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Abstract

In this paper we propose a structural characterization for a class of
bipartite graphs defined by two forbidden induced subgraphs. We show
that the obtained characterization leads to polynomial-time algorithms
for several problems that are NP-hard in general bipartite graphs.

Keywords: bipartite graphs, structural characterization, polynomial
algorithm.

2000 Mathematics Subject Classification: 05C75.

1. Introduction

All graphs in this paper are simple (undirected and loopless) and bipartite.
A bipartite graph G = (W,B, E) consists of a set W of white vertices, a
set B of black vertices, and a set of edges E ⊆ W × B. For a bipartite
graph G = (W,B, E), we denote by G̃ the bipartite complement to G, i.e.,
G̃ = (W,B, (W × B) − E). The neighborhood of a vertex x, i.e. the set of
vertices adjacent to x, is denoted N(x). The degree of x is |N(x)|. A vertex
of degree 1 is called pendant.

As usual, Cn and Pn denote, respectively, a chordless cycle and a chord-
less path on n vertices. A complete bipartite graph with parts of size n
and m is denoted Kn,m. In addition, by Si,j,k we denote a tree with exactly
three vertices of degree one being at distance i, j, k from the only vertex of
degree three. In this notation, S1,1,1 = K1,3 is a claw and S1,1,2 is a fork.
The graph S2,2,2 is depicted in Figure 1(a).
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We call a bipartite graph G almost complete if for every vertex x in
G, there is at most one unlike-colored vertex non-adjacent to x. Obviously,
a bipartite graph G is almost complete if and only if G̃ is a graph with vertex
degree at most 1. The class of graphs with maximum degree 1 is exactly the
class of K1,2-free bipartite graphs, i.e. bipartite graphs containing no K1,2

as an induced subgraph. Similarly, K1,3-free (S1,1,1-free) bipartite graphs
have vertex degree at most two. In other words, every connected S1,1,1-
free bipartite graph is either a cycle or a path. A generalization of S1,1,1-
free bipartite graphs, the class of S1,1,2-free graphs, has been characterized
recently as follows [1]: every connected S1,1,2-free bipartite graph is either
a cycle or a path or an almost complete bipartite graph. In the present
paper we study an extension of S1,1,2-free bipartite graphs defined by two
forbidden induced subgraphs: S2,2,2 and A (Figure 1).
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(b) graph A(1, 2, 3, 4, 5, 6)

Figure 1

The class of (S2,2,2, A)-free bipartite graphs also generalizes bipartite interval
graphs that can be characterized in terms of forbidden induced subgraphs
as S2,2,2-free graphs without cycles. Kötzig proposed in [8] the following
characterization of bipartite interval graphs: the connected bipartite interval
graphs are exactly the caterpillars, defined as follows.

Definition 1. A caterpillar is a tree that becomes a path by removing the
pendant vertices.

In this paper we extend the notion of a caterpillar in the following way.

Definition 2. A circular caterpillar G is a graph that becomes a cycle Ck

by removing the pendant vertices. We call G a long circular caterpillar if
k > 4.
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The key idea in characterizing the class of (S2,2,2, A)-free bipartite graphs is
the notion of a prime graph. To introduce it, let us call two vertices similar
if they have the same neighborhood. Clearly similarity is an equivalence
relation.

Definition 3. A bipartite graph G is called prime if every similarity class
in G is of size 1.

It is not hard to see that any bipartite graph has a unique (up to an isomor-
phism) maximal prime induced subgraph that can be obtained by choosing
exactly one vertex in each similarity class. We say that vertex x distin-
guishes vertices y and z if x has exactly one neighbor in {y, z}. Obviously a
graph is prime if and only if for every two vertices of the same color, there
is a third vertex that distinguishes them.

2. Structural Characterization

Theorem 4. A connected prime (S2,2,2, A)-free bipartite graph G =
(W,B, E) is either a caterpillar or a long circular caterpillar or an almost
complete bipartite graph.

Proof. If G does not contain any cycle, then it is a tree and hence a
caterpillar due to S2,2,2-freeness. In what follows we assume that G contains
a cycle.

1. Suppose first that G contains a cycle of length more than 6 induced
by vertices C = {1, 2, . . . , 2k}, where k > 3. Assume vertex x 6∈ C has a
neighbor i ∈ C. Our goal is to prove that i is the only neighbor of x, i.e., x
is a pendant vertex.

We show first that x is adjacent neither to i− 2 nor to i + 2. To prove
this, assume the contrary: (x, i−2) ∈ E. Now, in order to be prime, G must
contain a vertex y that distinguishes x and i−1. Without loss of generality,
we let y be adjacent to x but not to i−1. Then y is adjacent to i−3, otherwise
G contains the induced subgraph A(i−3, i−2, i−1, i, x, y). Now if y 6= i−4,
then G contains the induced subgraph A(i− 1, i− 2, x, y, i− 3, i− 4), and if
y = i−4, then G contains the induced subgraph A(i−4, x, i−2, i−1, i, i+1).
The contradiction in both cases proves that x is not adjacent to i − 2.
Symmetrically, x is not adjacent to i + 2.
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Now we are able to show that i is the only neighbor of x in G. Indeed,
assume y is another neighbor of x. Then y is not adjacent to i + 1 else G
contains the induced subgraph A(i− 1, i, x, y, i + 1, i + 2). Similarly y is not
adjacent to i − 1. But then vertices i − 2, i − 1, i, i + 1, i + 2, x, y induce a
subgraph S2,2,2 in G.

The above arguments permit us to conclude that if G contains a cycle
of length more than 6, then G is a long circular caterpillar.

2. Assume G contains a cycle on 6 vertices C = {1, 2, 3, 4, 5, 6}. Denote
by Bj the subset of vertices outside C that have exactly j neighbors in C.
Obviously, for j > 3, Bj is empty since G is bipartite. We show now that

2.1. B0 = ∅,
2.2. B2 = ∅,
2.3. B1 = ∅ or B3 = ∅.

To derive equality 2.2, we apply arguments similar to those used in case 1.
Assume vertex x has exactly two neighbors in C, say 1 and 3. Then, to be
prime, G must contain a vertex y adjacent, say, to x but not to 2. Now G
contains either the induced subgraph A(y, x, 3, 2, 1, 6) (if y is not adjacent
to 6) or A(2, 1, x, y, 6, 5) (if y is adjacent to 6).

To prove 2.3, assume G contains both a vertex x in B1 and a vertex y
in B3. Without loss of generality we let y be adjacent to all odd vertices
in C. If x is adjacent to an odd vertex, say 1, then G contains the induced
subgraph A(x, 1, 6, 5, y, 3). If x is adjacent to an even vertex, say 2, then
G contains either the induced subgraph A(x, 2, 3, y, 1, 6) or A(x, y, 1, 6, 5, 4)
depending on the adjacency of x to y. Thus, either B1 or B3 is empty.

To show 2.1, consider a nearest to C vertex x in B0. Let y be a neighbor
of x on a shortest path connecting x to C. Due to 2.2, y belongs either to
B1 or to B3. If y is in B1, say y is adjacent to 1, then vertices 5, 6, 1, 2, 3, y, x
induce a subgraph S2,2,2 in G. If y is in B3, say y is adjacent to the odd
vertices, then G contains the induced subgraph A(x, y, 3, 4, 5, 6).

To complete the case, we show next that
2.4. if B3 is empty, then G is a long circular caterpillar;
2.5. if B1 is empty, then G is an almost complete bipartite graph.

To prove 2.4, assume, to the contrary, that B1 contains two adjacent vertices
x and y whose neighbors in C are i and j, respectively. Since G is bipartite,
vertices i and j are at odd distance in the cycle. If i = j−1, then G contains
the induced subgraph A(i − 1, i, x, y, j, j + 1). If i and j are at distance 3
in the cycle, then vertices i − 2, i − 1, i, i + 1, i + 2, x, y induce a subgraph
S2,2,2 in G.
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To show 2.5, we assume, by contradiction, there is a vertex x in G that
has two non-neighbors y and z in the opposite part of the graph. Since
B1 and B2 are empty, x, y, z belong to B3. Moreover, there must be a
vertex a in G that distinguishes y and z. Suppose a is adjacent to y but
not to z. Obviously a is in B3. But then G contains the induced subgraph
A(x, 3, a, y, 2, z).

3. Suppose G contains a C4 induced by vertices 1, 2, 3, 4 and does not
contain any cycle of length more than 4. To distinguish vertices 2 and 4 in
G, we let vertex 5 be adjacent to 4 but not to 2. Similarly, to distinguish 1
and 3, we let vertex 6 be adjacent to 1 but not to 3. Then 5 is adjacent to
6, otherwise G contains the induced subgraph A(5, 4, 3, 2, 1, 6). Now G is an
almost complete bipartite graph. To prove this, we denote by C the set of
vertices {1, 2, 3, 4, 5, 6} and by Bj the subset of vertices outside C that have
exactly j neighbors in C. Then
– B1 is empty. Indeed, if the only neighbor in C for a vertex x ∈ B1 is 1

or 3, then vertices 1, 2, 3, 4, 5, x induce a subgraph A in G.
– B2 is empty. Indeed, if a vertex x ∈ B2 is adjacent to 3 and 5, then

vertices 1, 2, 3, x, 5, 6 induce a cycle on 6 vertices, contradicting the as-
sumption. If x is adjacent to 1 and 3, then the contradiction follows by
applying the proof of case 2.2.

– B0 is empty. For the proof we refer the reader to case 2.1.
Now the conclusion is the same as for case 2.5.

3. Algorithms

In this section we use the obtained characterization for the class of (S2,2,2, A)-
free bipartite graphs in order to derive polynomial-time algorithms for two
problems that are NP -hard in general bipartite graphs. Both problems are
related to the notion of a matching, i.e., a subset of edges, no two of which
have a vertex in common.

3.1. The jump number

The jump number problem came to graph theory from the theory of partial
orders. In the class of bipartite graphs the jump number problem coincides
with the problem of finding a maximum alternating cycle-free matching [4].

A matching in a graph is called alternating cycle-free (AC- free for short)
if no cycle in the graph has exactly half of its edges in the matching. We



298 R. Boliac and V. Lozin

denote the number of edges in a maximum AC-free matching in a graph G
by J(G).
Müller has shown that the problem of finding a maximum AC-free matching
is NP -complete even for chordal bipartite graphs [9]. Nevertheless, efficient
methods for jump-minimization have been found for several subclasses of
bipartite graphs, like bipartite permutation [10], biconvex [2], convex [5] and
distance-hereditary bipartite graphs [9]. Note that all the listed classes are
subclasses of chordal bipartite graphs, i.e., bipartite graphs without induced
cycles of length more than 4. We now extend the above list with the class
of (S2,2,2, A)-free bipartite graphs that contains all bipartite cycles.

Obviously, for the jump number problem, we may be restricted to con-
nected graphs. Moreover, the following lemma permits us to restrict our-
selves to prime graphs.

Lemma 5. Let H be a maximal prime induced subgraph of a graph G, then
J(G) = J(H).

Proof. Any AC-free matching M covers at most one vertex in each similar-
ity class of G, otherwise there is an alternating C4 for the matching. Without
loss of generality we may assume that vertices covered by M belong to H.
Therefore, J(G) ≤ J(H). The inverse inequality is trivial.

Due to Lemma 5 and Theorem 4, we consider the problem for the following
graphs: caterpillars, long circular caterpillars and almost complete bipartite
graphs.

To solve the problem for almost complete bipartite graphs, we use the
following general result.

Lemma 6. For a K̃1,n-free bipartite graph G, J(G) ≤ n.

Proof. Suppose J(G) ≥ n + 1 and let M be an AC-free matching in G
with n + 1 edges (a1, b1), . . . , (an+1, bn+1).

We show by induction on k that vertex bk, 1 ≤ k ≤ n, is adjacent
to at least one vertex aj with j > k. Indeed, if b1 has no neighbors in
{a2, . . . , an+1}, then vertices b1, a2, . . . , an+1 induce a K1,n in the bipartite
complement to G. Without loss of generality we let b1 be adjacent to a2.

To make the inductive jump, we assume that vertex bi is adjacent to ver-
tex ai+1 for each i = 1, . . . , k. Then bk+1 has no neighbors in set {a1, . . . , ak},
otherwise G has an alternating cycle with respect to M . Therefore, in or-
der to be K̃1,n-free, bk+1 must be adjacent to at least one vertex aj with
j > k + 1. We let bk+1 be adjacent to ak+2.
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Now the contradiction follows for k = n + 1. On the one hand, vertex bn+1

must have a neighbor aj with j < n + 1, otherwise G contains an induced
K̃1,n. On the other hand, if bn+1 has a neighbor aj with j < n + 1, then the
cycle (aj , bj , aj+1, . . . , bn+1) is alternating for M .

Recall from the introduction that if G is an almost complete bipartite graph,
then it is K̃1,2-free and hence J(G) ≤ 2. Assume now G is a (circular)
caterpillar. If G does not contain a pendant vertex, then obviously G is a
cycle Ck with k ≥ 6. In that case, solution is trivial: J(Ck) = k/2− 1. If G
contains a pendant vertex, we use the following simple lemma that remains
valid for arbitrary bipartite graphs.

Lemma 7. For every pendant vertex a with the only neighbor b, there is a
maximum AC-free matching in G that contains edge (a, b).

Proof. Let M be a maximum AC-free matching in graph G. If M does
not contain (a, b), then it must contain an edge (b, c), otherwise M is not
maximum. But then M ′ = (M − {(b, c)}) ∪ {(a, b)} is a matching of the
same cardinality. Obviously M ′ is AC-free, because a is pendant.

We now present a rough description of the algorithm as follows. Given a
connected (S2,2,2, A)-free bipartite graph G, find a maximal prime induced
subgraph H of G. If H is an almost complete bipartite graph, then J(G) =
J(H) ≤ 2. If H does not contain a pendant vertex, then H = Ck and
therefore J(H) = k/2 − 1. If a is a pendant vertex with neighbor b, then
H ′ = H − {a, b} is a cycle-free graph, i.e. H ′ has a pendant vertex as well.
We hence apply Lemma 7 to compute J(H) recursively: J(H) = J(H ′)+1.

With some care, the algorithm above can be implemented in time O(n2)
for graphs on n vertices. Hence the conclusion

Theorem 8. Given an (S2,2,2, A)-free bipartite graph G with n vertices, one
can find a maximum alternating cycle-free matching in G in time O(n2).

3.2. Maximum induced matching

A matching in a graph is induced if no two edges in the matching have
a third edge connecting them. The number of edges in a maximum size
induced matching of a graph G is denoted iµ(G). The problem of finding
a maximum induced matching has been introduced in [3], where the author
proved its NP -hardness in the class of bipartite graphs. On the other hand,
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the problem is known to be solvable in the class of trees in linear time [6, 11]
(see [7] for more solvable cases for the problem). Below we use the solution
for trees in order to develop an efficient procedure to solve the problem in
the class of (S2,2,2, A)-free bipartite graphs.

Again, like for the jump number problem, it is obviously sufficient
to consider only connected graphs. Moreover, we can apply the proof of
Lemma 5 with no extra arguments to conclude that iµ(H) = iµ(G), where
H is a maximal prime induced subgraph of a graph G. Consequently, we
study the problem for caterpillars, long circular caterpillars and almost com-
plete bipartite graphs.

To solve the maximum induced matching problem for almost complete
bipartite graphs, we denote by mK2 a regular graph of degree 1 with 2m
vertices. It is not hard to see that iµ(G) = m if and only if G contains mK2,
but not (m + 1)K2, as an induced subgraph.

Lemma 9. If G is an almost complete bipartite graph, then iµ(G) ≤ 2.

Proof. The bipartite complement to G is a graph with maximum degree 1.
Hence G̃ is C6-free. It is not hard to verify that C̃6 = 3K2. Thus G is a
3K2-free graph and hence iµ(G) ≤ 2.

Suppose now that G is a (circular) caterpillar. If G contains no cycle, then
we can apply the algorithm in [6] to solve the problem. If G is an even
cycle Cn, then iµ(G) = [k/3]. If G contains both a cycle Ck and a pendant
vertex a, we denote by Ga the subgraph obtained from G by deleting vertex
a together with the only neighbor b of a and all the vertices adjacent to b.
Then

iµ(G) = max{[k/3], iµ(Ga1) + 1, . . . , iµ(Gas) + 1},
where a1, . . . , as is the list of all pendant vertices in G.

Every Gaj is obviously a tree. So, we can solve the problem for G
applying the algorithm in [6] at most n times. All the above arguments
lead to

Theorem 10. Given a (S2,2,2, A)-free bipartite graph G with n vertices, one
can find a maximum induced matching in G in time O(n2).
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