in each component of G to
obtain a complete graph. After having added those edges we can join any
vertices of two different components.

4. The Number wsat(n,P) for Some Hereditary Properties

In this section we will calculate the minimum number of edges of weakly
saturated graphs for some hereditary properties.

Theorem 11. Let k ≥ 1 and n ≥ k + 2. Then

WSat(n,Ok) ⊇ {Tr ∪ Ts ∪ tT1 : r + s = k + 2, r + s+ t = n and Ti

is an abitrary tree of order i}

and

wsat(n,Ok) = k.

Proof. First we prove that the graph G = Tr ∪ Ts ∪ tT1, where r + s =
k + 2, r + s+ t = n is weakly Ok-saturated. If we add an edge of G, which
joins a vertex of Tr and a vertex of Ts then we obtain a tree of order k + 2,
i.e., we obtain a forbidden subgraph for property Ok. If we join a vertex
of the subgraph tT1 with a vertex of the obtained tree of order k + 2 we
have a connected graph of order k + 3. Thus new edge belongs to a tree of
order k + 2. Repeating this process we obtain a connected graph of order
n in which each vertex of tT1 is adjacent with any vertex of the tree of
order k + 2. Since for each edge of the complement of a connected graph
there is a spanning tree which contains this edge, it follows that G is weakly
Ok-saturated. Hence wsat(n,Ok) ≤ e(G) = k.

On the other hand, let G be a graph such that G ∈ WSat(n,Ok) and
e(G) = wsat(n,Ok). Let e1 be the first edge such that G + e1 contains a
forbidden subgraph, i.e., the graph G + e1 contains a tree of order k + 2.
Thus wsat(n,Ok) = e(G) ≥ k.
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The proof of the next theorem is very similar to the proof of Theorem 11,
then it is omitted.

Theorem 12. Let k ≥ 1 and n ≥ k + 2. Then

WSat(n,Wk) ⊇ {Pr ∪ Ps ∪ tP1 : r + s = k + 2, r + s+ t = n}

and

wsat(n,Wk) = k.

It is easy to see that the graphs Kk+1+ tK1, where k+1+ t = n are weakly
Sk-saturated. There are some other weakly Sk-saturated graphs of order
n. For example the graph G1 (Figure 4.1) is weakly S2-saturated and the
graph G2 (Figure 4.1) is weakly S3-saturated.

u u

uu

u u u u u u u u

u u

u

G1 G2

Figure 4.1. The graphs G1 and G2

Theorem 13. Let n ≥ k + 2 ≥ 4. Then

wsat(n,Sk) =

(

k + 1

2

)

.

Proof. Let G be a weakly Sk-saturated graph of order n with the mini-
mum number of edges. Then there is a complementary sequence e1, e2, . . . , el
of G. Let e1 = u1v1 and dG(u1) = k. Let ef(1), . . . , ef(t1) be the subsequence
of e1, e2, . . . , el such that every edge ef(i), (1 ≤ i ≤ t1) is adjacent with the
vertex u1. If in the graph G′ = ((G + ef(1)) + ef(2)) + . . . + ef(t1) there
is no vertex of degree less than k then let ef(1), ef(2), . . . , ef(l) be the new

sequence of edges of E(G) with the following property: ef(1), . . . , ef(t1) is
the subsequence of e1, e2, . . . , el such that every edge ef(i), (1 ≤ i ≤ t1)
is adjacent with the vertex u1 and ef(t1)+1, . . . , ef(l) is the subsequence of
e1, e2, . . . , el such that any edge ef(i), (t1 ≤ i ≤ l) is not adjacent with
the vertex u1. If in the graph G′ there is a vertex of degree less than k
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then let ef(t1+1) be the first edge of e1, e2, . . . , el, which is not adjacent
with the vertex u1. Let ef(t1+1) = u2v2 and u2 be a vertex of G′ such
that dG′(u2) ≥ k and u1 6= u2. Let ef(t1+1), . . . , ef(t2) denote edges of
{e1, e2, . . . , el}−{ef(1), . . . , ef(t1), ef(t1)+1} which are adjacent with the ver-
tex u2. If in the graph G′′ = ((G′ + ef(t1)+1) + ef(t1)+2) + . . . + ef(t2)
there is no vertex of degree less than k we form a new sequence of edges
of E(G), ef(1), ef(2), . . . , ef(l) with the following property: ef(1), . . . , ef(t1)
is a subsequence of e1, e2, . . . , el such that every edge ef(i), (1 ≤ i ≤ t1)
is adjacent with the vertex u1 and ef(t1)+1, . . . , ef(t2) is a subsequence of
e1, e2, . . . , el such that every edge ef(i), (t1 < i ≤ t2) is adjacent with the
vertex u2 and ef(t2)+1, . . . , ef(l) is the subsequence of e1, e2, . . . , el such that
any edge ef(i), (t2 < i ≤ l) is not adjacent with the vertex u1 and u2. If in
the graph G′′ there is a vertex of degree less than k, we will repeat this steps
until we will obtain a new sequence ef(1), ef(2), . . . , ef(l) of edges of G. With
this sequence of edges ef(1), ef(2), . . . , ef(l) is related a sequence of vertices
u1, u2, . . . , ur. It is easy to see that r ≤ k, because after k steps there is no
vertex of degree less than k. Then for the vertex ut ∈ {u1, . . . , ur} we have

dG(ut) + t− 1− |NG(ut) ∩ {u1, . . . , ut−1}| ≥ k,(1)

for the vertex x ∈ V (G) − {u1, . . . , ur} we have

dG(x) + r − |NG(x) ∩ {u1, . . . , ur}| ≥ k.(2)

Thus

e(G) ≥
∑

1≤t≤r(dG(ut)− |NG(ut) ∩ {u1, . . . , ut−1}|)

+1
2

∑

x∈V (G)−{u1,...,ur}(dG(x)− |NG(x) ∩ {u1, . . . , ur}|)

≥
∑

1≤t≤r(k + 1− t) + 1
2 (n− r)(k − r).

The right side of inequality achieves the minimum for r = k. Thus

e(G) ≥
∑

1≤t≤r(k + 1− t) = 1
2 (k + 1)k.

On the other hand, the graph Kk+1∪ (n− k− 1)K1 is weakly Sk-saturated.
Thus wsat(n,Sk) ≤

(k+1
2

)

.

In the next theorem we determine the number wsat(n,P) for a hereditary
property with one forbidden subgraph which is a cycle of odd length.

Theorem 14. Let k ≥ 1 and n ≥ 2k + 2. If P is the hereditary property

such that F(P) = {C2k+1}, then wsat(n,P) = n− 1.
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Proof. Since λ(P) = 2, by Theorem 3 it follows that every weakly P-
saturated graph is connected. Then wsat(n,P) ≥ n− 1. To prove that the
inequality wsat(n,P) ≤ n − 1 holds it is sufficient to show that there is a
weakly P-saturated graph of order n with n− 1 edges.

Let us show first that P2k+2 is a weakly P-saturated graph. Let
V (P2k+2) = {v1, . . . , v2k+2} and d(v1) = d(v2k+2) = 1. It is easy to see
that if we add the edge v1v2k+1 then we obtain a cycle of order 2k + 1.
Similarly if we add the edge v2v2k+2 a new cycle of order 2k + 1 ap-
pears. Now we can add the edge v1v4. The edge v1v4 belongs to the cycle
v1, v2, v2k+2, v2k+1, . . . , v4, v1. To prove that if we add any edge v1v2t then
a new cycles of order 2k + 1 appears we will use induction on t. This is
true for t = 1, 2. When the edges v1v2i for i < t are added the vertices
v1, v2t−2, v2t−3, . . . , v2, v2k+2, v2k+1, . . . , v2t, v1 induce a cycle of order 2k+1
which contains the edge v1v2t. In the same manner, after having added
edges v1v2i+1 for k ≥ i > t we can add the edge v1v2t+1. A new cycle
v1, v2t+3, . . . , v2k+2, v2, v3, . . . v2t+1, v1 of order 2k + 1 appears. Finally the
vertex v1 with all vertices of P2k+2 is joined. Similarly we can join each
vertex vt (2 ≤ t ≤ 2k + 2) with all vertices of P2k+2. Thus we obtain a
graph K2k+2. Hence P2k+2 is a weakly P-saturated graph.

Let G be the graph of order n ≥ 2k+2 with the following properties: G
contains an induced path of order 2k + 2, the remaining vertices of G form
an independent set and each vertex of this set is adjacent with exactly one
vertex of the path. Since the path of order 2k +2 is weakly P-saturated, it
follows that the graph G is weakly P-saturated. Hence wsat(n,P) ≤ n− 1.

In order to determine the number wsat(n,P) for hereditary property such
that F(P) = {C2k} we need the folowing lemma.

Lemma 15. Let k ≥ 2 and P be the hereditary property such that F (P) =
{C2k}, and G be a bipartite graph of order n ≥ 2k + 1. Then G /∈
WSat(n,P).
Proof. On the contrary, suppose that there is a weakly P-saturated bi-
partite graph G of order n. Let e1, e2, . . . , el be a complementary sequence
of G. Let ei = xy be the first edge of the sequence e1, e2, . . . , el such that
its ends x, y belong to the same colour class of G. (Notice, that the colour
classes of G are uniquely determined because of connectivity of G.) Since
the edge ei belongs to an even cycle C2k then there is an edge ej, j < i of
this cycle (and the sequence given above) with both ends in one colour class
which is impossible.
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Theorem 16. Let k ≥ 2 and n ≥ 2k + 1. Let P be the hereditary property

such that F(P) = {C2k}. Then

wsat(n,P) = n.

Proof. Let G ∈WSat(n,P). By Theorem 3 and Lemma 15 it follows that
G is connected and contains an odd cycle. Thus wsat(n,P) ≥ n.

To prove that the inequality wsat(n,P) ≤ n holds it is sufficient to
show that there is a weakly P-saturated graph of order n with n edges.
First we prove that C2k+1 is a weakly P-saturated graph. Let V (C2k+1) =
{v1, v2, . . . , v2k+1}. It is easy to see that if we add the edge v1v3 or the edge
v2v2k+1, a cycle (containing this edge) of order 2k appears. To prove that
if we add any edge v1vt (3 ≤ t ≤ 2k) then we obtain a new cycle of order
2k we use induction on t. This is true for t = 3. After adding edges v1vi
for 3 ≤ i < t the vertices v1, vt−2, vt−3, . . . , v2, v2k+1, v2k, . . . , vt, v1 induce a
cycle of order 2k which contains the edge v1vt. Then the vertex v1 can be
joined with all vertices of C2k+1. In the similar manner we can show that we
can join any vertex vt ∈ V (C2k+1) with all vertices of C2k+1. Hence C2k+1

is weakly P-saturated.

Let G be the graph with the following properties: G contains an induced
cycle of order 2k + 1, remaining vertices of G form an independent set and
each vertex of this set is adjacent with exactly one vertex of the cycle.
Since the cycle of order 2k + 1 is weakly P- saturated (can be extended to
K2k+1), it follows that the graph G also has this property, i.e., G is weakly
P-saturated. Hence wsat(n,P) ≤ n.
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