COLOURING GRAPHS WITH PRESCRIBED INDUCED CYCLE LENGTHS

Bert Randerath
Institut für Informatik
Universität zu Köln
D-50969 Köln, Germany
e-mail: randerath@informatik.uni-koeln.de
AND
Ingo Schiermeyer
Fakultät für Mathematik und Informatik
TU Bergakademie Freiberg
D-09596 Freiberg, Germany
e-mail: schierme@mathe.tu-freiberg.de

Abstract

In this paper we study the chromatic number of graphs with two prescribed induced cycle lengths. It is due to Sumner that trianglefree and P_{5}-free or triangle-free, P_{6}-free and C_{6}-free graphs are 3 colourable. A canonical extension of these graph classes is $\mathcal{G}^{I}(4,5)$, the class of all graphs whose induced cycle lengths are 4 or 5 . Our main result states that all graphs of $\mathcal{G}^{I}(4,5)$ are 3 -colourable. Moreover, we present polynomial time algorithms to 3 -colour all triangle-free graphs G of this kind, i.e., we have polynomial time algorithms to 3 -colour every $G \in \mathcal{G}^{I}\left(n_{1}, n_{2}\right)$ with $n_{1}, n_{2} \geq 4$ (see Table 1). Furthermore, we consider the related problem of finding a χ-binding function for the class $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$. Here we obtain the surprising result that there exists no linear χ-binding function for $\mathcal{G}^{I}(3,4)$.

Keywords: colouring, chromatic number, induced subgraphs, graph algorithms, χ-binding function.
2000 Mathematics Subject Classification: 05C15, 05C75, 05C85.

1. Introduction and Results

We consider finite undirected simple graphs. For terminology and notation not defined here we refer to [1]. As introduced by Gyárfás [6], a family \mathcal{G} of graphs is called χ-bound with χ-binding function f, if $\chi\left(G^{\prime}\right) \leq f\left(\omega\left(G^{\prime}\right)\right)$ holds whenever G^{\prime} is an induced subgraph of $G \in \mathcal{G}$.

Erdös [4] showed that for each pair g, k with $g, k \geq 4$ there exist graphs with girth g and chromatic number k. Hence, triangle-free graphs can have arbitrary large chromatic number. Sumner [13] showed that triangle-free and P_{5}-free or triangle-free, P_{6}-free and C_{6}-free graphs are 3 -colourable.

For $t \geq 5$ define \mathcal{G}_{t} as the class of all triangle-free graphs which are P_{t}-free and C_{i}-free for $6 \leq i \leq t$. For $k \geq 1$ and $3 \leq n_{1}<n_{2}<\cdots<n_{k}$ let $\mathcal{G}^{I}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be the class of all graphs whose induced cycle lengths are equal to one of $n_{1}, n_{2}, \ldots, n_{k}$. Thus

$$
\mathcal{G}_{5} \subset \mathcal{G}_{6} \subset \mathcal{G}_{7} \subset \cdots \subset \mathcal{G}^{I}(4,5)
$$

and all graphs G of \mathcal{G}_{5} and \mathcal{G}_{6} are 3 -colourable by Sumners result. Note that all graphs of \mathcal{G}_{t} have diameter at most $t-2$ whereas graphs of $\mathcal{G}^{I}(4,5)$ can have arbitrary diameter.

Our research was motivated by the question whether 3-colourability still holds for a superclass $\mathcal{G}_{t}\left(\right.$ of \mathcal{G}_{5} and \mathcal{G}_{6}) for some $t \geq 7$. Theorem 1 states that all graphs of $\mathcal{G}^{I}(4,5)$ are 3 -colourable. Hence, the answer is affirmative for each $t \geq 7$. Moreover, we can guarantee a 3 -colouring with some additional properties. For a fixed integer $p \geq 2$ we call a graph $G \in \mathcal{G}^{I}(4,2 p+1)$ 3^{*}-colourable with root v, if there is a 3-colouring of G such that $G\left[N_{G}^{p}(v)\right]$ is coloured with two colours, where $N_{G}^{p}(v)$ is the set of vertices having distance p from v. Observe that this definition implies the following useful property: If G is 3^{*}-colourable with root v, then we can choose a 3 -colouring such that $G\left[N_{G}^{i}(v)\right]$ is coloured monochromatic for every $1 \leq i<p$ and $G\left[N_{G}^{p}(v)\right]$ is coloured with two colours. Furthermore, if this property holds for every vertex of $G \in \mathcal{G}^{I}(4,2 p+1)$, then we call $G 3^{*}$-colourable. This definition is motivated by the following observation.

If $G_{1}, G_{2} \in \mathcal{G}^{I}(4,2 p+1)$ and $v_{i} \in G_{i}$ for $i=1,2$, then the new graph G^{*} with vertex set $V\left(G^{*}\right)=V\left(G_{1}-v_{1}\right) \cup V\left(G_{2}-v_{2}\right)$ and edge set $E\left(G^{*}\right)=$ $E\left(G_{1}-v_{1}\right) \cup E\left(G_{2}-v_{2}\right) \cup\left\{u_{1} u_{2} \mid u_{i} \in N_{G_{i}}\left(v_{i}\right)\right.$ for $\left.i=1,2\right\}$ is likewise a member of $\mathcal{G}^{I}(4,2 p+1)$. The invariance of $\mathcal{G}^{I}(4,2 p+1)$ concerning this graph operation reasons the equivalence of 3^{*} - and 3 -colourability for the class $\mathcal{G}^{I}(4,2 p+1)$.

Theorem 1. Every graph of $\mathcal{G}^{I}(4,2 p+1)$ with $p \geq 2$ is 3^{*}-colourable.
The proof of Theorem 1 is based on decomposition and provides a polynomial time algorithm to 3^{*}-colour a given graph $G \in \mathcal{G}^{I}(4,2 p+1)$. Note that the class $\mathcal{G}^{I}(4,5)$ is a canonical extension of $\mathcal{G}^{I}(4)$, which are the well-known chordal bipartite graphs (e.g. see [2]). Very recently Brandt [3] examined the maximal (with respect to edge addition) triangle-free members of the class $\mathcal{G}^{I}(4,5)$ with emphasis on graph homomorphisms. Brandt also observed that the class $\mathcal{G}^{I}(4,5)$ is a natural extension of $\mathcal{G}^{I}(4)$ - the chordal bipartite graphs - and he introduced for members of $\mathcal{G}^{I}(4,5)$ the terminology of chordal triangle-free graphs.

Motivated by the first theorem we consider next the classes $\mathcal{G}^{I}(2 q, 2 p+1)$ and $\mathcal{G}^{I}\left(2 p^{\prime}+1,2 q^{\prime}\right)$ for $q, q^{\prime} \geq 3$ and $p, p^{\prime} \geq 2$. But first we will examine the larger class $\mathcal{G}^{I}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ with $n_{1} \geq 5$. A graph G is r-degenerate, if there exists an ordering $\left(v_{1}, \ldots, v_{n}\right)$ of $V(G)$ such that $d_{G\left[\left\{v_{i}, \ldots, v_{n}\right\}\right]}\left(v_{i}\right) \leq r$ for all $1 \leq i \leq n$.

Theorem 2. Every graph of $\mathcal{G}^{I}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ with $k \geq 1$ and $n_{1} \geq 5$ is ($k+1$)-degenerate. Especially, every vertex v of G being an endvertex of a longest induced path of G satisfies $d_{G}(v) \leq k+1$.

Corollary 3. Every graph of $\mathcal{G}^{I}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ with $k \geq 1$ and $n_{1} \geq 5$ is ($k+2$)-colourable.

The last result reveals an interesting relation to the colouring properties of graphs of the class $\mathcal{G}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, the class of all graphs whose (not necessarily induced) cycle lengths are equal to one of $n_{1}, n_{2}, \ldots, n_{k}$. Now let G be a graph with r different odd and s different even cycle lengths (which need not to be induced). In [10] Mihók and Schiermeyer presented a polynomial time colouring algorithm, called MAXBIP, which recursively constructs maximal bipartite subgraphs. Based on MAXBIP they proved the following theorem, answering thereby a question of B. Bollobás and P. Erdős [5].

Theorem 4 (Mihók and Schiermeyer [10], 1997). $\chi(G) \leq \min \{2 r+2$, $2 s+3\}$.

With $k=r+s$ this also implies $\chi(G) \leq k+2$. The question of B. Bollobás and P. Erdős [5] only concerned $(2 r+2)$-colourability of graphs with r different odd cycle lengths (which need not to be induced). This question was
first answered affirmative by A. Gyárfás [7]. Additional informations and a related conjecture can be found in the excellent book [8] of T. Jensen and B. Toft on graph colouring problems.

Obviously, Corollary 3 is best possible for $k=1$. But for $k=2$ we are able to improve Corollary 3. For the next theorem we need to recall the definition of the famous Petersen graph P^{*}. This 3-regular, non-bipartite graph P^{*} of order 10 is a member of the class $\mathcal{G}^{I}(5,6)$. The Petersen graph P^{*} consists of two disjoint induced 5-cycles $C^{1}=a_{0} a_{1} a_{2} a_{3} a_{4} a_{0}$ and $C^{2}=b_{0} b_{1} b_{2} b_{3} b_{4} b_{0}$ and the additional edges $a_{0} b_{0}, a_{1} b_{3}, a_{2} b_{1}, a_{3} b_{4}$ and $a_{4} b_{2}$. Obviously P^{*} is 3 -colourable.

Theorem 5. Every graph G of $\mathcal{G}^{I}(2 q, 2 p+1)$ or $\mathcal{G}^{I}\left(2 p^{\prime}+1,2 q^{\prime}\right)$ with $q, q^{\prime} \geq 3$ and $p, p^{\prime} \geq 2$ fulfills at least one of the following properties:

1. G is bipartite;
2. G satisfies $\delta(G) \leq 2$;
3. $G \in \mathcal{G}^{I}(5,6)$ and one of the following properties holds:
(a) $G \cong P^{*}$;
(b) G contains a clique cutset, i.e., K_{1} or K_{2} clique cutset.

Every graph G of $\mathcal{G}^{I}(2 q, 2 p+1)$ or $\mathcal{G}^{I}\left(2 p^{\prime}+1,2 q^{\prime}\right)$ with $q, q^{\prime} \geq 3$ and $p, p^{\prime} \geq 2$ not isomorphic to P^{*} fulfills at least one of the three properties because of Theorem 5. Testing whether G is bipartite, has minimal degree two or contains a complete cutset of size at most two can be done very efficiently. Moreover, if $G \in \mathcal{G}^{I}(5,6)$ is non-bipartite, $\delta(G) \geq 3$ and contains no complete cutset, then $G \cong P^{*}$, which obviously is 3 -colourable. Hence, Theorem 5 provides a polynomial time algorithm to 3 -colour a given graph $G \in \mathcal{G}^{I}(2 q, 2 p+1)$ or $G \in \mathcal{G}^{I}\left(2 p^{\prime}+1,2 q^{\prime}\right)$ with $q, q^{\prime} \geq 3$ and $p, p^{\prime} \geq 2$. This algorithm (recursively) makes use of the fact that the graph (in question) is bipartite, has a vertex of degree at most two, is isomorphic to the Petersen graph or the graph can be decomposed into two smaller graphs according to a complete cutset of size at most two.

Corollary 6. Every graph G of $\mathcal{G}^{I}(2 q, 2 p+1)$ or $\mathcal{G}^{I}\left(2 p^{\prime}+1,2 q^{\prime}\right)$ with $q, q^{\prime} \geq 3$ and $p, p^{\prime} \geq 2$ is 3 -colourable.

Now we consider the related problem of finding a (best possible) χ-binding function f^{*} for $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$ and for completeness also for its subclasses $\mathcal{G}^{I}\left(n_{1}\right)$.

Recall that a graph is perfect if for each induced subgraph H of G the chromatic number $\chi(H)$ equals the corresponding clique number $\omega(H)$. Furthermore the lexicographic product $G_{1}\left[G_{2}\right]$ of two graphs G_{1} and G_{2} contains the vertex set $V\left(G_{1}\left[G_{2}\right]\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices (a, b) and (c, d) are adjacent in $G_{1}\left[G_{2}\right]$ if a is adjacent to c in G_{1} or $a=c$ and b is adjacent to d in G_{2}.

For convenience we drop the condition that n_{1} is always smaller than n_{2} in the definition of $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$.
(I) n_{1}, n_{2} are even:

For even n_{1} and n_{2} all graphs of $\mathcal{G}^{I}\left(n_{1}\right)$ and $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$ are bipartite and thus perfect with $f^{*}(\omega)=\omega \leq 2$.
(II) n_{1} is even, n_{2} is odd: (A) $n_{2} \geq 5$:

By our results (Theorem 1, Corollary 6) every graph of $\mathcal{G}^{I}\left(n_{2}\right)$ and $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$ is 3 -colourable, i.e., with $\omega \leq 2$ we have $f^{*}(\omega)=\omega+1 \leq 3$.
(II) n_{1} is even, n_{2} is odd: (B1) $n_{2}=3$ and $n_{1} \geq 6$:

Recently, Rusu [11] proved that all members of a superclass of $\mathcal{G}^{I}(3,2 q)$ are perfect for any $q \geq 3$. Hence, we also have $f(\omega)=\omega$. A well-known subclass of $\mathcal{G}^{I}(3,2 q)$ is $\mathcal{G}^{I}(3)$ containing the chordal graphs.
(II) n_{1} is even, n_{2} is odd: (B2) $n_{2}=3$ and $n_{1}=4$:

In 1987 Gyárfás [6] conjectured (motivated by the Strong Perfect Graph Conjecture) that there exists a χ-binding function for $\mathcal{G}^{I}(3,4)$. But this Conjecture is still open. In [6] Gyárfás also suggested to examine whether there exists a linear χ-binding function for hereditary classes of graphs. For $\mathcal{G}^{I}(3,4)$ we have constructed the following sequence of graphs $\left(H_{i}\right)$. Starting with $H_{1}=\bar{C}_{7}$, the complement of the 7 -cycle, we define $H_{i+1}=\bar{C}_{7}\left[H_{i}\right]$, the lexicographic product of the graphs \bar{C}_{7} and H_{i}. Note that $\omega\left(H_{i+1}\right)=$ $3 \omega\left(H_{i}\right)$. Furthermore, in any colouring of H_{i+1} we need for each copy of H_{i} at least $\chi\left(H_{i}\right)$ different colours. With $\alpha\left(\bar{C}_{7}\right)=2$ we then observe that every colour of a colouring of H_{i+1} appears in at most two different copies of H_{i}. Hence, H_{i} has the order $n\left(H_{i}\right)=7^{i}$, the independence number $\alpha\left(H_{i}\right)=2^{i}$ and the clique number $\omega\left(H_{i}\right)=3^{i}$. Therefore, its chromatic number $\chi\left(H_{i}\right)$ is at least $(7 / 2)^{i}$. Thus, the χ-binding function f^{*} for $\mathcal{G}^{I}(3,4)$ satisfies $f^{*}(\omega) \geq(7 / 6)^{i} \omega$ for every integer i. Hence, we obtain the following surprising result:

Theorem 7. There exists no linear χ-binding function for $\mathcal{G}^{I}(3,4)$.

It is noteworthy to mention that $\mathcal{G}^{I}(3,4)$ contains all weakly triangulated graphs. Recently, Scott [12] achieved some related results.
(III) n_{1}, n_{2} are odd: (A1) $n_{1}, n_{2} \geq 5$:

Markossian, Gasparian and Reed [9] showed that all triangle-free and even-hole-free graphs are 2-degenerate and thus are 3 -colourable. Hence, $f^{*}(\omega)=$ $\omega+1 \leq 3$ is a χ-binding function for $\mathcal{G}^{I}\left(n_{1}\right)$ and $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$.
(III) n_{1}, n_{2} are odd: (A2) $n_{1}=3$:

It is an open problem, whether there exists a linear χ-binding function for $\mathcal{G}^{I}\left(3, n_{2}\right)$. The graph-sequence $G_{r}=C_{n_{2}}\left[K_{r}\right]$, the lexicographic product of the odd cycle $C_{n_{2}}$ and the complete graph K_{r}, reveals that we have $f^{*}(\omega) \geq\left(\left(n_{2}+1\right) /\left(n_{2}-1\right)\right) \omega$ for every χ-binding function. We expect that

$$
f^{*}(\omega)=\left(\left(n_{2}+1\right) /\left(n_{2}-1\right)\right) \omega .
$$

Table 1. χ-binding function f^{*} for $\mathcal{G}^{I}\left(n_{1}, n_{2}\right)$.

\rightarrow n_{1}, n_{2} \downarrow	3	4	odd ≥ 5	even ≥ 6
3	$f^{*}(\omega)=\omega$ chordal	\nexists linear f^{*} Theorem 7 Conj.[6]: $\exists f^{*}$	$f^{*}(\omega) \geq\left(\left(n_{2}+1\right) /\left(n_{2}-1\right)\right) \omega$ Conj.: ${ }^{\prime \prime}={ }^{\prime \prime}$	$f^{*}(\omega)=\omega$ Rusu $[11]$
4		$f^{*}(\omega)=\omega \leq 2$ chordal bipartite	$f^{*}(\omega)=\omega+1 \leq 3$ Theorem 1	$f^{*}(\omega)=\omega \leq 2$ \subset bipartite
odd ≥ 5			$f^{*}(\omega)=\omega+1 \leq 3$ Markossian,$\ldots[9]$	$f^{*}(\omega)=\omega+1 \leq 3$ Corollary 6
even ≥ 6				$f^{*}(\omega)=\omega \leq 2$ \subset bipartite

2. Proofs

The following well-known easy observation provides a very useful property. If a graph G contains a pair u, v of nonadjacent vertices with $N_{G}(u) \subseteq N_{G}(v)$, then any proper k-colouring of $G-u$ can easily be extended to a proper k-colouring of G.

Therefore we only have to consider those graphs G having the property ($*$):
$(*)$ If $u v \notin E(G)$, then there exist vertices (private neighbours) $p_{u} \in$ $\left(N_{G}(u)-N_{G}(v)\right)$ and $p_{v} \in\left(N_{G}(v)-N_{G}(u)\right)$.
The next lemma provides a useful property of triangle-free and C_{6}-free graphs, which will be used in the proof of Theorem 1. This class of graphs forms a superclass of all classes $\mathcal{G}^{I}(4,2 p+1)$ with $p \geq 2$.

Lemma 8. Let G be a triangle-free and C_{6}-free graph satisfying property $(*)$. Then for every vertex x of degree $d_{G}(x)=k \geq 3$ with neighbours $x_{1}, x_{2}, \ldots, x_{k}$ there exists a pair x_{i}, x_{j} of neighbours such that $N_{G}\left(x_{i}\right) \cap$ $N_{G}\left(x_{j}\right) \cap N_{G}^{2}(x)=\emptyset$.

Proof. Let G be a triangle-free and C_{6}-free graph satisfying property $(*)$. Further suppose to the contrary that there exists a vertex x of degree $d_{G}(x)=k \geq 3$ with neighbours $x_{1}, x_{2}, \ldots, x_{k}$ such that $N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{j}\right)$ $\cap N_{G}^{2}(x) \neq \emptyset$ for all pairs i, j with $1 \leq i<j \leq k$. Choose a vertex $v \in$ $N_{G}^{2}(x)$ such that $\left|N_{G}(x) \cap N_{G}(v)\right|=p$ is maximum. By $(*)$ we know that $p \leq k-1$. We may assume that $N_{G}(x) \cap N_{G}(v)=\left\{x_{1}, \ldots, x_{p}\right\}$. By the assumption there exists a vertex $w \in N_{G}^{2}(x)$ with w likewise adjacent to a vertex $x_{i} \in\left\{x_{1}, \ldots, x_{p}\right\}$ and to a vertex $x_{j} \in\left\{x_{p+1}, \ldots, x_{k}\right\}$. Hence there is a vertex $w \in N_{G}^{2}(x)-\{v\}$ with $N_{G}(v) \cap N_{G}(w) \cap N_{G}(x) \neq \emptyset$ and $N_{G}(w) \cap$ $\left\{x_{p+1}, \ldots, x_{k}\right\} \neq \emptyset$. Choose a vertex w with $N_{G}(w) \cap\left\{x_{p+1}, \ldots, x_{k}\right\} \neq \emptyset$ such that $\left|N_{G}(v) \cap N_{G}(w) \cap N_{G}(x)\right|=q$ is maximum. Hence $1 \leq q \leq p-1$ by the choice of v and w. We may assume that $N_{G}(v) \cap N_{G}(w) \cap N_{G}(x)=$ $\left\{x_{1}, \ldots, x_{q}\right\}$ and that $x_{p+1} \in N_{G}(w)$. By the hypothesis there exists a vertex $u \in N_{G}^{2}(x)-\{v, w\}$ such that $x_{p}, x_{p+1} \in N_{G}(u)$. By the choice of p and q there is a vertex $x_{s} \in\left\{x_{1}, \ldots, x_{q}\right\}$ such that $x_{s} \notin N_{G}(u)$. Now $G^{\prime}:=$ $G\left[\left\{x_{s}, x_{p}, x_{p+1}, v, w, u\right\}\right] \cong C_{6}$ or G^{\prime} contains a triangle, a contradiction.

Proof of Theorem 1. We will prove the theorem by induction. We may assume that G is a connected graph and fulfills property (*). By the induction hypothesis there is a 3^{*}-colouring with root y for every vertex y of any induced subgraph H of G with $|V(H)|<|V(G)|$. Now let x be an arbitrary vertex of G. If $\operatorname{dist}_{G}(x, y)<p$ for all vertices $y \in V(G-x)$, then we can easily 3^{*}-colour G with root x. Hence we may assume that $\operatorname{dist}_{G}(x, y) \geq p$ for at least one vertex $y \in V(G-x)$.

Case 1. Assume that $d_{G}(x)=1$ and let $x z \in E(G)$.

Then by induction hypothesis there is a 3^{*}-colouring with root z of $G-x$, which can be easily extended to a 3^{*}-colouring with root x of G.

Case 2. Assume that $d_{G}(x) \geq 2$.
Also, if x is a cutvertex of G, then we can easily 3^{*}-colour G with root x. Hence we may assume that x is not a cutvertex of G. Note that x and every neighbour of x has a degree of at least two.

We now consider $N_{G}^{i}(x)$ for $1 \leq i<p$. If there is a vertex $y \in N_{G}^{i}(x)$ such that

$$
N_{G}(y) \cap N_{G}^{i+1}(x) \subseteq\left(\bigcup_{z \in N_{G}^{i}(x)-\{y\}} N_{G}(z)\right) \cap N_{G}^{i+1}(x)
$$

then the levels $N_{G}^{h}(x)$ with $1 \leq h<p$ and $h \neq i$ are the same in G and $G-y$. Thus, we can reduce G to $G-y$ and a 3^{*}-colouring with root x of $G-y$ can be extended to a 3^{*}-colouring with root x of G since $G\left[N_{G}^{i-1}(x)\right]$ is independent and monochromatic, $G\left[N_{G}^{i}(x)-\{y\}\right]$ is independent and monochromatic and $G\left[N_{G}^{i+1}(x)\right]$ is 2-coloured. Consequently, we can assume for the remaining part of the proof that

Claim 1. Every vertex $y \in N_{G}^{i}(x)$ has a 'private neighbour' in $N_{G}^{i+1}(x)$ for $1 \leq i<p$.

Subcase 2.1. Assume that $d_{G}(x) \geq 3$.
Let u^{1}, v^{1} and w^{1} be three vertices of $N_{G}^{1}(x)$. Then by Claim 1 there are three 'paths of private neighbours' $u^{1} u^{2} \ldots u^{p}, v^{1} v^{2} \ldots v^{p}$ and $w^{1} w^{2} \ldots w^{p}$. Set $u=u^{p-1}, v=v^{p-1}$ and $w=w^{p-1}$. Let U^{p}, V^{p}, W^{p} be the set of private neighbours of u, v and w, respectively.

If $p \geq 3$, then $N_{G}^{p}(x) \cap N_{G}(y) \cap N_{G}(z)=\emptyset$ for all pairs $y, z \in\{u, v, w\}$. Since otherwise there would be an induced $C_{2 p}-$ a contradiction. If $p=2$, then we can choose u and v by Lemma 8 such that $N_{G}^{2}(x) \cap N_{G}(u)$ $\cap N_{G}(v)=\emptyset$.

Now observe that $G\left[U^{p}, V^{p}\right], G\left[U^{p}, W^{p}\right]$ and $G\left[W^{p}, V^{p}\right]$ are $2 K_{2}$-free (and bipartite), since otherwise there would be an induced C_{6}.

A useful property of every bipartite and $2 K_{2}$-free graph H is the existence of a labelling of the vertices of each partition set $X=\left\{x_{1}, \ldots, x_{k}\right\}$, such that $N_{H}\left(x_{i}\right) \subset N_{H}\left(x_{j}\right)$ if $i \leq j$.

Then we easily deduce that there are sets $U_{(c)}^{p}, U_{(e)}^{p}, V_{(c)}^{p}$ and $V_{(e)}^{p}$ such that $U^{p}=U_{(c)}^{p} \cup U_{(e)}^{p}, V^{p}=V_{(c)}^{p} \cup V_{(e)}^{p}, G\left[U_{(e)}^{p} \cup V_{(e)}^{p}\right]$ is edgeless and
$G\left[U_{(c)}^{p} \cup V_{(c)}^{p}\right]$ is complete bipartite. Note that the partition of U^{p} and V^{p} into $U_{(c)}^{p}, U_{(e)}^{p}, V_{(c)}^{p}$ and $V_{(e)}^{p}$ is not necessarily unique. But, if $G\left[U^{p}, V^{p}\right]$ is not a complete bipartite graph, it is always possible to choose a partition of U^{p} and V^{p} into $U_{(c)}^{p}, U_{(e)}^{p}, V_{(c)}^{p}$ and $V_{(e)}^{p}$ such that $U_{(e)}^{p} \neq \emptyset$ and $U_{(e)}^{p} \neq \emptyset!$

Subcase 2.1.1. $G\left[U^{p}, V^{p}\right]$ is not a complete bipartite subgraph.
Then there are two non-adjacent vertices $y \in U^{p}$ and $z \in V^{p}$. Now we can choose a partition of U^{p} and V^{p} into $U_{(c)}^{p}, U_{(e)}^{p}, V_{(c)}^{p}$ and $V_{(e)}^{p}$ such that $y \in U_{(e)}^{p}$ and $z \in V_{(e)}^{p}$. Set $S=\left\{v \in V(G) \mid \operatorname{dist}_{G}(x, v) \leq p-1\right\} \cup U_{(c)}^{p} \cup V_{(c)}^{p}$.

Subcase 2.1.1.1. For every vertex $y \in U_{(e)}^{p}$ and $z \in V_{(e)}^{p}$ there exists a path connecting y and z in $G-S$.
Now we choose $y \in U_{(e)}^{p}$ and $z \in V_{(e)}^{p}$ such that $\operatorname{dist}_{G-S}(y, z)=$ $\min \left\{d i s t_{G-S}\left(y^{\prime}, z^{\prime}\right) \mid y^{\prime} \in U_{(e)}^{p}\right.$ and $\left.z^{\prime} \in V_{(e)}^{p}\right\}$. Then obviously there would be an induced cycle of length at least $(2 p+1)+1>2 p+1>4$, a contradiction.

Subcase 2.1.1.2. There exist vertices $y \in U_{(e)}^{p}$ and $z \in V_{(e)}^{p}$ such that there is no path connecting y and z in $G-S$.
Now let H_{1} be a component of $G-S$ and H_{2} be the remaining part of $G-S$. Set $G_{i}=G\left[V\left(H_{i}\right) \cup S\right]$ for $i=1,2$. Then there is a 3^{*}-colouring with root x for each G_{i} with $i=1,2$. We can choose these 3^{*}-colourings in such a way that the vertices of S always receive the same colours. Hence we obtain a 3^{*}-colouring with root x of G. In the following, if we will apply this subprocedure, we shortly refer that we apply decomposition.

Subcase 2.1.2. $G\left[U^{p}, V^{p}\right]$ is a complete bipartite subgraph.
If $p \geq 3$, then $G\left[U^{p}, W^{p}\right]$ and $G\left[W^{p}, V^{p}\right]$ are complete as well contradicting that G is triangle-free.

Let $p=2$. If we also have $N_{G}^{2}(x) \cap N_{G}(u) \cap N_{G}(w)=\emptyset$ or $N_{G}^{2}(x) \cap$ $N_{G}(v) \cap N_{G}(w)=\emptyset$, then we either apply decomposition or we deduce that $G\left[U^{p}, W^{p}\right]$ or $G\left[W^{p}, V^{p}\right]$ is complete bipartite. But then there exists a path ayz or azy with $a \in W^{p}, y \in U^{p}$ and $z \in V^{p}$ implying the existence of an induced cycle C_{6} or ayz induces a triangle - a contradiction. Hence $N_{G}^{2}(x) \cap N_{G}(u) \cap N_{G}(w) \neq \emptyset$ and $N_{G}^{2}(x) \cap N_{G}(v) \cap N_{G}(w) \neq \emptyset$. Let $a \in$ $N_{G}^{2}(x) \cap N_{G}(u) \cap N_{G}(w)$ and $b \in N_{G}^{2}(x) \cap N_{G}(v) \cap N_{G}(w)$. We now consider the subgraph $G\left[U^{\prime 2}, V^{\prime 2}\right]$ with $U^{\prime 2}=N_{G}^{2}(x) \cap\left(N_{G}(u)-N_{G}(v)\right)$ and $V^{\prime 2}=$ $N_{G}^{2}(x) \cap\left(N_{G}(v)-N_{G}(u)\right)$. Recall that $N_{G}^{2}(x) \cap\left(N_{G}(u) \cup N_{G}(v)\right)=U^{\prime 2} \cup V^{\prime 2}$ and $G\left[U^{2}, V^{2}\right]$ is a subgraph of $G\left[U^{\prime 2}, V^{\prime 2}\right]$. Note that we obtain analogously that $G\left[U^{\prime 2}, V^{\prime 2}\right]$ is $2 K_{2}$-free (and bipartite). With $a \in U^{\prime 2}, b \in V^{\prime 2},\{a, b\} \subset$ $N_{G}(w)$ and G being triangle-free we deduce that $G\left[U^{\prime 2}, V^{\prime 2}\right]$ is not complete.

But now we analogously can apply decomposition. This settles the case that $d_{G}(x) \geq 3$.

Subcase 2.2. Suppose that $d_{G}(x)=2$.
By the induction hypothesis there is a 3^{*}-colouring with root y for every vertex y with $d_{G}(y) \neq 2$ and for every y of any induced subgraph H of G with $|V(H)|<|V(G)|$. Note that $N_{G}\left(u^{1}\right) \cap N_{G}\left(v^{1}\right) \cap N_{G}^{2}(x)=\emptyset$ by $(*)$.

Let $p=2$. If $d_{G}\left(u^{1}\right)=d_{G}\left(v^{1}\right)=2$, then because the vertices u^{2}, u^{1}, x, v^{1} and v^{2} are lying on a cycle (! x is no cutvertex of $G!$) we obtain adjacency of v^{2} and u^{2}. Now it is not very difficult to extend an arbitrary 3 -colouring of $G-\left\{u^{1}, x, v^{1}\right\}$ to a 3^{*}-colouring with root x of G.

Let $d_{G}\left(u^{1}\right) \geq 3$. By the induction hypothesis there is a 3^{*}-colouring with root u^{1} of G. Since $\left\{v^{1}\right\} \cup\left(N_{G}\left(v^{1}\right) \cap N_{G}^{2}(x)\right)$ induces a star we may choose the colours in such a way that (e.g.) u^{1} and v^{1} receive colour $1, x$ and all vertices of $N_{G}\left(u^{1}\right) \cap N_{G}^{2}(x)$ get colour 2 and finally all vertices of $N_{G}\left(v^{1}\right) \cap N_{G}^{2}(x)$ receive colour 3. This gives a 3^{*}-colouring with root x of G.

Let $p \geq 3$. Since $N_{G}^{i}(x)$ is independent for $1 \leq i<p$ and G being $C_{2 q}$-free for $q \geq 3$, we obtain that $N_{G}^{i}\left(u^{1}\right) \cap N_{G}^{i}\left(v^{1}\right) \cap N_{G}^{i+1}(x)=\emptyset$ for $2 \leq i<p$. Hence the set $N_{G}^{p}(x)$ is the disjoint union of the sets $N_{G}^{p-1}\left(u^{1}\right)$ and $N_{G}^{p-1}\left(v^{1}\right)$. Now the $C_{2 q+1}$-freeness of $G(1 \leq q<p)$ forces that $N_{G}^{p-1}\left(u^{1}\right)$ as well as $N_{G}^{p-1}\left(v^{1}\right)$ form independent sets. Moreover, it is not difficult to see that $N_{G}^{p}(x)$ induces a $2 K_{2}$-free bipartite graph. Likewise to the previous case $d_{G}(x) \geq 3$ we can apply decomposition or $N_{G}^{p}(x)$ induces a complete bipartite graph. In the latter case we can proceed analogously to the $p=2$ subcase.

If all vertices of $N^{\prime}:=\left\{v \in V(G) \mid \operatorname{dist}_{G}(x, v) \leq p-1\right\}$ have degree two, then again $N_{G}^{p}(x)$ induces an edge. Now it is not very difficult to extend an arbitrary 3 -colouring of $G-N^{\prime}$ to a 3^{*}-colouring with root x of G.

Now let u^{i} (with $1 \leq i<p$) be a vertex of degree at least three having a minimum distance concerning x. By the induction hypothesis there is a 3^{*} colouring with root u^{i} of G. Note that $N_{G}^{p}(x)$ is bicoloured, since $G\left[U^{p}, V^{p}\right]$ is complete bipartite. Now again it is not very difficult to recolour this 3 -colouring in such a way that we obtain a 3^{*}-colouring with root x of G.

Proof of Theorem 2. We will show that every vertex v of G being an endvertex of a longest induced path of G satisfies $d_{G}(v) \leq k+1$. Observe that this implies $\delta(G) \leq k+1$. Let $P:=v_{1} v_{2} \ldots v_{t}$ be a longest induced path of G. Suppose $d_{G}\left(v_{t}\right)=s \geq k+2$. Let $N_{G}\left(v_{t}\right)=\left\{v_{t-1}, u_{1}, \ldots, u_{s-1}\right\}$. By the choice of P every vertex u_{i} has a neighbour on P. For each i (with
$1 \leq i \leq s-1)$ let $j(i)$ be the largest integer less than or equal to $t-1$ such that $u_{i} v_{j(i)} \in E(G)$. Since G is triangle-free and contains no induced C_{4}, no two values of $j(1), \ldots, j(s-1)$ are equal. Hence there are $s-1 \geq k+1$ induced cycles of different lengths $t-j(i)+2$ for $1 \leq i \leq s-1$, a contradiction.

Proof of Theorem 5.

Case 1. Suppose there is a graph $G \in \mathcal{G}^{I}(2 q, 2 p+1)$ with $q \geq 3$ and $p \geq 2($ and $2 p+1>2 q)$, which satisfies $\delta(G) \geq 3$ and is non-bipartite.

Let $P:=v_{1} v_{2} \ldots v_{t}$ be a longest induced path of G. We deduce that $d_{G}\left(v_{t}\right)=3$ because of Theorem 2. Let $N_{G}\left(v_{t}\right)=\left\{v_{t-1}, u_{1}, u_{2}\right\}$. By the choice of P the vertices u_{1} and u_{2} each have at least one neighbour on P. For $i=1,2$ let $j(i)$ be the largest integer less than or equal to $t-1$ such that $u_{i} v_{j(i)} \in E(G)$. Hence, $\{j(1), j(2)\}=\{t-(2 p-1), t-(2 q-2)\}$ and say $u_{1} v_{t-(2 p-1)}, u_{2} v_{t-(2 q-2)} \in E(G)$. Furthermore, there exists a maximum $r \geq 1$ such that $r(2 q-2)<2 p-1$ and $u_{2} v_{t-i(2 q-2)} \in E(G)$ for $1 \leq i \leq r$. Now the cycle $v_{t} u_{1} v_{t-(2 p-1)} v_{t-2 p+2} \ldots v_{t-r(2 q-2)} u_{2} v_{t}$ is induced and has odd length. Hence, $(t-r(2 q-2))-(t-(2 p-1))+4=2 p+1$ and by rearranging $2=r(2 q-2)$ contradicting $q \geq 3$.

Case 2. Suppose there is a graph $G \in \mathcal{G}^{I}(2 p+1,2 q)$ with $q \geq 3$ and $p \geq 2$ (and $2 p+1<2 q!$), which satisfies $\delta(G) \geq 3$ and is non-bipartite.
Let again $P:=v_{1} v_{2} \ldots v_{t}$ be a longest induced path of G. In the remaining proof we will deduce several structural statements concerning this longest induced path P of G. It is important to note that these statements also hold for every longest induced path P^{\prime} of G. For convenience we call a vertex $v \in V(G)$ an i-type vertex, if there exists a longest induced path $P^{\prime}=v_{1}^{\prime} v_{2}^{\prime} \ldots v_{t}^{\prime}$ of G with $v=v_{i}^{\prime}$. Again because of Theorem 2 we obtain $d_{G}\left(v_{t}\right)=3$ or more generally

Claim 1. Every t-type vertex has the degree 3 .
Now let $N_{G}\left(v_{t}\right)=\left\{v_{t-1}, u_{1}, u_{2}\right\}$. Again for $i=1,2$ let $j(i)$ be the largest integer less than or equal to $t-1$ such that $u_{i} v_{j(i)} \in E(G)$. Analogously, we have say $j(1)=t-(2 q-2), j(2)=t-(2 p-1)$ and $u_{1} v_{t-(2 q-2)}$, $u_{2} v_{t-(2 p-1)} \in E(G)$. Furthermore, there exists a maximum $r \geq 1$ such that $r(2 p-1)<2 q-2$ and $u_{2} v_{t-i(2 p-1)} \in E(G)$ for $1 \leq i \leq r$. Now the cycle $v_{t} u_{1} v_{t-(2 q-2)} v_{t-2 q+3} \ldots v_{t-r(2 p-1)} u_{2} v_{t}$ is induced and has odd length. Hence, $(t-r(2 p-1))-(t-(2 q-2))+4=2 p+1$ and by rearranging $2 q=(r+1)(2 p-1)$.

We now examine a special case. Suppose that G contains no induced path $P_{2 q}$ containing $2 q$ vertices.

Markossian, Gasparian and Reed [9] showed that all triangle- free and even-hole-free graphs are 2-degenerate. Hence G has to contain an induced even cycle $C=c_{0} c_{1} \ldots c_{2 q-2} c_{2 q-1} c_{0}$. Furthermore, since $\delta(G) \geq 3$ each vertex of C is adjacent to at least one vertex not lying on the cycle C, e.g. $\left\{c_{0} d_{0}, c_{1} d_{1}\right\} \subset E(G)$. The $P_{2 q}$-freeness, $\left.G \in \mathcal{G}^{I}(2 p+1,2 q)\right)$ and $2 q=(r+1)$ $(2 p-1)$ forces that $N_{G}\left(d_{i}\right) \cap V(C)=\left\{c_{i}, c_{i+(2 p-1)}, c_{i+2(2 p-1)} \ldots, c_{i+r(2 p-1)}\right\}$ for $i=0,1$. But then the vertex set $\left\{c_{0}, d_{0}, c_{2 p-1}, c_{2 p}, d_{1}, c_{1}\right\}$ induces a 6 cycle enforcing that $q=3$ and $p=2$. Since G is non-bipartite G has to contain an induced 5 -cycle $C^{1}=a_{0} a_{1} a_{2} a_{3} a_{4} a_{0}$. Furthermore, since $\delta(G) \geq$ 3 each vertex of C^{1} is adjacent to at least one vertex not lying on the cycle C^{1}, e.g. $\left\{a_{0} b_{0}, a_{1} b_{3}, a_{2} b_{1}, a_{3} b_{4}, a_{4} b_{2}\right\} \subset E(G)$. The P_{6}-freeness forces that $C^{2}=b_{0} b_{1} b_{2} b_{3} b_{4} b_{0}$ induces a 5 -cycle. Now the C_{4}-freeness of G forces that all vertices of C^{1} have degree 3. Analogously, every vertex of C^{2} has degree 3. Thus, we have $N_{G}\left(V\left(C^{i}\right)\right)-V\left(C^{i}\right)=V\left(C^{3-i}\right)$ for $i=1,2$, i.e., $G \cong P^{*}$. Hence, in the following a longest induced path P contains at least $2 q$ vertices.

We now examine the $(t-1)$-type vertex v_{t-1}. Since $\delta(G) \geq 3, P$ is chordless and G is triangle-free, v_{t-1} has a neighbour $w \in V(G)-(V(P) \cup$ $\left.N_{G}\left(v_{t}\right)\right)$.

Subcase 2.1. w has no neighbour on P.
Then $P^{\prime}:=v_{1} v_{2} \ldots v_{t-1} w$ is also a longest induced path of G and the t-type vertex w has (exactly) two neighbours $w_{1}, w_{2} \in V(G)-(V(P) \cup$ $\left.N_{G}\left(v_{t}\right) \cup\{w\}\right)$. Because w_{1} corresponds to u_{2} and w_{2} to u_{1}, we deduce that say $w_{1} v_{t-(2 q-2)} \in E(G)$ and $w_{2} v_{t-(2 p-1)} \in E(G)$. Now $C^{1}:=w_{1} v_{t-(2 q-2)}$ $u_{1} v_{t} v_{t-1} w w_{1}$ forms a cycle of length six. Therefore, the only possible case is again $q=3$ and $p=2$, i.e., $G \in \mathcal{G}^{I}(5,6)$. Now the C_{3} - and C_{4}-freeness of G forces that the set $\left\{w, w_{1}, v_{t-1}, v_{t}, u_{2}, v_{t-4}, v_{t-3}\right\}$ induces a C_{7}, a contradiction.

Note that the C_{3} - and C_{4}-freeness of G always forces that every 7 -cycle is an induced one.

Subcase 2.2. w has a neighbour on P.
Then $w v_{t-(2 q-1)} \in E(G)$ or $w v_{t-2 p} \in E(G)$. Now $C^{1}:=w v_{t-(2 q-1)} v_{t-2 q-2}$ $u_{1} v_{t} v_{t-1} w$ or $C^{2}:=w v_{t-2 p} v_{t-(2 p-1)} u_{2} v_{t} v_{t-1} w$ induces a cycle of length six, i.e. $G \in \mathcal{G}^{I}(5,6)$. Therefore, we have either $w v_{t-5} \in E(G)$ or $w v_{t-4} \in E(G)$.

Subcase 2.2.1. $w v_{t-5} \in E(G)$.
Since G is C_{4}-free, u_{2} is not adjacent to w and we deduce a contradiction by considering the set $\left\{w, v_{t-5}, v_{t-4}, v_{t-3}, u_{2}, v_{t}, v_{t-1}\right\}$, which induces a C_{7}.

Subcase 2.2.2. $w v_{t-4} \in E(G)$.
Claim 2. Every $(t-1)$-type vertex has the degree 3, e.g. $d_{G}\left(v_{t-1}\right)=3$.
Assume $d_{G}\left(v_{t-1}\right)>3$, then there exists a vertex $\bar{w} \in\left(N_{G}\left(v_{t-1}\right)-\right.$ $(\{w\} \cup V(P)))$. Likewise, we deduce that \bar{w} is also adjacent to v_{t-4}. But then $\left\{v_{t-1}, w, \bar{w}, v_{t-4}\right\}$ induces a $C_{4}-$ a contradiction. Thus, we have $d_{G}\left(v_{t-1}\right)=3$.

Recall that u_{1} is adjacent to v_{t-4} and u_{2} is adjacent to v_{t-3}.
Claim 3. Every $(t-2)$-type vertex has the degree 3 , e.g. $d_{G}\left(v_{t-2}\right)=3$.
Let x be a neighbour of v_{t-2} not lying on P. If x is adjacent to v_{t-5} or v_{t-6}, then $x v_{t-5} v_{t-4} u_{1} v_{t} v_{t-1} v_{t-2} x$ or $x v_{t-6} v_{t-5} v_{t-4} w v_{t-1} v_{t-2} x$ is a cycle of length 7 , a contradiction. Hence, x has no other neighbours on P. The $C_{4}{ }^{-}$ freeness of G forces that $x w \notin E(G)$. Furthermore, we have $x u_{2} \notin E(G)$, since otherwise $x u_{2} v_{t} u_{1} v_{t-4} v_{t-3} v_{t-2} x$ is a cycle of length 7 , a contradiction. Since $d_{G}(x) \geq \delta(G)=3, x$ has a neighbour $y \notin V(P) \cup\left\{w, u_{1}, u_{2}\right\}$. If y is adjacent to v_{t-4} or v_{t-5}, then $y v_{t-4} u_{1} v_{t} v_{t-1} v_{t-2} x y$ or $y v_{t-5} v_{t-4} w v_{t-1} v_{t-2} x y$ is a cycle of length 7 , a contradiction. Hence, $P^{\prime \prime \prime}=v_{1} \ldots v_{t-2} x y$ is a longest induced path implying with Claim 1 and Claim 2 that $d_{G}(x)=d_{G}(y)=3$. Observe that x is a $(t-1)$-type and y a t-type vertex.

Claim 4. x is adjacent to u_{1}.
Suppose to the contrary that $x u_{1} \notin E(G)$. Analogously to P, we deduce for $P^{\prime \prime \prime}$ that the $(t-1)$-type vertex x is adjacent to a vertex $y^{*} \notin$ $V(P) \cup\left\{y, w, u_{1}, u_{2}\right\}$. Because y^{*} corresponds to w we also deduce that y^{*} is adjacent to v_{t-4}. But then $y^{*} v_{t-4} u_{1} v_{t} v_{t-1} v_{t-2} x y^{*}$ is a cycle of length 7 , a contradiction. Thus we have $x u_{1} \in E(G)$.

Now suppose that $d_{G}\left(v_{t-2}\right)>3$, i.e. there exists a vertex $x^{*} \in N_{G}\left(v_{t-2}\right)$ $-\left\{v_{t-3}, v_{t-1}, x\right\}$. Analogously to Claim 4 we obtain $x^{*} u_{1} \in E(G)$, a contraction since G is C_{4}-free. Therefore, we have $d_{G}\left(v_{t-2}\right)=3$.

For convenience we introduce the notation z-type vertex with $z \in$ $\left\{w, u_{1}, u_{2}, x, y\right\}$. A vertex v of G is a z-type vertex, if there exists a longest induced path $P^{\prime \prime \prime}$, such that the role of v in $P^{\prime \prime \prime}$ corresponds to the role of z for the longest induced path $P=v_{1} v_{2} \ldots v_{t}$.

Claim 5. w is adjacent to y.
Because the $(t-1)$-type vertex x of $P^{\prime \prime \prime}=v_{1} v_{2} \ldots v_{t-2} x y$ is adjacent to u_{1}, we obtain that u_{1} is a w-type vertex. Similarly, we deduce that v_{t-1} is a x-type vertex. Recall (Claim 4) that u_{1} is adjacent x and the $(t-4)$-type vertex v_{t-4}. Since w is adjacent to the x-type vertex v_{t-1} of $P^{\prime \prime \prime}$ and the $(t-4)$-type vertex v_{t-4} of $P^{\prime \prime \prime}$ the C_{4}-freeness of G forces that w is the u_{1}-type vertex of $P^{\prime \prime \prime}$. Because y is the t-type vertex of $P^{\prime \prime \prime}$ this implies Claim 5 .

Claim 6. y is adjacent to u_{2} and therefore $N_{G}(y)=\left\{x, w, u_{2}\right\}$.
Assume to the contrary that y is not adjacent to u_{2}. Hence there exists x^{\prime} with $\left\{x^{\prime}\right\}=N_{G}(y)-\{x, w\}$. Note that $x^{\prime} \notin V(P) \cup\left\{u_{1}, u_{2}, x, w\right\}$ and since $P^{\prime \prime \prime}=v_{1} \ldots v_{t-2} x y$ is a longest induced path and w is adjacent to v_{t-4}, we obtain that x^{\prime} is adjacent to v_{t-3}. But then $x^{\prime} v_{t-3} u_{2} v_{t} v_{t-1} w y x^{\prime}$ is a cycle of length 7 , a contradiction. Thus we have $N_{G}(y)=\left\{x, w, u_{2}\right\}$. Since u_{2} is a t-type vertex of the longest induced path $P^{\prime \prime}=v_{1} \ldots v_{t-4} u_{1} x y u_{2}$ we obtain the following Claim 7 by Claim 1 .

Claim 7. $d_{G}\left(u_{2}\right)=3$.
Summarizing all claims we deduce $G^{\prime}:=G\left[\left\{u_{2}, v_{t}, v_{t-1}, v_{t-2}, v_{t-3}, v_{t-4}\right.\right.$, $\left.\left.u_{1}, w, x, y\right\}\right] \cong P^{*}$ and all six non-neighbours of v_{t-4} have degree three. If $G \cong P^{*}$ we are done.

Assume $G \not \not P^{*}$. Note that $C S:=\left\{v_{t-4}, v_{t-3}, u_{1}, w\right\}$ is a cutset of G. If v_{t-4} and one of its three neighbours v_{t-3}, u_{1} or w is already a (complete) cutset, then we are done. Hence w.l.o.g. suppose G_{2} is a component of $G-C S$ different to the six cycle $G_{1}:=G\left[\left\{u_{2}, v_{t}, v_{t-1}, v_{t-2}, x, y\right\}\right]$ and say $G^{\prime \prime}:=\left\{u_{1}, w\right\} \cup V\left(G_{2}\right)$ is connected. The C_{4}-freeness forces that a shortest path connecting u_{1} and w in $G^{\prime \prime}$ contains at least 2 internal vertices and in $G^{\prime \prime \prime}:=\left\{u_{1}, w\right\} \cup V\left(G_{1}\right)$ there exists a u_{1} and w connecting induced path with 3 internal vertices. Then one can construct easily an induced cycle of length at least 7 , a contradiction. This settles the proof of this theorem.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory and Applications (Macmillan, London and Elsevier, New York, 1976).
[2] A. Brandstädt, Van Bang Le and J.P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications (SIAM, Philadelphia, PA, 1999).
[3] S. Brandt, Triangle-free graphs without forbidden subgraphs, Electronic Notes in Discrete Math. Vol. 3.
[4] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38.
[5] P. Erdős, Some of my favourite unsolved problems, in: A. Baker, B. Bollobás and A. Hajnal, eds. A tribute to Paul Erdős (Cambridge Univ. Press, Cambridge, 1990) 467.
[6] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastos. Mat. XIX (1987) 413-441.
[7] A. Gyárfás, Graphs with k odd cycle lengths, Discrete Math. 103 (1992) 41-48.
[8] T.R. Jensen, B.Toft, Graph Colouring problems (Wiley-Interscience Publications, New York, 1995).
[9] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-Perfect Graphs, J. Combin. Theory (B) 67 (1996) 1-11.
[10] P. Mihók and I. Schiermeyer, Chromatic number of classes of graphs with prescribed cycle lengths, submitted.
[11] I. Rusu, Berge graphs with chordless cycles of bounded length, J. Graph Theory 32 (1999) 73-79.
[12] A.D. Scott, Induced Cycles and Chromatic Number, J. Combin. Theory (B) 76 (1999) 70-75.
[13] D.P. Sumner, Subtrees of a Graph and the Chromatic Number, in: G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Lick, eds, The Theory and Applications of Graphs, Proc. 4th International Graph Theory Conference (Kalamazoo, Michigan, 1980) 557-576, (Wiley, New York, 1981).

