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Abstract

Given a graph G, its partially square graph G∗ is a graph obtained
by adding an edge (u, v) for each pair u, v of vertices of G at distance
2 whenever the vertices u and v have a common neighbor x satisfying
the condition NG(x) ⊆ NG[u] ∪ NG[v], where NG[x] = NG(x) ∪ {x}.
In the case where G is a claw-free graph, G∗ is equal to G2. We define
σ◦t = min{∑x∈S dG(x) : S is an independent set in G∗ and |S| = t}.
We give for hamiltonicity and circumference new sufficient conditions
depending on σ◦ and we improve some known results.
Keywords: partially square graph, claw-free graph, independent set,
hamiltonicity and circumference.
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1. Introduction

We shall use standard graph theory notation. A finite, undirected graph G
consists of a vertex set V and an edge set E. We denote the open neigh-
borhood and closed neighborhood of a vertex u of G by N(u) = {x ∈ V :
(x, u) ∈ E} and N [u] = N(u)∪{u}, respectively. Finally we denote by d(u)
the degree of u. Ainouche [1] defined, for each pair a, b of vertices at distance
2 in G, a parameter J(a, b) = {u ∈ N(a)∩N(b) : N [u] ⊆ N [a]∪N [b]}. He in-
troduces the concept of partially square graph G∗ of a given graph G. Given
a graph G, its partially square graph G∗ is the graph obtained by adding
an edge (u, v) for each pair u, v of vertices of G at distance 2 whenever
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J(u, v) is not empty, so G∗ = (V, E ∪ {(u, v) : dist(u, v) = 2, J(u, v) 6= ∅}).
In particular this condition is satisfied if at least a common neighbor of u
and v does not center a claw (an induced K1,3).

Obviously E(G) ⊆ E(G∗) ⊆ E(G2). On one side we have G∗ = G2 if
for each pair u, v of vertices of G at distance 2, J(u, v) 6= ∅. On the other
side G∗ can be equal to G if G = Kp,q with p, q ≥ 3.

Ainouche and Kouider [2] used the square partially graph to improve
some known results, in particular they proved the following result.

Theorem 1. Let G be a k-connected graph (k ≥ 2) and G∗ its partially
square graph. If α(G∗) ≤ k, then G is hamiltonian.

In this paper we discuss some best known results on a longest cycle and
hamiltonicity in a given graph G, where the sufficient condition depends on
the degree sum of an independent set of vertices. Among these results, we
consider first, the following result of Bermond [3].

Theorem 2. If G is a 2-connected graph such that the degree sum of any
independent set of two vertices is greater than d then G either is hamiltonian
or contains a cycle of length at least d.

Bondy [4] proved that

Theorem 3. If G is k-connected (k ≥ 2) of order n such that the degree sum
of any independent set of k + 1 vertices is strictly greater than (k + 1) (n−1)

2 ,
then G is hamiltonian.

Finally, Fournier and Fraisse [5] generalize Bondy’s theorem as follows.

Theorem 4. If G is k-connected (k ≥ 2) of order n such that the degree
sum of any independent set of k + 1 vertices is at least m, then G contains
a cycle of length at least min(d2m/(k + 1)e, n).

We denote the minimal degree sum of independent sets of order t (t =
1, 2, . . .) in G by

σt = min{∑x∈S dG(x) : S is an independent set in G and |S| = t}.
Moreover, we define a kind of minimal G-degree sum of independent sets of
order t in G∗ as follows

σ◦t = min{∑x∈S dG(x) : S is an independent set in G∗ and |S| = t}.



Remarks on Partially Square Graphs ... 257

Observe that if S is an independent set in G∗ then S is an independent set in
G, but the opposite is false, as we can show it in Figure 1. The set {1, 3, 5}
is not independent in G∗. Then σ◦t ≥ σt. We suppose by convention that if
α(G∗) < t then σ◦t is infinite.
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Figure 1

As σ◦t ≥ σt, then the following theorems, which we prove in this note, are
better than Theorems 2 and 4, respectively.

Theorem 5. Let G be 2-connected graph. Then either G is hamiltonian or
contains a cycle with length at least σ◦2.

Theorem 6. Let G be a k-connected graph (k ≥ 2). Then either G is
hamiltonian or it contains a cycle of length at least

2σ◦k+1

k+1 .

We deduce the following extension of Theorem 3 to σ◦:

Corollary 7. Let G be a k-connected graph (k ≥ 2) of order n. If σ◦k+1 >

(k + 1) (n−1)
2 , then G is hamiltonian.

The k-connected graph G (with k ≥ 2 and k is even) of Figure 2 is given as
follows. There exist k independent vertices adjacent to each vertex of (k+2)
copies of the complete graph Kp. The copies of Kp are regrouped by pairs.
The vertices of each pair are adjacent to a vertex. Since the connectivity of G
is equal to k, then 2p is at least equal to k. As k is even, we may construct a
hamiltonian cycle in G. For p ≥ k, we have σk+1 = (k+1)(p+k). The bound
in Corollary 7 is (k+1) (n−1)

2 = (k+1) (2p(k+2)+3k)
4 . Since σk+1 ≤ (k+1) (n−1)

2 ,
Theorem 3 does not allow to deduce that G is hamiltonian. But if we
consider G∗, as the independent set of G which gives a minimum degree
sum is not obviously an independent set in G∗, we obtain σ◦k+1 = p (k+2)2

2
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(an independent set which engenders σ◦k+1 is given by (k+2)
2 vertices of degree

2p each one and ((k+1)− (k+2)
2 ) vertices of degree (k+2)p each one). For p ≥

3
2k, we deduce that σ◦k+1 is greater than (k+1) (n−1)

2 = (k+1) (2p(k+2)+3k)
4 . So

from Corollary 7, G is hamiltonian. Moreover, note that n = (2p+3)(k+2)
2 −2.

Then for 2 ≤ k
2 ≤ p ≤ 3

2k − 4, we remark that min{n,
2σk+1

k+1 } = 2σk+1

k+1 and

min{n,
2σ◦k+1

k+1 } =
2σ◦k+1

k+1 . As
2σ◦k+1

k+1 >
2σk+1

k+1 , we can deduce that the bound
given by Theorem 6 is more close to n (because the longest cycle has length
n in this case) than the one given by Theorem 4.

p
Kp Kp Kp

Kp KpK k+2

k

Figure 2

2. Terminologies

Let C be a longest cycle of a k-connected and non-hamiltonian graph G and
the orientation of C is fixed. For u ∈ V (C), u+(resp. u−) represents its
successor (resp. predecessor) on C. If u, v ∈ V (C) then (u,C, v) represents
the path given by the consecutive vertices on C ordered from u to v (in-
cluding u and v) following the orientation chosen of C. The same vertices
visited in the opposite orientation give the path (v, C, u). Let R = G \ C.
Let d1 be a vertex of C such that the number of its neighbors belonging to
R, dR(d1) 6= 0. Let P0 be a longest path starting from d1 on C, such that
V (P0) \ {d1} ⊆ R. Let x0 be an extremity of P0 in R and H be a connected
component of x0 in R. Let NC(H) be the set of vertices of C which have
at least a neighbor in H. Then d1 ∈ NC(H). Note NC(H) = {d1, .., dm},
where the indices are taken modulo m. Because C is a longest cycle, we
have |V (C)| > |NC(H)| = m and therefore, m ≥ k. We suppose that fol-
lowing the orientation of C, we meet d1, .., dm, respectively. Since every
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path (di, C, di+1) contains at least one internal vertex, Ci = (d+
i , C, d−i+1)

is a, possibly trivial, path (i = 1, . . . , m). Each pair of vertices di, dj of
{d1, d2, ..., dm} is joined by a path of length at least two, in which all inter-
nal vertices (of this path) are in H. We denote this (not oriented) path by
(di,H, dj).

Given a path P = (a1, a2, . . . , aq), q ≥ 2 and a vertex u /∈ V (P ). We say
that u is P-insertible if there exists an i, 1 ≤ i < q, such that the vertices ai

and ai+1 are both adjacent to u. The edge (ai, ai+1) is called an insertion
edge for u. In particular, a vertex u ∈ V (Ci) is called insertible if it is
(di+1, C, di)-insertible.

Given four vertices a, b, u, v of C, we say that the edges (u, a), (v, b) are
crossing (if they exist) if the four vertices arrive on C in the order a, v, u, b.

3. Definition of an Independent Set

Let us recall the following lemma (see [1]) on properties of insertible vertices,
where m,Ci, di (i = 1, . . . , m) are used as defined in Section 2.

Lemma 8. Let G be a k-connected and non-hamiltonian graph (with k ≥ 2),
C be a longest cycle of G and H be a connected component of R = G \ C.
Then
(a) for each i ∈ {1, 2, . . . ,m}, Ci contains a non-insertible vertex.
Let xi be the first non-insertible vertex on Ci (i = 1, 2, . . . , m) and x0 ∈
V (H). Set W0 = V (H) and Wi = V ((d+

i , C, xi)) for each 1 ≤ i ≤ m. For
each 1 ≤ i < j ≤ m, choose wi ∈ Wi and wj ∈ Wj. Then
(b) (wi, wj) /∈ E(G).
(c) There does not exist a vertex z ∈ V ((wi, C, wj)) such that (wi, z

+),
(wj , z) ∈ E (i.e., the edges (wi, z

+) and (wj , z) are not crossing).

For a longest cycle C of a k-connected (k ≥ 2) non-hamiltonian graph G
with a fixed orientation of C, let now P0, x0,H, m, di, Ci (i = 1, . . . , m) be as
defined in Section 2, and W0, xi,Wi (i = 1, . . . , m) as defined in Lemma 8.
Furtheremore, let X = {x0, x1, . . . , xm}. For each s ∈ {1, 2, . . . , m}, let
As be the set of vertices u belonging to (x+

s , C, d−s+1) which verify the two
following properties:
(i) dR(u) 6= 0 and
(ii) (xs, u

−), (xs, u), (xs, u
+) ∈ E if xs 6= u−, and (xs, u), (xs, u

+) ∈ E,
otherwise.
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Figure 3

Let
I = {s ∈ {1, 2, . . . ,m} : dR(xs) = 0 and As = ∅},
J1 = {s ∈ {1, 2, . . . ,m} : dR(xs) = 0 and As 6= ∅} and
J2 = {s ∈ {1, 2, . . . ,m} : dR(xs) 6= 0}.

By the definitions of I, J1 and J2, we can deduce that I, J1 and J2 form
a partition of the set {1, 2, . . . ,m} (i.e., I ∩ J1 = I ∩ J2 = J1 ∩ J2 = ∅ and
I ∪ J1 ∪ J2 = {1, 2, . . . , m}).
In the case where s ∈ J1, we denote by us the first vertex on (x+

s , C, d−s+1)
which is in As. Let bs = us if s ∈ J1 and bs = xs if s ∈ I ∪ J2. For
s ∈ J1 ∪ J2, let Ps be a longest path with an extremity bs (on the cycle)
such that V (Ps) \ {bs} ⊂ R. Let ys be the extremity of Ps on R (Figure 3).

Let S = {x0} ∪ {xi : i ∈ I} ∪ {ys : s ∈ J1 ∪ J2}. In particular, if
J1 ∪ J2 = ∅, then S = X = {x0, x1, . . . , xm}. It is proved in [2] that X is an
independent set in G∗.

Let s ∈ I ∪ J1 ∪ J2. Put W ′
s = (d+

s , C, xs, Ps, ys) if s ∈ J2, W ′
s =

(d+
s , C, xs, bs, Ps, ys) if s ∈ J1 and W ′

s = (d+
s , C, xs) if s ∈ I (see Figure 3,

the W ′
s are given in bold). We deduce that if s ∈ J1 ∪ J2, then V (W ′

s) =
Ws ∪ V (Ps).

4. Lemmas

For all statements of this section we make the following:
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Supposition. Let G be a k-connected, non-hamiltonian graph with k ≥ 2
and C a longest cycle of G.

Furthermore, we use all denotations introduced in Sections 2 and 3. We
shall prove a series of lemmas on some properties of the elements of S in G.
In the following lemma we prove a property of the vertices of b−j , bj , and b+

j ,
for 1 ≤ j ≤ m which will be always used in the further proofs.

Lemma 9. For each pair of indices {i, j}, with 1 ≤ i 6= j ≤ m, NC(bj) ∩
Wi = ∅; in particular, neither (b−j , bj) nor (bj , b

+
j ) are insertion edges for

the vertices of Wi.

Proof. Suppose first that j ∈ I ∪ J2. As i 6= j, then by Lemma 8(b), the
vertex bj (which is xj in this case) cannot have neighbors in Wi. In the case
where j ∈ J1, we know that bj = uj . Let w be a neighbor of uj in Wi, with
i 6= j. Observe that the edges (w, uj) and (xj , u

+
j ) are crossing. We obtain

then a contradiction with Lemma 8(c) applied to w ∈ Wi and xj ∈ Wj .
We deduce that for each pair of indices {i, j}, with 1 ≤ i 6= j ≤ m,

neither (b−j , bj) nor (bj , b
+
j ) can be an insertion edge for vertices of Wi.

From now on, we denote by T = (a . . . x[c . . . sj . . . d]y . . . b) a segment of C,
where the sub-segment c . . . sj . . . d (which is in brackets in T ) is considered
only if j ∈ J1. In other words, T = (a, . . . , x, c, . . . , sj , . . . , d, y, . . . , b) if
j ∈ J1 and T = (a, . . . , x, y, . . . , b), otherwise.

Now, we prove other properties of S in G. In particular, we prove that it is
an independent set in G and G∗.

Lemma 10. The following statements are true:
(a) let w0 be a vertex of W0 and wi be a vertex of Wi ∪ {bi}, for each

1 ≤ i ≤ m. For each pair of indices {i, j}, with 0 ≤ i 6= j ≤ m, the vertices
wi, wj are not joined by a path all internal vertices of which are in R. In
particular, S is an independent set of m + 1 elements in G.

(b) for each j ∈ J1 ∪ J2, we have NC(yj) ⊂ (V (C) \ [∪m
i=1(Wi ∪ {bi}) ∪

{dj}]) ∪ {bj}.
(c) S is an independent set in G∗.

Proof. (a) The proof is by contradiction. We may suppose i < j. Denote
by (wi, L, wj) a path which joins wi and wj and which is assumed to have
all its internal vertices in R.
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Suppose first that i = 0. Then 1 ≤ j ≤ m. Put P = (w0, L, [bj , C], xj ,
[b+

j ], C, dj+1) if wj = bj and P = (w0, L, wj , C, dj+1) if wj ∈ Wj . By def-
inition, all insertible vertices of Wj admit their insertion edges on Q =
(dj+1, C, dj). We can insert in Q the vertices of (d+

j , C, x−j ) if wj = bj and
the vertices of (d+

j , C, w−j ) if wj ∈ Wj . Then the new path obtained from Q
in this way and combined with a subpath of the walk (dj , H, w0, P ) joining
dj and dj+1 gives a cycle longer than C, which is a contradiction. Conse-
quently, i 6= 0. Since there does not exist a path between a vertex of W0

and wj , then V (L) ∩ V (H) = ∅. In case wi ∈ Wi and wj ∈ Wj the cycle
(di,H, dj , C, wi, L, wj , C, di) contradicts the maximality of C.

Suppose now that wi = bi or wj = bj . For each s ∈ {i, j}, if ws = bs

then we construct a path Q1 from the path Q = (di, C, wj , L, wi, C, dj),
by replacing the path (ws, C, ds+1) by the path (ws, [bs, C], xs, [b+

s ], C, ds+1).
By the definition of the insertion, the edge (bj , b

+
j ) is not an insertion edge

for the vertices of Wj and the edge (bi, b
+
i ) is not an insertion edge for the

vertices of Wi. Moreover, by Lemma 9, (bj , b
+
j ) is not an insertion edge

for the vertices of Wi and the edge (bi, b
+
i ) is not an insertion edge for the

vertices of Wj , and by Lemma 8(b) there is no edge between Wi and Wj .
We deduce that all vertices of C which do not belong to Q1 are vertices
contained in (d+

i , C, x−i ) or in (d+
j , C, x−j ); therefore, they are insertible with

insertion edges belonging to Q1. We can insert these insertible vertices in
Q1, in order to obtain a path Q′

1. The combination of Q′
1 and (di,H, dj)

forms a cycle longer than C, a contradiction.

We deduce that W ′
i ∩W ′

j = ∅, W0 ∩W ′
j = ∅ and that any two vertices

belonging respectively to W ′
i (or W0) and W ′

j are not adjacent, for each
1 ≤ i 6= j ≤ m. Consequently, S is an independent set of m + 1 elements
in G.

(b) Suppose there exists a neighbor u of yj on [∪m
i=1(Wi ∪{bi})∪{dj}] \

{bj}. By (a), for each 1 ≤ i 6= j ≤ m, we have u /∈ NC(yj) ∩Wi ∪ {bi}.
Remark that if j ∈ J2, then bj ∈ Wj (in this case xj = bj) and bj

can be neighbor of yj . If j ∈ J1, then u 6= xj because of dR(xj) = 0.
Thus u ∈ V ((dj , C, x−j )). Let Q = (u,C, [b+

j ], xj , [C, bj ]). By the definition
of the insertion, the insertion edges of the vertices of (d+

j , C, x−j ) belong to
E((dj+1, C, dj)). So they belong to E(Q). Then we can construct Q′ from Q
by inserting the vertices of V ((u+, C, x−j )) (if there are any, i.e., if u 6= x−j ).
Consequently, the paths Q′ and (u, yj , Pj , bj) give a cycle longer than C,
which is a contradiction.
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(c) The proof is by contradiction. Since S is an independent set in
G, we suppose that there exists a pair of distinct vertices ai, aj ∈ S such
that (ai, aj) ∈ E(G∗) \ E(G). So there exists v ∈ J(ai, aj) (such that
(ai, v), (v, aj) ∈ E(G)). We suppose first that v ∈ V (R). Without loss of
generality, we assume that i < j and j ∈ I ∪ J1 ∪ J2. If j ∈ I then aj = xj .
This contradicts the fact that dR(xj) = 0. By (a), j /∈ J1 ∪ J2. Therefore
v ∈ V (C). In this case v, v+ ∈ NC(ai) ∪ NC(aj). So either ai (or aj) is
C-insertible or (ai, v

+), (v, aj) are crossing, which is a contradiction.
Hence, by (a) and (c) for each pair of distinct vertices ai, aj ∈ S,

(ai, aj) /∈ E(G∗). We deduce that S is an independent set in G∗.

Corollary 11. For each pair of distinct vertices ai and aj of S \ {x0}, we
have dC(ai) + dC(aj) ≤ |C|.

As usual we write |Q| instead of |V (Q)| for a cycle or a path Q.

Proof. We begin by the following claim.

Claim 12. Let P = (u1, u2, . . . , ur) be a segment of C (in the same orienta-
tion as C) with r ≥ 1. Let ai, aj ∈ S \ {x0}, with ai, aj /∈ V (P ) and i 6= j; it
can be assumed — if necessary by commuting the denotations of the indices
i, j — that P is a subpath of (bi, C, bj). Then

(a) dP (ai) + dP (aj) ≤ r + 1.
(b) In particular, if (u1, aj) /∈ E and (u2, ai) /∈ E, then dP (ai)+dP (aj) ≤ r.

Proof of Claim 12. (a) Define N+
P (aj) = {ui+1 : (ui, aj) ∈ E}, where

ur+1 := u+
r . Thus N+

P (aj) ⊆ {u2, u3, . . . , ur, ur+1} and NP (ai) ⊆
{u1, u2, . . . , ur}. One can see that the property (c) of Lemma 8 remains
true if we replace wi, wj and (wi, C, wj) by ai, aj and (bi, C, bj), respectively.
So there does not exist z on P such that the edges (ai, z

+) and (z, aj) are
crossing. Then N+

P (aj) ∩ NP (ai) = ∅. We deduce that dP (aj) + dP (ai) =
|N+

P (aj) ∩NP (ai)|+ |N+
P (aj) ∪NP (ai)| ≤ r + 1.

(b) If (u1, aj) /∈ E and (u2, ai) /∈ E, then u2 /∈ N+
P (aj) ∪ NP (ai), and

hence dP (aj) + dP (ai) ≤ r.

Return now to the proof of Corollary 11.
Put Us = (d+

s , C, ds+1), for each 1 ≤ s ≤ m. We prove that for each
1 ≤ s ≤ m, dUs(ai) + dUs(aj) ≤ |Us|.

Case 1. i and j belong to I ∪ J1.
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Put Ls = (x+
s , C, ds+1). By Claim 12(a), dLs(ai) + dLs(aj) ≤ |Ls| + 1, for

each s , 1 ≤ s ≤ m. If s /∈ {i, j}, by Lemma 10(a), dWs(ai) = dWs(aj) = 0.
Then dUs(ai)+dUs(aj) ≤ |Ls|+1 ≤ |Us| since |Us| = |Ls|+|Ws| ≥ |Ls|+1. If
s ∈ {i, j}, we have dWs(as) = 0 if s ∈ J1 and dWs(as) ≤ |Ws|−1 if s ∈ I. As
dWs(as′) = 0, with s′ ∈ {i, j} and s′ 6= s, then dWs(ai)+dWs(aj) ≤ |Ws|− 1.
Thus dUs(ai) + dUs(aj) ≤ (|Ls|+ 1) + (|Ws| − 1) = |Us|.

Case 2. i or j belongs to J2.
If s /∈ {i, j} or s ∈ {i, j} ∩ (I ∪ J1), the arguments are similar than those of
the above case. If s ∈ {i, j} ∩ J2, put Ls = (xs, C, ds+1). Without loss of
generality, put s = i and s ∈ J2. By Lemma 10(a), we have (xs, aj) /∈ E. As
s ∈ J2 and C is maximal, then (x+

s , as) /∈ E. Remark that by Claim 12(b),
these two last hypotheses allow to deduce that dLs(as) + dLs(aj) ≤ |Ls|.
Moreover, by Lemma 10(b), dWs\{xs}(as) + dWs\{xs}(aj) = 0. As we have
always, |Us| ≥ |Ls|, then dUs(as) + dUs(aj) ≤ |Us|.
Consequently, for each 1 ≤ s ≤ m, dUs(ai) + dUs(aj) ≤ |Us|. As |C| =∑s=m

s=1 |Us|, then dC(ai) + dC(aj) ≤ |C|.

Lemma 13. If i ∈ I then dG(xi) = dC(xi) and dG(x0) + dC(xi) ≤ |C|.

Proof. The proof is by contradiction and it is similar to the one of Lemma 5
given in [5], except that instead of considering d+

i we consider xi. It is
clear that in the proof we take into account the insertible vertices in all the
constructions of longest cycles (as we have done it in the above lemmas),
this contradicts the maximality of C.

Finally, we recall the following lemma of Fournier and Fraisse (see [5]) which
is useful for the proofs of theorems.

Lemma 14. Let P be a path of maximum length between all paths which
have a given extremity, a, on C and all the other vertices are not on C. Let
x the second extremity of P . Then we have dG(x) ≤ |C|

2 .

5. Proofs of Theorems

We define the following variants of I, J1 and J2 (which had been defined in
Section 3):

I(k) = {1, 2, . . . , k} ∩ I,
J1(k) = {1, 2, . . . , k} ∩ J1 and
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J2(k) = {1, 2, . . . , k} ∩ J2.
It is clear that I(k) ∪ J1(k) ∪ J2(k) = {1, 2, . . . , k}. In order to prove
Theorems 5 and 6, we suppose that the graph G is not hamiltonian.

Proof of Theorem 5. If there exists at least an index i ∈ {1, 2}, such
that i ∈ J1 ∪ J2, then by Lemma 14, dG(yi) ≤ |C|

2 and dG(x0) ≤ |C|
2 . Thus

using Lemma 10(c), σ◦2 ≤ dG(yi) + dG(x0) ≤ |C|. Consequently, |C| ≥ σ◦2.
Otherwise, for each i ∈ {1, 2}, we have i ∈ I. By Corollary 11, dC(x1) +
dC(x2) ≤ |C| and since (x1, x2) /∈ E(G∗) and dR(x1) = dR(x2) = 0 then
σ◦2 ≤ dG(x1) + dG(x2) ≤ |C|. Consequently, |C| ≥ σ◦2.

Proof of Theorem 6. We may suppose that |I(k)| = p ≤ k and I(k) =
{i1, i2, . . . , ip}. Recall that dR(xi) = 0, for i ∈ I. If p = 0 then by Lemmas 10
and 14, σ◦k+1 ≤

∑
j∈J1(k)∪J2(k)∪{0} dG(yj) ≤ (k+1)

2 |C|. Consequently, |C| ≥
2

σ◦k+1

k+1 . If p = 1, then by Lemma 13, dG(x0) + dC(xi1) ≤ |C| and by Lemma

14, dG(yj) ≤ |C|
2 , for each j ∈ J1(k) ∪ J2(k). As dR(xi1) = 0, we get then

σ◦k+1 ≤ dG(x0)+dG(xi1)+
∑

j∈J1(k)∪J2(k) dG(yj) ≤ (k+1)
2 |C|. So, |C| ≥ 2

σ◦k+1

k+1 .

Finally, if p ≥ 2 then by Corollary 11,
dC(xi1) + dC(xi2) ≤ |C|,
dC(xi2) + dC(xi3) ≤ |C|,
...
dC(xip−1) + dC(xip) ≤ |C|,
dC(xip) + dC(xi1) ≤ |C|.

Thus
∑

i∈I(k) dC(xi) ≤ p |C|2 . By Lemma 14,
∑

j∈J1(k)∪J2(k)∪{0} dG(yj) ≤
(k − p + 1) |C|2 . So σ◦k+1 ≤ ∑

i∈I(k) dC(xi) +
∑

j∈J1(k)∪J2(k)∪{0} dG(yj) ≤
p |C|2 + (k − p + 1) |C|2 ≤ (k + 1) |C|2 . Then |C| ≥ 2

σ◦k+1

k+1 .
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