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Abstract

An (edge-)weighted graph is a graph in which each edge e is assigned
a nonnegative real number w(e), called the weight of e. The weight
of a cycle is the sum of the weights of its edges, and an optimal cycle
is one of maximum weight. The weighted degree w(v) of a vertex v
is the sum of the weights of the edges incident with v. The following
weighted analogue (and generalization) of a well-known result by Dirac
for unweighted graphs is due to Bondy and Fan. Let G be a 2-connected
weighted graph such that w(v) ≥ r for every vertex v of G. Then either
G contains a cycle of weight at least 2r or every optimal cycle of G
is a Hamilton cycle. We prove the following weighted analogue of a
generalization of Dirac’s result that was first proved by Pósa. Let G
be a 2-connected weighted graph such that w(u) + w(v) ≥ s for every
pair of nonadjacent vertices u and v. Then G contains either a cycle of
weight at least s or a Hamilton cycle. Examples show that the second
conclusion cannot be replaced by the stronger second conclusion from
the result of Bondy and Fan. However, we characterize a natural class
of edge-weightings for which these two conclusions are equivalent, and
show that such edge-weightings can be recognized in time linear in the
number of edges.
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1. Introduction

We use [6] for terminology and notation not defined here and consider finite
simple graphs only.

By an edge-weighting of a graph G = (V, E) we shall mean a function
w : E → IR such that w(e), the weight of e, is nonnegative for all e ∈ E. A
graph provided with an edge-weighting is called an edge-weighted graph or
simply a weighted graph. The weight of a subgraph H of G is defined by

w(H) =
∑

e∈E(H)

w(e).

An optimal cycle of G is a cycle of maximum weight. The weighted degree
w(v) of a vertex v of G is the sum of the weights of the edges incident with v.

A well-known result due to Dirac [7] is the following.
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Theorem 1 [7]. Let G be a 2-connected graph such that d(v) ≥ r for every
vertex v of G. Then G contains either a cycle of length at least 2r or a
Hamilton cycle.

The following generalization of Theorem 1 is contained implicitly in Pósa [8].

Theorem 2 [8]. Let G be a 2-connected graph such that d(u)+d(v) ≥ s for
every pair of nonadjacent vertices u and v. Then G contains either a cycle
of length at least s or a Hamilton cycle.

An unweighted graph can be regarded as a weighted graph in which each
edge has weight 1. Thus, in an unweighted graph, w(v) = d(v) for each
vertex v, and an optimal cycle is simply a longest cycle. Hence the following
result from [3] generalizes Theorem 1.

Theorem 3 [3]. Let G be a 2-connected weighted graph such that w(v) ≥ r
for every vertex v of G. Then either G contains a cycle of weight at least
2r or every optimal cycle of G is a Hamilton cycle.

Note that Theorem 3 does not remain valid if negative weights are allowed.
To see this, subdivide every edge of K2,3 k ≥ 1 times and assign weight −1
to every edge of the resulting graph.

In [3] the natural question was asked whether Theorem 2 admits an
analogous generalization, strengthening Theorem 3.

Question A [3]. Let G be a 2-connected weighted graph such that w(u) +
w(v) ≥ s for every pair of nonadjacent vertices u and v. Is it true that
either G contains a cycle of weight at least s or every optimal cycle is a
Hamilton cycle ?

It is perhaps surprising that the answer to Question A is negative; a coun-
terexample was first provided by Yan Lirong [10]. For complete graphs,
Question A amounts to the following.

Question A0. Is every optimal cycle in a weighted complete graph a Hamil-
ton cycle ?

Even this is not true. For n ≥ 4, let Kn(s) denote the weighted complete
graph of order n obtained by assigning weight 1 to the edges incident with
one fixed vertex and weight s to all other edges. Only if s < 2 is every
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optimal cycle a Hamilton cycle. For s = 2 there exists an optimal cycle
which is not a Hamilton cycle, while for s > 2 no optimal cycle is a Hamilton
cycle. Note that in Theorem 3, applied with r = n − 1 to Kn(s), the first
conclusion holds for s ≥ 2 while the alternative conclusion holds for s < 2.

Despite this negative answer to Question A′ (and a fortiori to Ques-
tion A), Theorem 2 does indeed admit a generalization to weighted graphs,
as follows.

Theorem 4. Let G be a 2-connected weighted graph such that w(u)+w(v) ≥
s for every pair of nonadjacent vertices u and v. Then G contains either a
cycle of weight at least s or a Hamilton cycle.

This will be proved in Section 2. Theorem 4 does not generalize Theorem 3,
since the second conclusion in Theorem 3 is stronger than the corresponding
one in Theorem 4. However, there is a natural class of edge-weightings for
which the second conclusions in Theorems 3 and 4 are equivalent, namely
the positive-induced edge-weightings defined next.

Let w be an edge-weighting of a graph G = (V, E) and assume there
exists a function w′ : V → IR (a vertex-weighting of G) such that, for every
edge uv of G,

w(uv) =
w′(u) + w′(v)

2
.

Then we say that the edge-weighting w is induced (by the vertex-weighting
w′). If w′ can be chosen in such a way that w′(v) > 0 for all v ∈ V , then we
call w positive-induced. For every cycle C of G we have

w(C) =
∑

e∈E(C)

w(e) =
∑

v∈V (C)

w′(v).

Hence if w is positive-induced, the statements “every optimal cycle of G is a
Hamilton cycle” and “G contains a Hamilton cycle” are indeed equivalent.

In a similar vein we can define an edge-weighting w to be nonnegative-
induced if w is induced by a vertex-weighting w′ such that w′(v) ≥ 0 for all
v ∈ V . It follows easily that if w is nonnegative-induced, then the statements
“G contains a Hamilton cycle” and “there exists an optimal cycle that is a
Hamilton cycle” are equivalent, but neither of these statements implies that
“every optimal cycle of G is a Hamilton cycle”.

Note that the edge-weighting of Kn(s) is induced for all s, positive-
induced for s < 2, and nonnegative-induced for s ≤ 2. Induced, positive-
induced and nonnegative-induced edge-weightings are characterized in
Section 3.
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It is natural to seek weighted generalizations of other extremal theorems, not
only for graphs but also for directed graphs. Indeed, the simple observation
that a strict directed graph of minimum outdegree d contains a directed
path of length d was generalized to weighted directed graphs by Bollobás
and Scott [1]. However, no weighted generalization is known of the equally
trivial fact that such a directed graph contains a directed cycle of length
at least d + 1. Moreover, examples due to Spencer [9] and, independently,
Bollobás and Scott [1] show that quite restrictive edge-weightings will be
needed for this. It may be that a directed version of the induced edge-
weightings defined here will permit such a generalization.

2. Proof of Theorem 4

The proof of the following lemma is implicit in the proof of [4, Lemma 2.1].

Lemma 5. Let G be a 2-connected weighted graph and P = v1v2 · · · vp a path
in G (p ≥ 3). Define S = {vi | v1vi ∈ E(G)} and T = {vi | vi−1vp ∈ E(G)}.
Assume each of the following conditions is satisfied.
(a) NG(v1) \ V (P ) = NG(vp) \ V (P ) = Ø;
(b) S ∩ T = Ø (in particular, v1vp /∈ E(G));

(c) w(vi−1vi) ≥
{

w(v1vi), for all vi ∈ S;
w(vi−1vp), for all vi ∈ T.

Then there is a cycle C in G of weight w(C) ≥ w(v1) + w(vp).

Proof of Theorem 4. Let G be a 2-connected weighted graph such that
w(u)+w(v) ≥ s for every pair u, v of nonadjacent vertices. Suppose G does
not contain a Hamilton cycle. We need to prove that G contains a cycle of
weight at least s.

Choose a path P = v1v2 · · · vp in G such that
(i) P is as long as possible (i.e., p is maximum);
(ii) w(P ) is as large as possible, subject to (i).

Claim. There exists no cycle in G containing all vertices of P .

Proof. Suppose there exists a cycle C containing all vertices of P . If
V (C)\V (P ) 6= Ø, then removing one edge from C gives a path longer than P ,
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contradicting the choice in (i). So we have V (C) = V (P ). Since C is not a
Hamilton cycle and G is connected, we can find a vertex u ∈ V (G) \ V (C)
and a path Q from u to vj for some vj ∈ V (C), such that Q is internally-
disjoint from C. The subgraph C ∪Q of G contains a path longer than P ,
again contradicting the choice in (i).

Define S and T as in Lemma 5. We complete the proof by showing that
Lemma 5 applies, i.e., (a), (b), (c) in Lemma 5 are all satisfied.

By the choice in (i) we immediately see that (a) holds.
To prove (b), suppose vi ∈ S ∩ T . Then we can form the cycle C =

v1vivi+1 · · · vpvi−1vi−2 · · · v1, which contradicts the Claim. Hence (b) holds.
If vi ∈ S, then the path P ′ = vi−1vi−2 · · · v1vivi+1 · · · vp has the same

length as P . So because of (ii), we must have w(P ) ≥ w(P ′), hence
w(vi−1vi) ≥ w(v1vi). Similarly, if vi ∈ T , w(vi−1vi) ≥ w(vi−1vp). Thus (c)
holds.

3. Induced Edge-Weightings

Let G = (V, E) be a graph with an edge-weighting w. From the definition,
w is induced if and only if we can find a solution of the following set of |E|
linear equations in the |V | unknowns w′(v), v ∈ V :

w′(x) + w′(y) = 2w(xy), for all xy ∈ E.(1)

A walk in a graph is an alternating sequence v0e1v1e2v2 · · · ekvk of vertices
and edges such that ei = vi−1vi, for i = 1, . . . , k. The walk is called closed
if v0 = vk. If W = v0e1v1e2v2 · · · ekvk is a walk in G, then we define

φw(W ) =
k∑

i=1

(−1)i−1 w(ei).

The following theorem gives a characterization of induced edge-weightings.

Theorem 6. Let G = (V,E) be a graph with an edge-weighting w. Then w
is induced if and only if for every closed walk W of even length we have
φw(W ) = 0.

Proof. Without loss of generality we may assume that G is connected.
First suppose that w is induced by w′. Then by (1) we have for every closed
walk W = v0e1v1 · · · e2kv2k (= v0) of even length:
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φw(W )

= w(e1)− w(e2) + w(e3)− · · · − w(e2k)

=
1
2

(w′(v0) + w′(v1))− 1
2

(w′(v1) + w′(v2)) + · · · − 1
2

(w′(v2k−1) + w′(v2k))

=
1
2

w′(v0)− 1
2

w′(v2k) = 0,

which proves one side of the theorem.
Now suppose that φw(W ) = 0 for every closed walk W of even length.

If G is bipartite, choose a vertex u ∈ V and a real number a and set w′(u) =
a. If G is not bipartite, choose a cycle C = u0e1u1 · · · e2k−1u0 of odd length
in G, and set u = u0 and w′(u) = φw(C). Now for any vertex v, consider a
walk from v to u, W = v f1v1 · · · f` u, and set

w′(v) =

{
2 φw(W ) + w′(u), if ` is even,

2 φw(W )− w′(u), if ` is odd.
(2)

We claim that this definition of w′(v) is independent of the choice of the
walk W . To see this, let W = v f1v1 · · · f` u and W ′ = v f ′1v′1 · · · f ′m u be
two walks from v to u. If G is bipartite, then ` and m must have the
same parity. So X = v f1v1 · · · f` u f ′mv′m−1 · · · f ′1 v is a closed walk of even
length. Since φw(X) = 0, we immediately get that φw(W ) = φw(W ′).
If G is not bipartite, one of the closed walks v f1v1 · · · f` u f ′mv′m−1 · · · f ′1 v
and v f1v1 · · · f` u e1u1 · · · e2k−1 u f ′mv′m−1 · · · f ′1 v is of even length, the cycle
C = ue1u1 · · · e2k−1u being of odd length. Denote this walk of even length
by Y . By assumption we have φw(Y ) = 0. Using the definition of w′(u) and
(2) we reach the desired conclusion.

Finally, we prove that the edge-weighting w is indeed induced by the
vertex-weighting w′ defined by (2). To see this, let e = xy be an edge in G
and W = y f1v1 · · · f` u a walk from y to u. Then W ′ = x e y f1v1 · · · f` u is
a walk from x to u, and φw(W ′) = w(e)− φw(W ). If ` is even, then by (2),

w′(x) + w′(y) = 2φw(W ′)− w′(u) + 2φw(W ) + w′(u) = 2 w(e).

The same is true if ` is odd. This completes the proof of the theorem.

Next we characterize positive-induced edge-weightings. We omit the proof,
which goes along similar lines to the proof of Theorem 6.
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Theorem 7. Let G = (V,E) be a connected graph with an induced edge-
weighting w. If G is nonbipartite, then w is positive-induced if and only if
for every closed walk W = v0e1v1 · · · e2k−1v2k−1 ( = v0) of odd length in G
we have φw(W ) > 0. If G is bipartite, then w is positive-induced if and
only if for every walk W = v0e1v1 · · · e2k−1v2k−1 of odd length in G we have
φw(W ) > 0.

It is obvious that in order to characterize nonnegative-induced edge-
weightings, we need only replace the condition φw(W ) > 0 in Theorem 7 by
the condition φw(W ) ≥ 0.

It follows from the proof of Theorem 6 that all induced edge-weightings
on a connected graph G = (V,E) (including ones with negative values) can
be obtained by assigning arbitrary weights to the edges of a spanning tree
(if G is bipartite) or to the edges of a connected spanning unicyclic subgraph
whose cycle is odd (if G is not bipartite). Thus the dimension of the vector
space of induced edge-weightings is |V | − 1 if G is bipartite, and |V | if G is
not bipartite. A natural basis of this vector space can be derived from the
vertex-deleted subgraphs of G. Each such subgraph G− v can be identified
with the edge-weighting wv defined by

wv(e) =

{
1, if e ∈ E(G− v),
0, otherwise,

and this edge-weighting wv is induced by the vertex-weighting w′v given by

w′v(u) = 1 (u 6= v), w′v(v) = −1.

Because the vertex-weightings w′v, v ∈ V (G), are linearly independent,
they generate the space of all vertex-weightings. It follows that the edge-
weightings wv, v ∈ V (G), generate the space of all induced edge-weightings;
thus, when G is nonbipartite, they form a basis. In the bipartite case, any
|V | − 1 of them constitute a basis.

If G = (V, E) is a graph with an edge-weighting w, then Theorems 6
and 7 give necessary and sufficient conditions for w to be induced and
positive-induced, respectively. They do not, however, yield polynomial-time
recognition algorithms. For this, it suffices to grow a breadth-first search
tree T rooted at an arbitrary vertex u of G. A vertex-weighting w′ can then
be defined in terms of the edge-weighting w and the weight w′(u) of u as
in (2), using the paths in T from each vertex v to u. It remains to verify



Heavy Cycles in Weighted Graphs 15

equation (1) for each edge xy in E(G) \E(T ). We remark that if G is non-
bipartite and x and y are at the same level of T , this equation can be solved
for w′(u). The value of w′(u) should, of course, be the same for all such
edges xy. This recognition algorithm runs in time linear in the number of
edges.
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