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Abstract

In this paper we study the chromatic number of graphs with two
prescribed induced cycle lengths. It is due to Sumner that triangle-
free and P5-free or triangle-free, P6-free and C6-free graphs are 3-
colourable. A canonical extension of these graph classes is GI(4, 5), the
class of all graphs whose induced cycle lengths are 4 or 5. Our main
result states that all graphs of GI(4, 5) are 3-colourable. Moreover, we
present polynomial time algorithms to 3-colour all triangle-free graphs
G of this kind, i.e., we have polynomial time algorithms to 3-colour
every G ∈ GI(n1, n2) with n1, n2 ≥ 4 (see Table 1). Furthermore, we
consider the related problem of finding a χ-binding function for the
class GI(n1, n2). Here we obtain the surprising result that there exists
no linear χ-binding function for GI(3, 4).
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1. Introduction and Results

We consider finite undirected simple graphs. For terminology and notation
not defined here we refer to [1]. As introduced by Gyárfás [6], a family G
of graphs is called χ-bound with χ-binding function f, if χ(G′) ≤ f(ω(G′))
holds whenever G′ is an induced subgraph of G ∈ G.

Erdös [4] showed that for each pair g, k with g, k ≥ 4 there exist graphs
with girth g and chromatic number k. Hence, triangle-free graphs can have
arbitrary large chromatic number. Sumner [13] showed that triangle-free
and P5-free or triangle-free, P6-free and C6-free graphs are 3-colourable.

For t ≥ 5 define Gt as the class of all triangle-free graphs which are
Pt-free and Ci-free for 6 ≤ i ≤ t. For k ≥ 1 and 3 ≤ n1 < n2 < · · · < nk let
GI(n1, n2, . . . , nk) be the class of all graphs whose induced cycle lengths are
equal to one of n1, n2, . . . , nk. Thus

G5 ⊂ G6 ⊂ G7 ⊂ · · · ⊂ GI(4, 5)

and all graphs G of G5 and G6 are 3-colourable by Sumners result. Note that
all graphs of Gt have diameter at most t− 2 whereas graphs of GI(4, 5) can
have arbitrary diameter.

Our research was motivated by the question whether 3-colourability still
holds for a superclass Gt (of G5 and G6) for some t ≥ 7. Theorem 1 states that
all graphs of GI(4, 5) are 3-colourable. Hence, the answer is affirmative for
each t ≥ 7. Moreover, we can guarantee a 3-colouring with some additional
properties. For a fixed integer p ≥ 2 we call a graph G ∈ GI(4, 2p + 1)
3∗-colourable with root v, if there is a 3-colouring of G such that G[Np

G(v)] is
coloured with two colours, where Np

G(v) is the set of vertices having distance
p from v. Observe that this definition implies the following useful property:
If G is 3∗-colourable with root v, then we can choose a 3-colouring such
that G[N i

G(v)] is coloured monochromatic for every 1 ≤ i < p and G[Np
G(v)]

is coloured with two colours. Furthermore, if this property holds for every
vertex of G ∈ GI(4, 2p + 1), then we call G 3∗-colourable. This definition is
motivated by the following observation.

If G1, G2 ∈ GI(4, 2p + 1) and vi ∈ Gi for i = 1, 2, then the new graph
G∗ with vertex set V (G∗) = V (G1− v1)∪V (G2− v2) and edge set E(G∗) =
E(G1 − v1) ∪ E(G2 − v2) ∪ {u1u2|ui ∈ NGi(vi) for i = 1, 2} is likewise a
member of GI(4, 2p + 1). The invariance of GI(4, 2p + 1) concerning this
graph operation reasons the equivalence of 3∗- and 3-colourability for the
class GI(4, 2p + 1).
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Theorem 1. Every graph of GI(4, 2p + 1) with p ≥ 2 is 3∗-colourable.

The proof of Theorem 1 is based on decomposition and provides a polynomial
time algorithm to 3∗-colour a given graph G ∈ GI(4, 2p + 1). Note that the
class GI(4, 5) is a canonical extension of GI(4), which are the well-known
chordal bipartite graphs (e.g. see [2]). Very recently Brandt [3] examined the
maximal (with respect to edge addition) triangle-free members of the class
GI(4, 5) with emphasis on graph homomorphisms. Brandt also observed that
the class GI(4, 5) is a natural extension of GI(4) — the chordal bipartite
graphs — and he introduced for members of GI(4, 5) the terminology of
chordal triangle-free graphs.

Motivated by the first theorem we consider next the classes GI(2q, 2p+1)
and GI(2p′ + 1, 2q′) for q, q′ ≥ 3 and p, p′ ≥ 2. But first we will examine the
larger class GI(n1, n2, . . . , nk) with n1 ≥ 5. A graph G is r-degenerate, if
there exists an ordering (v1, . . . , vn) of V (G) such that dG[{vi,...,vn}](vi) ≤ r
for all 1 ≤ i ≤ n.

Theorem 2. Every graph of GI(n1, n2, . . . , nk) with k ≥ 1 and n1 ≥ 5 is
(k + 1)-degenerate. Especially, every vertex v of G being an endvertex of a
longest induced path of G satisfies dG(v) ≤ k + 1.

Corollary 3. Every graph of GI(n1, n2, . . . , nk) with k ≥ 1 and n1 ≥ 5 is
(k + 2)-colourable.

The last result reveals an interesting relation to the colouring properties
of graphs of the class G(n1, n2, . . . , nk), the class of all graphs whose (not
necessarily induced) cycle lengths are equal to one of n1, n2, . . . , nk. Now
let G be a graph with r different odd and s different even cycle lengths
(which need not to be induced). In [10] Mihók and Schiermeyer presented
a polynomial time colouring algorithm, called MAXBIP, which recursively
constructs maximal bipartite subgraphs. Based on MAXBIP they proved
the following theorem, answering thereby a question of B. Bollobás and
P. Erdős [5].

Theorem 4 (Mihók and Schiermeyer [10], 1997). χ(G) ≤ min{2r + 2,
2s + 3}.

With k = r + s this also implies χ(G) ≤ k + 2. The question of B. Bollobás
and P. Erdős [5] only concerned (2r + 2)-colourability of graphs with r dif-
ferent odd cycle lengths (which need not to be induced). This question was
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first answered affirmative by A. Gyárfás [7]. Additional informations and a
related conjecture can be found in the excellent book [8] of T. Jensen and
B. Toft on graph colouring problems.

Obviously, Corollary 3 is best possible for k = 1. But for k = 2 we are
able to improve Corollary 3. For the next theorem we need to recall the
definition of the famous Petersen graph P ∗. This 3-regular, non-bipartite
graph P ∗ of order 10 is a member of the class GI(5, 6). The Petersen
graph P ∗ consists of two disjoint induced 5-cycles C1 = a0a1a2a3a4a0 and
C2 = b0b1b2b3b4b0 and the additional edges a0b0, a1b3, a2b1, a3b4 and a4b2.
Obviously P ∗ is 3-colourable.

Theorem 5. Every graph G of GI(2q, 2p + 1) or GI(2p′ + 1, 2q′) with
q, q′ ≥ 3 and p, p′ ≥ 2 fulfills at least one of the following properties:

1. G is bipartite;
2. G satisfies δ(G) ≤ 2;
3. G ∈ GI(5, 6) and one of the following properties holds:

(a) G ∼= P ∗;
(b) G contains a clique cutset, i.e., K1 or K2 clique cutset.

Every graph G of GI(2q, 2p+1) or GI(2p′+1, 2q′) with q, q′ ≥ 3 and p, p′ ≥ 2
not isomorphic to P ∗ fulfills at least one of the three properties because
of Theorem 5. Testing whether G is bipartite, has minimal degree two
or contains a complete cutset of size at most two can be done very effi-
ciently. Moreover, if G ∈ GI(5, 6) is non-bipartite, δ(G) ≥ 3 and contains
no complete cutset, then G ∼= P ∗, which obviously is 3-colourable. Hence,
Theorem 5 provides a polynomial time algorithm to 3-colour a given graph
G ∈ GI(2q, 2p + 1) or G ∈ GI(2p′ + 1, 2q′) with q, q′ ≥ 3 and p, p′ ≥ 2. This
algorithm (recursively) makes use of the fact that the graph (in question) is
bipartite, has a vertex of degree at most two, is isomorphic to the Petersen
graph or the graph can be decomposed into two smaller graphs according to
a complete cutset of size at most two.

Corollary 6. Every graph G of GI(2q, 2p + 1) or GI(2p′ + 1, 2q′) with
q, q′ ≥ 3 and p, p′ ≥ 2 is 3-colourable.

Now we consider the related problem of finding a (best possible) χ-binding
function f∗ for GI(n1, n2) and for completeness also for its subclasses GI(n1).
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Recall that a graph is perfect if for each induced subgraph H of G the chro-
matic number χ(H) equals the corresponding clique number ω(H). Further-
more the lexicographic product G1[G2] of two graphs G1 and G2 contains the
vertex set V (G1[G2]) = V (G1)×V (G2) and two vertices (a, b) and (c, d) are
adjacent in G1[G2] if a is adjacent to c in G1 or a = c and b is adjacent to
d in G2.

For convenience we drop the condition that n1 is always smaller than
n2 in the definition of GI(n1, n2).

(I) n1, n2 are even :
For even n1 and n2 all graphs of GI(n1) and GI(n1, n2) are bipartite and
thus perfect with f∗(ω) = ω ≤ 2.

(II) n1 is even, n2 is odd : (A) n2 ≥ 5 :
By our results (Theorem 1, Corollary 6) every graph of GI(n2) and GI(n1, n2)
is 3-colourable, i.e., with ω ≤ 2 we have f∗(ω) = ω + 1 ≤ 3.

(II) n1 is even, n2 is odd : (B1) n2 = 3 and n1 ≥ 6 :
Recently, Rusu [11] proved that all members of a superclass of GI(3, 2q) are
perfect for any q ≥ 3. Hence, we also have f(ω) = ω. A well-known subclass
of GI(3, 2q) is GI(3) containing the chordal graphs.

(II) n1 is even, n2 is odd : (B2) n2 = 3 and n1 = 4 :
In 1987 Gyárfás [6] conjectured (motivated by the Strong Perfect Graph
Conjecture) that there exists a χ-binding function for GI(3, 4). But this
Conjecture is still open. In [6] Gyárfás also suggested to examine whether
there exists a linear χ-binding function for hereditary classes of graphs. For
GI(3, 4) we have constructed the following sequence of graphs (Hi). Starting
with H1 = C̄7, the complement of the 7-cycle, we define Hi+1 = C̄7[Hi],
the lexicographic product of the graphs C̄7 and Hi. Note that ω(Hi+1) =
3ω(Hi). Furthermore, in any colouring of Hi+1 we need for each copy of
Hi at least χ(Hi) different colours. With α(C̄7) = 2 we then observe that
every colour of a colouring of Hi+1 appears in at most two different copies
of Hi. Hence, Hi has the order n(Hi) = 7i, the independence number
α(Hi) = 2i and the clique number ω(Hi) = 3i. Therefore, its chromatic
number χ(Hi) is at least (7/2)i. Thus, the χ-binding function f∗ for GI(3, 4)
satisfies f∗(ω) ≥ (7/6)iω for every integer i. Hence, we obtain the following
surprising result:

Theorem 7. There exists no linear χ-binding function for GI(3, 4).
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It is noteworthy to mention that GI(3, 4) contains all weakly triangulated
graphs. Recently, Scott [12] achieved some related results.

(III) n1, n2 are odd : (A1) n1, n2 ≥ 5 :
Markossian, Gasparian and Reed [9] showed that all triangle-free and even-
hole-free graphs are 2-degenerate and thus are 3-colourable. Hence, f∗(ω) =
ω + 1 ≤ 3 is a χ-binding function for GI(n1) and GI(n1, n2).

(III) n1, n2 are odd : (A2) n1 = 3 :
It is an open problem, whether there exists a linear χ-binding function for
GI(3, n2). The graph-sequence Gr = Cn2 [Kr], the lexicographic product
of the odd cycle Cn2 and the complete graph Kr, reveals that we have
f∗(ω) ≥ ((n2 + 1)/(n2 − 1))ω for every χ-binding function. We expect that

f∗(ω) = ((n2 + 1)/(n2 − 1))ω.

Table 1. χ-binding function f∗ for GI(n1, n2).

→
n1, n2 3 4 odd ≥ 5 even ≥ 6
↓

6 ∃ linear f∗

3 f∗(ω) = ω Theorem 7 f∗(ω) ≥ ((n2 + 1)/(n2 − 1))ω f∗(ω) = ω
chordal Conj.[6]: ∃f∗ Conj.: ′′ = ′′ Rusu [11]

f∗(ω) = ω ≤ 2
4 chordal f∗(ω) = ω + 1 ≤ 3 f∗(ω) = ω ≤ 2

bipartite Theorem 1 ⊂ bipartite

odd f∗(ω) = ω + 1 ≤ 3 f∗(ω) = ω + 1 ≤ 3
≥ 5 Markossian,... [9] Corollary 6

even f∗(ω) = ω ≤ 2
≥ 6 ⊂ bipartite

2. Proofs

The following well-known easy observation provides a very useful property. If
a graph G contains a pair u, v of nonadjacent vertices with NG(u) ⊆ NG(v),
then any proper k-colouring of G − u can easily be extended to a proper
k-colouring of G.
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Therefore we only have to consider those graphs G having the property (∗):
(∗) If uv 6∈ E(G), then there exist vertices (private neighbours) pu ∈

(NG(u)−NG(v)) and pv ∈ (NG(v)−NG(u)).
The next lemma provides a useful property of triangle-free and C6-free
graphs, which will be used in the proof of Theorem 1. This class of graphs
forms a superclass of all classes GI(4, 2p + 1) with p ≥ 2.

Lemma 8. Let G be a triangle-free and C6-free graph satisfying property
(∗). Then for every vertex x of degree dG(x) = k ≥ 3 with neighbours
x1, x2, . . . , xk there exists a pair xi, xj of neighbours such that NG(xi) ∩
NG(xj) ∩N2

G(x) = ∅.

Proof. Let G be a triangle-free and C6-free graph satisfying property
(∗). Further suppose to the contrary that there exists a vertex x of degree
dG(x) = k ≥ 3 with neighbours x1, x2, . . . , xk such that NG(xi) ∩ NG(xj)
∩N2

G(x) 6= ∅ for all pairs i, j with 1 ≤ i < j ≤ k. Choose a vertex v ∈
N2

G(x) such that |NG(x) ∩ NG(v)| = p is maximum. By (∗) we know that
p ≤ k − 1. We may assume that NG(x) ∩ NG(v) = {x1, . . . , xp}. By the
assumption there exists a vertex w ∈ N2

G(x) with w likewise adjacent to a
vertex xi ∈ {x1, . . . , xp} and to a vertex xj ∈ {xp+1, . . . , xk}. Hence there is
a vertex w ∈ N2

G(x)− {v} with NG(v) ∩NG(w) ∩NG(x) 6= ∅ and NG(w) ∩
{xp+1, . . . , xk} 6= ∅. Choose a vertex w with NG(w) ∩ {xp+1, . . . , xk} 6= ∅
such that |NG(v) ∩NG(w) ∩NG(x)| = q is maximum. Hence 1 ≤ q ≤ p− 1
by the choice of v and w. We may assume that NG(v) ∩NG(w) ∩NG(x) =
{x1, . . . , xq} and that xp+1 ∈ NG(w). By the hypothesis there exists a vertex
u ∈ N2

G(x) − {v, w} such that xp, xp+1 ∈ NG(u). By the choice of p and
q there is a vertex xs ∈ {x1, . . . , xq} such that xs 6∈ NG(u). Now G′ :=
G[{xs, xp, xp+1, v, w, u}] ∼= C6 or G′ contains a triangle, a contradiction.

Proof of Theorem 1. We will prove the theorem by induction. We
may assume that G is a connected graph and fulfills property (∗). By the
induction hypothesis there is a 3∗-colouring with root y for every vertex y
of any induced subgraph H of G with |V (H)| < |V (G)|. Now let x be an
arbitrary vertex of G . If distG(x, y) < p for all vertices y ∈ V (G − x),
then we can easily 3∗-colour G with root x. Hence we may assume that
distG(x, y) ≥ p for at least one vertex y ∈ V (G− x).

Case 1. Assume that dG(x) = 1 and let xz ∈ E(G).
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Then by induction hypothesis there is a 3∗-colouring with root z of G − x,
which can be easily extended to a 3∗-colouring with root x of G.

Case 2. Assume that dG(x) ≥ 2.
Also, if x is a cutvertex of G , then we can easily 3∗-colour G with root x.
Hence we may assume that x is not a cutvertex of G . Note that x and every
neighbour of x has a degree of at least two.

We now consider N i
G(x) for 1 ≤ i < p. If there is a vertex y ∈ N i

G(x)
such that

NG(y) ∩N i+1
G (x) ⊆




⋃

z∈N i
G(x)−{y}

NG(z)


 ∩N i+1

G (x),

then the levels Nh
G(x) with 1 ≤ h < p and h 6= i are the same in G and G−y.

Thus, we can reduce G to G−y and a 3∗-colouring with root x of G−y can be
extended to a 3∗-colouring with root x of G since G[N i−1

G (x)] is independent
and monochromatic, G[N i

G(x)−{y}] is independent and monochromatic and
G[N i+1

G (x)] is 2-coloured. Consequently, we can assume for the remaining
part of the proof that

Claim 1. Every vertex y ∈ N i
G(x) has a ’private neighbour’ in N i+1

G (x) for
1 ≤ i < p.

Subcase 2.1. Assume that dG(x) ≥ 3.
Let u1, v1 and w1 be three vertices of N1

G(x). Then by Claim 1 there are
three ’paths of private neighbours’ u1u2 . . . up, v1v2 . . . vp and w1w2 . . . wp.
Set u = up−1, v = vp−1 and w = wp−1. Let Up, V p, W p be the set of private
neighbours of u, v and w, respectively.

If p ≥ 3, then Np
G(x) ∩NG(y) ∩NG(z) = ∅ for all pairs y, z ∈ {u, v, w}.

Since otherwise there would be an induced C2p – a contradiction. If
p = 2, then we can choose u and v by Lemma 8 such that N2

G(x) ∩ NG(u)
∩ NG(v) = ∅.

Now observe that G[Up, V p], G[Up,W p] and G[W p, V p] are 2K2-free
(and bipartite), since otherwise there would be an induced C6.

A useful property of every bipartite and 2K2-free graph H is the existence
of a labelling of the vertices of each partition set X = {x1, . . . , xk}, such that
NH(xi) ⊂ NH(xj) if i ≤ j.

Then we easily deduce that there are sets Up
(c), Up

(e), V p
(c) and V p

(e) such
that Up = Up

(c) ∪ Up
(e), V p = V p

(c) ∪ V p
(e), G[Up

(e) ∪ V p
(e)] is edgeless and
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G[Up
(c) ∪ V p

(c)] is complete bipartite. Note that the partition of Up and V p

into Up
(c), Up

(e), V p
(c) and V p

(e) is not necessarily unique. But, if G[Up, V p] is
not a complete bipartite graph, it is always possible to choose a partition of
Up and V p into Up

(c), Up
(e), V p

(c) and V p
(e) such that Up

(e) 6= ∅ and Up
(e) 6= ∅ !

Subcase 2.1.1. G[Up, V p] is not a complete bipartite subgraph.
Then there are two non-adjacent vertices y ∈ Up and z ∈ V p. Now we
can choose a partition of Up and V p into Up

(c), Up
(e), V p

(c) and V p
(e) such that

y ∈ Up
(e) and z ∈ V p

(e). Set S = {v ∈ V (G)|distG(x, v) ≤ p− 1} ∪ Up
(c) ∪ V p

(c).

Subcase 2.1.1.1. For every vertex y ∈ Up
(e) and z ∈ V p

(e) there exists a
path connecting y and z in G− S.
Now we choose y ∈ Up

(e) and z ∈ V p
(e) such that distG−S(y, z) =

min{distG−S(y′, z′) |y′ ∈ Up
(e) and z′ ∈ V p

(e)}. Then obviously there would be
an induced cycle of length at least (2p+1)+1 > 2p+1 > 4, a contradiction.

Subcase 2.1.1.2. There exist vertices y ∈ Up
(e) and z ∈ V p

(e) such that
there is no path connecting y and z in G− S.
Now let H1 be a component of G − S and H2 be the remaining part of
G − S. Set Gi = G[V (Hi) ∪ S] for i = 1, 2. Then there is a 3∗-colouring
with root x for each Gi with i = 1, 2. We can choose these 3∗-colourings in
such a way that the vertices of S always receive the same colours. Hence
we obtain a 3∗-colouring with root x of G. In the following, if we will apply
this subprocedure, we shortly refer that we apply decomposition.

Subcase 2.1.2. G[Up, V p] is a complete bipartite subgraph.
If p ≥ 3, then G[Up, W p] and G[W p, V p] are complete as well contradicting
that G is triangle-free.

Let p = 2. If we also have N2
G(x) ∩ NG(u) ∩ NG(w) = ∅ or N2

G(x) ∩
NG(v)∩NG(w) = ∅, then we either apply decomposition or we deduce that
G[Up,W p] or G[W p, V p] is complete bipartite. But then there exists a path
ayz or azy with a ∈ W p, y ∈ Up and z ∈ V p implying the existence of
an induced cycle C6 or ayz induces a triangle – a contradiction. Hence
N2

G(x) ∩ NG(u) ∩ NG(w) 6= ∅ and N2
G(x) ∩ NG(v) ∩ NG(w) 6= ∅. Let a ∈

N2
G(x)∩NG(u)∩NG(w) and b ∈ N2

G(x)∩NG(v)∩NG(w). We now consider
the subgraph G[U ′2, V ′2] with U ′2 = N2

G(x) ∩ (NG(u) − NG(v)) and V ′2 =
N2

G(x)∩(NG(v)−NG(u)). Recall that N2
G(x)∩(NG(u)∪NG(v)) = U ′2∪V ′2

and G[U2, V 2] is a subgraph of G[U ′2, V ′2]. Note that we obtain analogously
that G[U ′2, V ′2] is 2K2-free (and bipartite). With a ∈ U ′2, b ∈ V ′2, {a, b} ⊂
NG(w) and G being triangle-free we deduce that G[U ′2, V ′2] is not complete.
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But now we analogously can apply decomposition. This settles the case that
dG(x) ≥ 3.

Subcase 2.2. Suppose that dG(x) = 2.
By the induction hypothesis there is a 3∗-colouring with root y for every
vertex y with dG(y) 6= 2 and for every y of any induced subgraph H of G
with |V (H)| < |V (G)|. Note that NG(u1) ∩NG(v1) ∩N2

G(x) = ∅ by (∗).
Let p = 2. If dG(u1) = dG(v1) = 2, then because the vertices u2, u1, x, v1

and v2 are lying on a cycle (! x is no cutvertex of G !) we obtain adjacency
of v2 and u2. Now it is not very difficult to extend an arbitrary 3-colouring
of G− {u1, x, v1} to a 3∗-colouring with root x of G.

Let dG(u1) ≥ 3. By the induction hypothesis there is a 3∗-colouring
with root u1 of G. Since {v1} ∪ (NG(v1) ∩ N2

G(x)) induces a star we may
choose the colours in such a way that (e.g.) u1 and v1 receive colour 1, x
and all vertices of NG(u1) ∩ N2

G(x) get colour 2 and finally all vertices of
NG(v1)∩N2

G(x) receive colour 3. This gives a 3∗-colouring with root x of G.
Let p ≥ 3. Since N i

G(x) is independent for 1 ≤ i < p and G being
C2q-free for q ≥ 3, we obtain that N i

G(u1) ∩ N i
G(v1) ∩ N i+1

G (x) = ∅ for
2 ≤ i < p. Hence the set Np

G(x) is the disjoint union of the sets Np−1
G (u1) and

Np−1
G (v1). Now the C2q+1-freeness of G (1 ≤ q < p) forces that Np−1

G (u1)
as well as Np−1

G (v1) form independent sets. Moreover, it is not difficult to
see that Np

G(x) induces a 2K2-free bipartite graph. Likewise to the previous
case dG(x) ≥ 3 we can apply decomposition or Np

G(x) induces a complete
bipartite graph. In the latter case we can proceed analogously to the p = 2
subcase.

If all vertices of N ′ := {v ∈ V (G)|distG(x, v) ≤ p− 1} have degree two,
then again Np

G(x) induces an edge. Now it is not very difficult to extend an
arbitrary 3-colouring of G−N ′ to a 3∗-colouring with root x of G.

Now let ui (with 1 ≤ i < p) be a vertex of degree at least three having a
minimum distance concerning x. By the induction hypothesis there is a 3∗-
colouring with root ui of G. Note that Np

G(x) is bicoloured, since G[Up, V p]
is complete bipartite. Now again it is not very difficult to recolour this
3-colouring in such a way that we obtain a 3∗-colouring with root x of G.

Proof of Theorem 2. We will show that every vertex v of G being an
endvertex of a longest induced path of G satisfies dG(v) ≤ k + 1. Observe
that this implies δ(G) ≤ k + 1. Let P := v1v2 . . . vt be a longest induced
path of G. Suppose dG(vt) = s ≥ k + 2. Let NG(vt) = {vt−1, u1, . . . , us−1}.
By the choice of P every vertex ui has a neighbour on P . For each i (with
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1 ≤ i ≤ s−1) let j(i) be the largest integer less than or equal to t−1 such that
uivj(i) ∈ E(G). Since G is triangle-free and contains no induced C4, no two
values of j(1), . . . , j(s− 1) are equal. Hence there are s− 1 ≥ k + 1 induced
cycles of different lengths t− j(i) + 2 for 1 ≤ i ≤ s− 1, a contradiction.

Proof of Theorem 5.

Case 1. Suppose there is a graph G ∈ GI(2q, 2p + 1) with q ≥ 3 and
p ≥ 2 (and 2p + 1 > 2q), which satisfies δ(G) ≥ 3 and is non-bipartite.

Let P := v1v2 . . . vt be a longest induced path of G. We deduce that
dG(vt) = 3 because of Theorem 2. Let NG(vt) = {vt−1, u1, u2}. By the
choice of P the vertices u1 and u2 each have at least one neighbour on P .
For i = 1, 2 let j(i) be the largest integer less than or equal to t − 1 such
that uivj(i) ∈ E(G). Hence, {j(1), j(2)} = {t − (2p − 1), t − (2q − 2)} and
say u1vt−(2p−1), u2vt−(2q−2) ∈ E(G). Furthermore, there exists a maximum
r ≥ 1 such that r(2q − 2) < 2p − 1 and u2vt−i(2q−2) ∈ E(G) for 1 ≤ i ≤ r.
Now the cycle vtu1vt−(2p−1)vt−2p+2 . . . vt−r(2q−2)u2vt is induced and has odd
length. Hence, (t−r(2q−2))− (t− (2p−1))+4 = 2p+1 and by rearranging
2 = r(2q − 2) contradicting q ≥ 3.

Case 2. Suppose there is a graph G ∈ GI(2p + 1, 2q) with q ≥ 3 and
p ≥ 2 (and 2p + 1 < 2q !), which satisfies δ(G) ≥ 3 and is non-bipartite.
Let again P := v1v2 . . . vt be a longest induced path of G. In the remaining
proof we will deduce several structural statements concerning this longest
induced path P of G. It is important to note that these statements also
hold for every longest induced path P ′ of G. For convenience we call a
vertex v ∈ V (G) an i-type vertex, if there exists a longest induced path
P ′ = v′1v′2...v′t of G with v = v′i. Again because of Theorem 2 we obtain
dG(vt) = 3 or more generally

Claim 1. Every t-type vertex has the degree 3.
Now let NG(vt) = {vt−1, u1, u2}. Again for i = 1, 2 let j(i) be the largest in-
teger less than or equal to t − 1 such that uivj(i) ∈ E(G). Analogously,
we have say j(1) = t − (2q − 2), j(2) = t − (2p − 1) and u1vt−(2q−2),
u2vt−(2p−1) ∈ E(G). Furthermore, there exists a maximum r ≥ 1 such
that r(2p − 1) < 2q − 2 and u2vt−i(2p−1) ∈ E(G) for 1 ≤ i ≤ r. Now the
cycle vtu1vt−(2q−2)vt−2q+3 . . . vt−r(2p−1)u2vt is induced and has odd length.
Hence, (t − r(2p − 1)) − (t − (2q − 2)) + 4 = 2p + 1 and by rearranging
2q = (r + 1)(2p− 1).
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We now examine a special case. Suppose that G contains no induced path
P2q containing 2q vertices.

Markossian, Gasparian and Reed [9] showed that all triangle- free and
even-hole-free graphs are 2-degenerate. Hence G has to contain an induced
even cycle C = c0c1 . . . c2q−2c2q−1c0. Furthermore, since δ(G) ≥ 3 each
vertex of C is adjacent to at least one vertex not lying on the cycle C, e.g.
{c0d0, c1d1} ⊂ E(G). The P2q-freeness, G ∈ GI(2p+1, 2q)) and 2q = (r +1)
(2p− 1) forces that NG(di)∩V (C) = {ci, ci+(2p−1), ci+2(2p−1) . . . , ci+r(2p−1)}
for i = 0, 1. But then the vertex set {c0, d0, c2p−1, c2p, d1, c1} induces a 6-
cycle enforcing that q = 3 and p = 2. Since G is non-bipartite G has to
contain an induced 5-cycle C1 = a0a1a2a3a4a0. Furthermore, since δ(G) ≥
3 each vertex of C1 is adjacent to at least one vertex not lying on the
cycle C1, e.g. {a0b0, a1b3, a2b1, a3b4, a4b2} ⊂ E(G). The P6-freeness forces
that C2 = b0b1b2b3b4b0 induces a 5-cycle. Now the C4-freeness of G forces
that all vertices of C1 have degree 3. Analogously, every vertex of C2 has
degree 3. Thus, we have NG(V (Ci)) − V (Ci) = V (C3−i) for i = 1, 2, i.e.,
G ∼= P ∗. Hence, in the following a longest induced path P contains at least
2q vertices.

We now examine the (t − 1)-type vertex vt−1. Since δ(G) ≥ 3, P is
chordless and G is triangle-free, vt−1 has a neighbour w ∈ V (G)− (V (P ) ∪
NG(vt)).

Subcase 2.1. w has no neighbour on P .
Then P ′ := v1v2 . . . vt−1w is also a longest induced path of G and the
t-type vertex w has (exactly) two neighbours w1, w2 ∈ V (G) − (V (P ) ∪
NG(vt)∪{w}). Because w1 corresponds to u2 and w2 to u1, we deduce that
say w1vt−(2q−2) ∈ E(G) and w2vt−(2p−1) ∈ E(G). Now C1 := w1vt−(2q−2)

u1vtvt−1ww1 forms a cycle of length six. Therefore, the only possible case
is again q = 3 and p = 2, i.e., G ∈ GI(5, 6). Now the C3- and C4-freeness of
G forces that the set {w, w1, vt−1, vt, u2, vt−4, vt−3} induces a C7, a contra-
diction.

Note that the C3- and C4-freeness of G always forces that every 7-cycle
is an induced one.

Subcase 2.2. w has a neighbour on P .
Then wvt−(2q−1) ∈ E(G) or wvt−2p ∈ E(G). Now C1 := wvt−(2q−1)vt−2q−2

u1vtvt−1w or C2 := wvt−2pvt−(2p−1)u2vtvt−1w induces a cycle of length six,
i.e. G ∈ GI(5, 6). Therefore, we have either wvt−5 ∈ E(G) or wvt−4 ∈ E(G).
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Subcase 2.2.1. wvt−5 ∈ E(G).
Since G is C4-free, u2 is not adjacent to w and we deduce a contradiction
by considering the set {w, vt−5, vt−4, vt−3, u2, vt, vt−1}, which induces a C7.

Subcase 2.2.2. wvt−4 ∈ E(G).

Claim 2. Every (t− 1)-type vertex has the degree 3, e.g. dG(vt−1) = 3.
Assume dG(vt−1) > 3, then there exists a vertex w̄ ∈ (NG(vt−1) −

({w} ∪ V (P ))). Likewise, we deduce that w̄ is also adjacent to vt−4. But
then {vt−1, w, w̄, vt−4} induces a C4 – a contradiction. Thus, we have
dG(vt−1) = 3.

Recall that u1 is adjacent to vt−4 and u2 is adjacent to vt−3.

Claim 3. Every (t− 2)-type vertex has the degree 3, e.g. dG(vt−2) = 3.
Let x be a neighbour of vt−2 not lying on P . If x is adjacent to vt−5 or
vt−6, then xvt−5vt−4u1vtvt−1vt−2x or xvt−6vt−5vt−4wvt−1vt−2x is a cycle of
length 7, a contradiction. Hence, x has no other neighbours on P . The C4-
freeness of G forces that xw 6∈ E(G). Furthermore, we have xu2 6∈ E(G),
since otherwise xu2vtu1vt−4vt−3vt−2x is a cycle of length 7, a contradiction.
Since dG(x) ≥ δ(G) = 3, x has a neighbour y 6∈ V (P ) ∪ {w, u1, u2}. If y is
adjacent to vt−4 or vt−5, then yvt−4u1vtvt−1vt−2xy or yvt−5vt−4wvt−1vt−2xy
is a cycle of length 7, a contradiction. Hence, P

′′′
= v1 . . . vt−2xy is a longest

induced path implying with Claim 1 and Claim 2 that dG(x) = dG(y) = 3.
Observe that x is a (t− 1)-type and y a t-type vertex.

Claim 4. x is adjacent to u1.
Suppose to the contrary that xu1 6∈ E(G). Analogously to P , we de-
duce for P

′′′
that the (t − 1)-type vertex x is adjacent to a vertex y∗ 6∈

V (P ) ∪ {y, w, u1, u2}. Because y∗ corresponds to w we also deduce that y∗

is adjacent to vt−4. But then y∗vt−4u1vtvt−1vt−2xy∗ is a cycle of length 7, a
contradiction. Thus we have xu1 ∈ E(G).

Now suppose that dG(vt−2) > 3, i.e. there exists a vertex x∗ ∈ NG(vt−2)
−{vt−3, vt−1, x}. Analogously to Claim 4 we obtain x∗u1 ∈ E(G), a con-
traction since G is C4-free. Therefore, we have dG(vt−2) = 3.

For convenience we introduce the notation z-type vertex with z ∈
{w, u1, u2, x, y}. A vertex v of G is a z-type vertex, if there exists a longest
induced path P

′′′
, such that the role of v in P

′′′
corresponds to the role of z

for the longest induced path P = v1v2...vt.
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Claim 5. w is adjacent to y.
Because the (t−1)-type vertex x of P

′′′
= v1v2...vt−2xy is adjacent to u1, we

obtain that u1 is a w-type vertex. Similarly, we deduce that vt−1 is a x-type
vertex. Recall (Claim 4) that u1 is adjacent x and the (t − 4)-type vertex
vt−4. Since w is adjacent to the x-type vertex vt−1 of P

′′′
and the (t−4)-type

vertex vt−4 of P
′′′

the C4-freeness of G forces that w is the u1-type vertex
of P

′′′
. Because y is the t-type vertex of P

′′′
this implies Claim 5.

Claim 6. y is adjacent to u2 and therefore NG(y) = {x, w, u2}.
Assume to the contrary that y is not adjacent to u2. Hence there exists x′

with {x′} = NG(y)− {x,w}. Note that x′ 6∈ V (P )∪ {u1, u2, x, w} and since
P
′′′

= v1...vt−2xy is a longest induced path and w is adjacent to vt−4, we
obtain that x′ is adjacent to vt−3. But then x′vt−3u2vtvt−1wyx′ is a cycle
of length 7, a contradiction. Thus we have NG(y) = {x,w, u2}. Since u2 is
a t-type vertex of the longest induced path P ′′ = v1...vt−4u1xyu2 we obtain
the following Claim 7 by Claim 1.

Claim 7. dG(u2) = 3.
Summarizing all claims we deduce G′ := G[{u2, vt, vt−1, vt−2, vt−3, vt−4,
u1, w, x, y}] ∼= P ∗ and all six non-neighbours of vt−4 have degree three.
If G ∼= P ∗ we are done.

Assume G 6∼= P ∗. Note that CS := {vt−4, vt−3, u1, w} is a cutset of G.
If vt−4 and one of its three neighbours vt−3, u1 or w is already a (complete)
cutset, then we are done. Hence w.l.o.g. suppose G2 is a component of
G − CS different to the six cycle G1 := G[{u2, vt, vt−1, vt−2, x, y}] and say
G′′ := {u1, w} ∪ V (G2) is connected. The C4-freeness forces that a shortest
path connecting u1 and w in G′′ contains at least 2 internal vertices and in
G′′′ := {u1, w} ∪ V (G1) there exists a u1 and w connecting induced path
with 3 internal vertices. Then one can construct easily an induced cycle of
length at least 7, a contradiction. This settles the proof of this theorem.
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