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Abstract

The nth detour chromatic number, χn(G) of a graph G is the min-
imum number of colours required to colour the vertices of G such that
no path with more than n vertices is monocoloured. The number of
vertices in a longest path of G is denoted by τ (G) . We conjecture
that χn(G) ≤ d τ(G)

n e for every graph G and every n ≥ 1 and we prove
results that support the conjecture. We also present some sufficient
conditions for a graph to have nth chromatic number at most 2.
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1. Introduction

A longest path in a graph G is called a detour of G. The number of vertices
in a detour of G is called the detour order of G and is denoted by τ(G).
The girth g(G) and the circumference c(G) are, respectively, the order of a
shortest and a longest cycle in G. The odd girth go(G) of a non-bipartite
graph G is the order of a smallest odd cycle of G.

An n-detour colouring of G is a colouring of the vertices of G such that
no path of order greater than n is monocoloured. The nth detour-chromatic
number of G, denoted by χn(G), is the minimum number of colours required
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for an n-detour colouring of G. These chromatic numbers were introduced
by Chartrand, Geller and Hedetniemi in 1968 (see [4]).

The path of order n is denoted by Pn. We say that a set W of vertices
in G is Pn+1-free if G[W ] (the subgraph of G induced by W ) has detour
order at most n. Thus an n-detour colouring of G corresponds to a partition
of the vertex set of G into Pn+1-free sets.

A partition of the vertex set of G into two sets, A and B, such that
τ(G[A]) ≤ a and τ(G[B]) ≤ b is called an (a, b)-partition of G. If G has an
(a, b)-partition for every pair (a, b) of positive integers such that a+b = τ(G),
then we say that G is τ -partitionable. The following conjecture, known as
the Path Partition Conjecture, is stated in [1], [9] and [3] and studied in [2],
[6] and [7].

Conjecture 1. Every graph is τ -partitionable.

We shall show that, if the Path Partition Conjecture is true, the following
conjecture would also be true.

Conjecture 2. χn(G) ≤ d τ(G)
n e for every graph G and every n ≥ 1.

In Section 2 we prove that χn(G) ≤
⌈

τ(G)−n
d(2n+2)/3e

⌉
+ 1 for every graph G, if

2 ≤ n ≤ τ(G). This bound is significantly smaller than the one given in [4].
Using results from [6] and [7] (proved in support of Conjecture 1) we also
show that Conjecture 2 holds for several classes of graphs.

In Section 3 we show that graphs with large enough odd girth, as well
as graphs with small enough bipartite index, have nth chromatic number at
most 2, indicating that having nth detour chromatic number at most 2 is a
natural generalization of the property of being bipartite.

2. Bounds for χn in Terms of τ

The first detour-chromatic number, χ1, is the ordinary chromatic number
χ. The following bound for χ is well-known (see for example [5], Corollary
8.8, on page 226).

Theorem 2.1. χ(G) ≤ τ(G) for every graph G.
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The above result follows from the observation that τ(G −M) ≤ τ(G) − 1
for every maximal independent set M of G.

The following bound for χn appears in [4].

Theorem 2.2 (Chartrand, Geller and Hedetniemi). If G is any graph and
2 ≤ n ≤ τ(G)− 1, then

χn(G) ≤
⌊

1
2
(τ(G)− n− 1)

⌋
+ 2.

The proof of Theorem 2.2 relies on the observation that τ(G−M) ≤ τ(G)−2
for every maximum Pn+1-free subset M of G, if 2 ≤ n ≤ τ(G). In [7] we
proved the following stronger result.

Theorem 2.3. Let G be a graph and n an integer such that 2 ≤ n ≤ τ(G).
If M is a maximal Pn+1-free subset of V (G), then

τ(G−M) ≤ τ(G)− 2n + 2
3

.

This result enables us to prove the following:

Theorem 2.4. If G is any graph, then

χn(G) ≤




⌈
τ(G)−n

d(2n+2)/3e
⌉

+ 1 if 2 ≤ n ≤ τ(G),

1 if n > τ(G).

Proof. We use induction on τ(G). The result obviously holds for all graphs
K with τ(K) = 2. Suppose the result is true for all graphs H with τ(H) < k
for some k > 2. Let G be an arbitrary graph with τ(G) = k. If n ≥ k the
result holds for G, so we may suppose that n < k. Let M be a maximal
Pn+1-free subset of V (G). By Theorem 2.3

τ(G−M) ≤ k −
⌈

2n + 2
3

⌉
< k

and therefore, by the induction assumption,

χn(G−M) ≤




⌈
τ(G)−d 2n+2

3 e−n

d(2n+2)/3e

⌉
+ 1 if 2 ≤ n ≤ τ(G−M),

1 if n > τ(G−M).
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By including the subset M in any Pn+1-free partition of G − M we get a
Pn+1-free partition of G. Hence

χn(G) ≤ χn(G−M) + 1.

We now verify that the inequality for χn(G) holds for all the possible values
for n. First, if 2 ≤ n ≤ τ(G−M) then

χn(G) ≤
⌈

τ(G)− ⌈
2n+2

3

⌉− n

d(2n + 2)/3e

⌉
+ 1 + 1

=
⌈

τ(G)− n

d(2n + 2)/3e
⌉

+ 1.

Next, if τ(G−M) < n ≤ τ(G)− d(2n + 2)/3e then

χn(G) ≤ 1 + 1

≤
⌈

τ(G)− n

d(2n + 2)/3e
⌉

+ 1

because in this case
τ(G)− n

d(2n + 2)/3e ≥ 1.

Finally, if τ(G)− d(2n + 2)/3e < n < k then

χn(G) ≤ 1 + 1

=
⌈

τ(G)− n

d(2n + 2)/3e
⌉

+ 1

because in this case
0 <

τ(G)− n

d(2n + 2)/3e < 1.

The Path Partition Conjecture can also be stated as follows:

Conjecture 1′. For any graph G and any positive integer n < τ(G), there
exists a Pn+1-free set H in G such that τ(G−H) ≤ τ(G)− n.

In [6] and [7] it is shown that the Path Partition Conjecture is true for
several hereditary classes of graphs. In order to apply those results to detour
chromatic numbers, we first prove:
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Theorem 2.5. Let P be a hereditary class of graphs and n a positive integer.
If P has the property that every graph G ∈ P with τ(G) > n has a Pn+1-free
set W such that τ(G −W ) ≤ τ(G) − n, then P also has the property that
χn(G) ≤ dτ(G)/ne for every graph G in P.

Proof. The proof is by induction on the detour order. The result is ob-
viously true for graphs with detour order at most n. Let G be a graph
in P with τ(G) = k > n. Then G has a Pn+1-free subset W such that
τ(G−W ) ≤ k−n. Since P is a hereditary class, G−W ∈ P and therefore,
by our induction hypothesis, χn(G−W ) ≤ d τ(G−W )

n e. Now

χn(G) ≤ χn(G−W ) + 1

≤
⌈

τ(G−W )
n

⌉
+ 1

≤
⌈

k − n

n

⌉
+ 1

=
⌈

k

n

⌉
.

Applying Theorem 2.5 to the class of all graphs, we note that if Conjecture
1 is true, then Conjecture 2 will also be true.

Corollary 4.7 of [6] implies:

Theorem 2.6. If g(G) ≥ n − 1 and n < τ(G), then G has a Pn+1-free set
W such that τ(G−W ) ≤ τ(G)− n.

Since the class of all graphs with girth at least n − 1 is a hereditary class,
Theorem 2.6 together with Theorem 2.5 imply:

Corollary 2.7. For any graph G, χn(G) ≤ d τ(G)
n e for every n ≤ g(G) + 1.

The class of 2-degenerate graphs is another hereditary class for which the
Path Partition Conjecture holds. (A graph G is r-degenerate if every induced
subgraph H of G has minimum degree at most r.)

Theorem 2.8. Let G be a 2-degenerate graph and let (a, b) be any pair of
positive integers such that τ(G) ≤ a + b. Then G has an (a, b)-partition.
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Proof. The proof is by induction on the order of G. Let v be a vertex of G of
degree at most 2. By the induction hypothesis, G− v has an (a, b)-partition
(A,B). If v has no neighbours in A, then (A ∪ {v}, B) is an (a, b)-partition
of G. We may therefore assume that v has one neighbour, say x, in A and
the other one, say y, in B. If x is not an end-vertex of a Pa in A, then
(A ∪ {v}, B) is an (a, b)-partition of G. If x is an end-vertex of a Pa in A,
then y is not an end-vertex of a Pb in B (otherwise G would have a path of
order a + b + 1), and then (A,B ∪ {v}) is an (a, b)-partition of G.

Corollary 2.9. If G is a 2-degenerate graph, then χn(G) ≤ d τ(G)
n e for all

n ≥ 1.

The following is implied by Theorem 5.1 of [6] and Theorem 4.2 of [2].

Theorem 2.10.
(i) For every graph G, χn(G) ≤

⌈
τ(G)

n

⌉
for every n ≤ 6.

(ii) If τ(G) ≤ 13, then χn(G) ≤
⌈

τ(G)
n

⌉
for every n ≥ 1.

3. Nearly Bipartite Graphs

The bipartite index of a graph G is the minimum number of vertices whose
removal from G results in a bipartite graph. In [8] Györi, Kostochka and
ÃLuczak, showed that graphs without small odd cycles are “nearly bipartite”,
in the sense that their bipartite index is relatively small. By adapting the
proof of the Lemma in [8], we prove that graphs without small odd cycles
are “nearly bipartite” in the sense that their nth detour chromatic number
is at most 2, for relatively small n.

Theorem 3.1. If n ≥ 1 and G contains no odd cycles of order less than
τ(G)− n + 2, then χn(G) ≤ 2.

Proof. Without loss of generality we may assume that G is a connected
graph. If G contains no odd cycles, then G is bipartite and hence χ1(G) ≤ 2,
so the result holds in that case. Now suppose G contains an odd cycle and
let go(G) = m. Let C be an odd cycle in G with m vertices v0, v1, . . . , vm−1

and put

N0 = {v0} and Ni = {x ∈ V (G)|d(x, v0) = i for i ≥ 1}.
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Then
Ni ∩ V (C) = {vi, vm−i} if i = 1, . . . ,

m− 1
2

and
Ni ∩ V (C) = ∅ if i ≥ m + 1

2
.

If some Ni contains two adjacent vertices, then G contains an odd cycle
with exactly one vertex in Nj for some j ≤ i − 1, and exactly two vertices
in each of Nj+1, . . . , Ni. The order of this odd cycle is at most 2i + 1; hence
2i + 1 ≥ m. Therefore

τ(G[Ni]) = 1 if i <
m− 1

2
.

Let P be a path in G[Nm−1
2

] and let x be an end-vertex of P . Then

there is an x − v0-path Q of order m+1
2 with one vertex in each of the

sets N0, N1, . . . , Nm−1
2

. Let R1 be the path v1, v2, . . . , vm−3
2

and let R2 be
the path vm−1, vm−2, . . . , vm+3

2
. Since G has no odd cycles of order less than

m, at least one of R1 and R2, say R1, is disjoint from Q. Thus P , followed
by Q, followed by R1 is a path of order

v(P ) +
m− 1

2
+

m− 3
2

= v(P ) + m− 2.

Since m ≥ τ(G)−n+2, by assumption, it follows that v(P ) ≤ n, and hence

τ(G[Nm−1
2

]) ≤ n.

If i > m−1
2 and L is a path in G[Ni], then L is disjoint from C and there is

a path from an end-vertex of L to a vertex on C; hence

τ(G[Ni]) ≤ τ(G)−m ≤ n− 2.

Now put
A =

⋃

i even

Ni and B =
⋃

i odd

Ni.

Since there are no edges between non-consecutive Ni and we have proved
that each Ni has detour number at most n, it follows that τ(G[A]) ≤ n and
τ(G[B]) ≤ n, and hence (A,B) is an (n, n)-partition of G.

We now give another sufficient condition for a graph to have nth chromatic
number at most 2.



290 M. Frick and F. Bullock

Theorem 3.2. Let G be a graph with bipartite index r. If n ≥ r + 1 and r
is even or n ≥ r + 2 and r is odd, then χn(G) ≤ 2.

Proof. Let R be a set of r vertices in G such that G−R is bipartite. Let
(S1, S2) be a vertex partition of G−R into independent sets and let (R1, R2)
be a partition of R with |R1| = b r

2c and |R2| = d r
2e. Put

Vi = Si ∪Ri, for i = 1, 2.

Then (V1, V2) is a partition of the vertex set of G. Since Si is an independent
set, no path in Vi has more than 2 |Ri|+ 1 vertices for i = 1, 2. Hence

τ(Vi) ≤
{

r + 2 if r is odd,

r + 1 if r is even.

Thus τ(G[Vi]) ≤ n and hence χn(G) ≤ 2.

The results in this section can also be stated in terms of (a, b)-partitions.
By setting n = a and b = τ(G)− a, Theorem 3.1 translates to:

Theorem 3.3. Let G be a graph with τ(G) = a + b; 1 ≤ a ≤ b. If go(G) ≥
b + 2, then G has an (a, a)-partition.

By slightly adapting the proof of Theorem 3.2, we also obtain:

Theorem 3.4. If G is a graph with bipartite index at most b τ(G)−3
2 c, then

G is τ -partitionable.

Proof. Let R, S1 and S2 be as in the proof of Theorem 3.2, but let R1

consist of ba−1
2 c vertices of R and put R2 = R −R1. Put A = R1 ∪ S1 and

B = R2 ∪ S2. Then (A,B) is a partition of the vertex set of G, and

τ(G[A]) ≤ 2
⌊

a− 1
2

⌋
+ 1 ≤ a− 1 + 1 = a

and

τ(B) ≤ 2
(

r −
⌊

a− 1
2

⌋)
+ 1

≤ 2
⌊

τ(G)− 3
2

⌋
− 2

⌊
a− 1

2

⌋
+ 1

≤ (a + b)− 3− (a− 2) + 1

= b.
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Corollary 3.5. If G is a tripartite graph with n1 vertices in the smallest
part and τ(G) ≥ 2n1 + 3, then G is τ -partitionable.
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