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Abstract
A set S of vertices of a graph G = (V,E) is a dominating set if

every vertex of V − S is adjacent to some vertex in S. The domi-
nation number γ(G) is the minimum cardinality of a dominating set
of G, and the domination subdivision number sdγ(G) is the minimum
number of edges that must be subdivided (each edge in G can be sub-
divided at most once) in order to increase the domination number.
Arumugam conjectured that 1 ≤ sdγ(G) ≤ 3 for any graph G. We
give a counterexample to this conjecture. On the other hand, we show
that sdγ(G) ≤ γ(G)+1 for any graph G without isolated vertices, and
give constant upper bounds on sdγ(G) for several families of graphs.
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1. Introduction

Let G = (V,E) be a graph of order |V | = n. For any vertex v ∈ V , the open
neighborhood of v, denoted by N(v), is the set {u ∈ V | uv ∈ E} and the
closed neighborhood is the set N [v] = N(v) ∪ {v}. The open neighborhood
of a set S ⊆ V is the set N(S) = ∪v∈SN(v) and the closed neighborhood
of S is the set N [S] = N(S) ∪ S. Given a set S ⊆ V of vertices and a
vertex u ∈ S, the private neighbor set of u, with respect to S, is the set
pn[u, S] = N [u] − N [S − {u}]. We say that every vertex v ∈ pn[u, S] is a
private neighbor of u (with respect to S). Such a vertex v is adjacent to u but
is not adjacent to any other vertex of S. Note that if a vertex u ∈ S is not
adjacent to any other vertex of S, then it is an isolated vertex in the subgraph
G[S] induced by S. In this case, u ∈ pn[u, S], and we say that u is its own
private neighbor. A set S is a dominating set if N [S] = V , or equivalently,
every vertex in V −S has a neighbor in S. The domination number γ(G) is
the minimum cardinality of a dominating set of G, and a dominating set of
minimum cardinality is called a γ(G)-set. For a more thorough treatment
of domination parameters and for terminology not presented here, see [5, 6].

An edge uv ∈ E(G) is subdivided by deleting the edge uv, and adding
a new vertex x and two new edges ux and xv. The vertex x is called a
subdivision vertex. Arumugam [1] defined the domination subdivision num-
ber of a graph G, which we denote sdγ(G), to equal the minimum number
of edges that must be subdivided (where no edge in G can be subdivided
more than once, that is, no edge incident to a subdivision vertex can be
subdivided) in order to create a graph whose domination number is greater
than the domination number of G. We assume here that every graph is of
order n ≥ 3, since the domination number of the graph K2 does not change
when its only edge is subdivided.

Although it may not be immediately obvious that sdγ(G) is defined for
all connected graphs of order n ≥ 3, we will show this shortly.

Arumugam showed the following result for trees.

Theorem 1 [1]. For any tree T of order n ≥ 3, 1 ≤ sdγ(T ) ≤ 3.

Moreover, he made the following interesting conjecture.

Conjecture 2 [1]. For any graph G of order n ≥ 3, 1 ≤ sdγ(G) ≤ 3.

Our purpose is threefold, namely, to settle Conjecture 2; to give an upper
bound on the domination subdivision number of a graph in terms of its
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domination number; and to give constant upper bounds on the domination
subdivision numbers for several families of graphs. In Section 2 we show
that sdγ(G) is defined for all connected graphs G of order n ≥ 3, and
show that sdγ(G) ≤ γ(G) + 1 for all graphs G without isolated vertices.
In Section 3, we give a counterexample to Conjecture 2 by showing that
sdγ(G) = 4 for a particular family of graphs. On the other hand, since the
only counterexample that we have found has sdγ(G) = 4, we think there may
still be a constant upper bound on sdγ(G) for all graphs G. In support of
this, in Section 4 we establish constant upper bounds on sdγ(G) for several
classes of graphs.

2. Bounds

Haynes, Hedetniemi, and Hedetniemi [4] gave the following upper bound for
sdγ(G) for arbitrary graphs.

Theorem 3. For any connected graph G and edge uv, where deg(u) ≥ 2
and deg(v) ≥ 2,

sdγ(G) ≤ deg(u) + deg(v)− 1.

Using Theorem 3 one can show that sdγ(G) is defined for every connected
graph G of order n ≥ 3. Every such graph G either has an edge uv, where
deg(u) ≥ 2 and deg(v) ≥ 2, or it does not. If G has such an edge uv, then the
proof of Theorem 3 shows that the domination number of G must increase
if every edge incident to either u or v is subdivided. If G does not have such
an edge, then for every edge uv, either deg(u) = 1 or deg(v) = 1. But this
implies that G is a star K1,n. But for G = K1,n, since n ≥ 3, it is easy to
see that the domination number is increased by subdividing any edge, that
is, sdγ(G) = 1. Therefore, sdγ(G) is defined for every connected graph of
order n ≥ 3.

Although the upper bound in Theorem 3 for the subdivision number of
an arbitrary graph is not a constant, it can be used to obtain a constant
upper bound for the domination subdivision number of all graphs in some
classes of graphs, such as the following.

Corollary 4. For any r × s grid graph Gr,s,

1 ≤ sdγ(Gr,s) ≤ 4.
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Corollary 4 follows from the simple observation that if either r = 1 or s = 1,
then sdγ(Gr,s) ≤ 3 by Theorem 1, and otherwise Gr,s must contain a corner
vertex of degree two which is adjacent to a vertex of degree three.

Corollary 5. For any k-regular graph G, where k ≥ 2,

1 ≤ sdγ(G) ≤ 2k − 1.

Corollary 6. For any cubic graph G,

1 ≤ sdγ(G) ≤ 5.

Next we prove a couple of useful lemmas. A vertex which is adjacent to only
one other vertex is called a leaf, and its neighbor is called a support vertex.
A vertex which is adjacent to two or more leaves is called a strong support
vertex.

Lemma 7. If G has a strong support vertex, then sdγ(G) = 1.

Proof. Let w be adjacent to leaves u and v. Subdividing either edge wu
or wv will increase the domination number. Thus, sdγ(G) = 1.

Lemma 8. If G has adjacent support vertices, then sdγ(G) ≤ 3.

Proof. Let w and x be adjacent support vertices, and let u and y be leaves
adjacent to w and x, respectively. Subdividing edges wu, wx, and xy will
increase the domination number. Thus, sdγ(G) ≤ 3.

We next show that sdγ(G) = 1 for any graph G having γ(G) = 1.

Proposition 9. If G is a graph of order n ≥ 3 and γ(G) = 1, then
sdγ(G) = 1.

Proof. If you subdivide any edge in a graph of order n whose domination
number equals one, the resulting graph cannot have domination number
equal to one.

We are able to determine an upper bound on sdγ(G) in terms of γ(G) for
graphs G with no isolated vertices. For this purpose we need the following
result which establishes a connection between the matching number of a
graph and its domination subdivision number. A matching in a graph G
is a set M of edges having the property that no two edges in M have a
vertex in common. The maximum cardinality of a matching in G is called
the matching number of G and is denoted β1(G).
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Theorem 10. If G is a graph with γ(G) = k and β1(G) ≥ k + 1, then
sdγ(G) ≤ k + 1.

Proof. Let G be a graph with γ(G) = k and assume that β1(G) ≥
k + 1. Let the edges of a matching of order k + 1 be given by M =
{u1v1, u2v2, . . . , uk+1vk+1}, and let G′ be the graph which results from sub-
dividing each edge in M , by adding subdivision vertices a1, a2, . . . , ak+1,
where ai subdivides the edge uivi for 1 ≤ i ≤ k + 1. Now any dominat-
ing set of G′ must contain at least one vertex from each triple {ui, ai, vi}.
Since these k + 1 triples are pairwise disjoint, it follows that γ(G′) ≥ k + 1.
Therefore, sdγ(G) ≤ k + 1.

Corollary 11. If γ(G) < β1(G), then sdγ(G) ≤ γ(G) + 1.

Note that for any graph G without isolates, γ(G) ≤ β1(G) (see [5]). Thus to
prove that sdγ(G) ≤ γ(G)+1 for all connected graphs G, we need to consider
the graphs G for which γ(G) = β1(G). We first consider the graphs which
have a perfect matching, i.e., the graphs G for which γ(G) = β1(G) = n/2.
These graphs were characterized independently by Payan and Xuong [8] and
by Fink, Jacobson, Kinch, and Roberts [2]. The corona H ◦K1 is the graph
formed from a copy of H by adding a new vertex v′ and a pendant edge vv′

for each vertex v ∈ V (H).

Theorem 12 [2, 8]. If G is a connected graph having γ(G) = n/2, then
either G is isomorphic to the cycle C4 or G = H ◦K1 is the corona of some
connected graph H.

Our next corollary follows directly from the facts that sdγ(C4) = 3 and
sdγ(H ◦K1) ≤ 3, for any nontrivial connected graph H (by Lemma 8).

Corollary 13. If G is a graph with γ(G) = β1(G) = n/2, then sdγ(G) ≤ 3.

The only remaining graphs that we need to consider are those having γ(G) =
β1(G) < n/2, that is, G has equal domination and matching numbers, but
does not have a perfect matching. These graphs were characterized inde-
pendently by Randerath and Volkmann [9] and Hare and McCuaig [3]. We
will use the following result from [3].

Let L be the set of leaves of G; N be the set of support vertices of G;
and define I = {x ∈ V (G) − (N ∪ L) : N(x) ⊆ N}. Note that I is an
independent set of vertices.
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Let G be the class of graphs G without isolated vertices having the following
properties.

1. If H2 is the collection of the bipartite connected components of
G−(N ∪L), then the vertices of H2 can be partitioned into two independent
sets A and B such that:
For any two distinct vertices a1 and a2 in A with a common neighbor b in B,
there exists a vertex b1 ∈ B−{b} such that NG(b1) = {a1, a2}. Furthermore,
the only vertices of H2 which have neighbors in N are vertices in B.

2. Every nonbipartite component H of G− (N ∪L) is one of the graphs
shown in Figure 1, where each of the dashed edges may or may not be an
edge of H. Furthermore, only the starred vertices can have neighbors in N .

Theorem 14 (Hare and McCuaig [3]). A graph G with no isolated vertices
and no perfect matching has γ(G) = β1(G) if and only if G is in G.
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Figure 1. Nonbipartite components of G − (N ∪ L). Dashed line represents an
optional edge, and an asterisk indicates that a vertex may have a neighbor in N .

Theorem 15. If G is a connected graph G of order n ≥ 3 having γ(G) =
β1(G), then sdγ(G) ≤ 3.

Proof. From Proposition 9 we know that if γ(G) = 1, then sdγ(G) = 1;
and from Corollary 13 we know that if γ(G) = β1(G) and G has a perfect
matching, then sdγ(G) ≤ 3. Thus, the only case remaining is a graph G,
where γ(G) = β1(G) and G does not have a perfect matching.

From Theorem 14, we know that G ∈ G. Assume that G contains
a nonbipartite component in G − (N ∪ L). Theorem 14 asserts that the
only allowable nonbipartite components are illustrated in Figure 1. Since
components (b) and (d) have adjacent vertices of degree two (in G), we
know from Theorem 3 that sdγ(G) ≤ 3 if G − (N ∪ L) has either of these
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components. Component (c) is a C5 with two chords. One can verify that
there exist three edges in this graph whose subdivisions will result in a
component requiring at least three vertices to dominate it in G, and hence
the resulting graph will have a domination number larger than γ(G). Thus,
if this component is present in G − (N ∪ L), then sdγ(G) ≤ 3. Finally,
component (a) is a K3 where two of its vertices may have neighbors in N .
Since G is connected, at least one of these vertices, say x, is adjacent to a
vertex in N . It is easy to see that subdividing all three edges of this K3

causes the domination number to increase. Hence, sdγ(G) ≤ 3 in this case.
Therefore, we may assume that G does not contain any nonbipartite

components in G − (N ∪ L). If N is not an independent set, then Lemma
8 implies that sdγ(G) ≤ 3.

Hence, if G is not bipartite, then sdγ(G) ≤ 3.
Thus, we may assume that G is bipartite. Let the sets A and B be

defined as in Property 1 of the graphs in G. Suppose I 6= ∅.
Let uv, vw ∈ E(G) where u ∈ I, v ∈ N , and w ∈ L. Then the

subdivision of uv, and vw will cause the domination number to increase.
Thus, sdγ(G) ≤ 2.

Hence, we may assume that I = ∅.
Suppose there exists a vertex a ∈ A such that N(a)∩N(A−a) = ∅. Then

the vertices in N(a) are only adjacent with vertices in N . Since a is not a
leaf, a must be adjacent to at least two vertices in B. Let b1, b2 ∈ B, v ∈ N ,
and w ∈ L such that {ab1, ab2, vb1, vw} ⊆ E(G). Then the subdivision of
ab2, vb1, and vw will cause the domination number to increase. Therefore,
sdγ(G) ≤ 3.

Hence, we may assume that for every a ∈ A, N(a) ∩N(A− {a}) 6= ∅.
We have that N is independent and that I = ∅. Since G is a connected

graph of order n ≥ 3, it follows that V − (N ∪ L) 6= ∅. But since I = ∅, it
follows that B 6= ∅ and A 6= ∅.

Let a1 ∈ A. Since N(a) − N(A − {a1}) 6= ∅, there exists a2 ∈ A such
that N(a1) ∩ N(a2) 6= ∅. Moreover, given the structure of the graphs in
G, if a1 and a2 have a common neighbor b ∈ B, then there exists a vertex
b1 ∈ B such that N(b1) = {a1, a2}. Using the same argument and b1 as
the common neighbor we deduce that there is a vertex b2 6= b1 in B such
that N(b2) = {a1, a2}. Thus in G, the vertices a1, a2, b1, and b2 induce a
C4. Subdividing three edges of the C4 yields a C7 which requires at least
three vertices to dominate; hence, the domination number increases. Hence,
sdγ(G) ≤ 3. Thus, if G is bipartite (and γ(G) = β1(G)), then sdγ(G) ≤ 3.
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In conclusion, if γ(G) = β1(G) and G does not have a perfect matching,
then sdγ(G) ≤ 3.

Our main result of this section follows directly from Proposition 9, Corollary
11, Corollary 13, and Theorem 15.

Theorem 16. If G is a connected graph of order n ≥ 3, then

sdγ(G) ≤ γ(G) + 1.

3. The Counterexample

In this section we settle Conjecture 2 with a counterexample. Let Gt denote
the Cartesian product Kt × Kt. We can think of Gt as having t disjoint
copies of Kt in “rows” and t disjoint copies of Kt in “columns”. In other
words we can think of the vertices of the Kt ×Kt as a matrix where vertex
vi,j is in the ith row (copy of Kt) and the jth column (copy of Kt). For ease
of discussion, we will be using the words row and column to mean a “copy
of Kt”.

Theorem 17. For any positive integer t ≥ 4, sdγ(Kt ×Kt) = 4.

Proof. Let Gt = Kt ×Kt. We first show that γ(Gt) = t. It is immediate
that γ(Gt) ≤ t, since {v1,1, v2,1, . . . , vt,1} is a dominating set. Assume that
γ(Gt) ≤ t− 1. Then, without loss of generality, we may assume that row 1
has no vertex in any γ(Gt)-set S. But then the vertices in S dominate at
most t− 1 vertices of row 1. Thus, there is at least one undominated vertex
in row 1, a contradiction. Therefore, γ(Gt) = t.

To aid in our arguments, we observe the following facts about γ-sets S
in the graph Gt for t ≥ 4.

1. Every dominating set contains a permutation of the row indices or
a permutation of the column indices (or both). These permutations must
exist since {v1,1, v2,2, . . . , vt,t} must all be dominated and a vertex is only
dominated by a vertex in the same row or column.

2. For any k × k square B, |V (B) ∩ S| ≤ k. This result builds on the
first observation, for if |V (B)∩S| ≥ k + 1, then at least one of those k rows
has two or more vertices in it and at least one of the columns has two or
more vertices in it. Hence, no permutation can exist.
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Next we show that sdγ(Gt) ≥ 4 by showing that if any set of three or fewer
edges of Gt are subdivided, then the resulting graph can still be dominated
by t vertices. Notice that if a set S dominates the graph resulting from
subdividing three arbitrary edges, then S dominates the graph resulting
from subdividing any pair of these edges. Hence, we consider the subdivision
of three arbitrary edges of Gt to form G′

t. Without loss of generality, the
only distinct possibilities are the following:

Case 1. All three edges are from the same row (respectively, column) i.
Then S = {vi,j : 1 ≤ j ≤ t} dominates G′

t.

Case 2. Two edges are from the same row (respectively, column) and
one edge is from a different row or column.

(a) The two edges from the same row (respectively, column) are adja-
cent. Without loss of generality, we may assume that these edges are v1,1v1,2

and v1,2v1,3. There are eight distinct possibilities, up to isomorphism, for
the third edge:
(1) v1,2v2,2. Then S = {v1,2, v2,1, vi,i : 3 ≤ i ≤ t} dominates G′

t.
(2) v1,1v2,1. Then S = {v1,1, v1,3, v2,2, vi,i : 4 ≤ i ≤ t} dominates G′

t.
(3) v2,1v2,2. Then S = {v1,2, v2,1, vi,i : 3 ≤ i ≤ t} dominates G′

t.
(4) v2,1v3,1. Then S = {v1,2, v2,1, vi,i : 3 ≤ i ≤ t} dominates G′

t.
(5) v2,3v2,4. Then S = {v1,2, v3,2, v2,3, vi,i : 4 ≤ i ≤ t} dominates G′

t.
(6) v2,4v2,5 if t ≥ 5. Then S = {v1,1, v1,2, v1,3, v2,4, vi,i : 5 ≤ i ≤ t}

dominates G′
t.

(7) v2,4v3,4. Then S = {v1,2, v2,1, v3,4, v4,3, vi,i : 5 ≤ i ≤ t} dominates G′
t.

(8) v1,4v2,4. Then S = {v1,1, v1,2, v1,3, v2,4, v1,i : 5 ≤ i ≤ t}.
(b) The two edges in the same row (respectively, column) are not adja-

cent. Without loss of generality, we may assume that these edges are v1,1v1,2

and v1,3v1,4. There are eight distinct possibilities for the third edge:
(1) v1,1v2,1. Then S = {v1,1, v1,3, v2,2, vi,i : 4 ≤ i ≤ t} dominates G′

t.
(2) v2,1v2,2. Then S = {v1,2, v2,1, v1,3, vi,i : 4 ≤ i ≤ t} dominates G′

t.
(3) v2,2v2,3. Then S = {v1,1, v1,3, v2,2, vi,i : 4 ≤ i ≤ t} dominates G′

t.
(4) v2,1v3,1. Then S = {v1,2, v2,1, v3,3, v1,4, vi,i : 5 ≤ i ≤ t} dominates G′

t.
(5) v2,4v2,5 if t ≥ 5. Then S = {v1,1, v1,2, v1,3, v2,4, vi,i : 5 ≤ i ≤ t}

dominates G′
t.
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(6) v2,5v3,5 if t ≥ 5. Then S = {v1,1, v1,3, v3,2, v2,5, v2,4, vi,i : 6 ≤ i ≤ t}
dominates G′

t.
(7) v2,5v2,6 if t ≥ 5. Then S = {v2,5, v1,i : 1 ≤ i 6= 5 ≤ t} dominates G′

t.
(8) v1,5v2,5 if t ≥ 5. Then S = {v1,1, v1,2, v1,3, v2,4, v1,i : 5 ≤ i ≤ t}.

Case 3. The three edges are from distinct copies of Kt, that is, no two
edges are from the same row (respectively, column).

(a) The three edges are in distinct rows (respectively, columns) of Gt.
If these edges are incident to vertices in at least three different columns
(respectively, rows), then it is straightforward to find a dominating set that
contains t vertices that are a permutation of the columns (respectively, rows).
The only other possibility is that the edges are, without loss of generality,
v1,1v1,2, v2,1v2,2, and v3,1v3,2. In this case, S = {v1,1, v2,2, v3,1, vi,i : 4 ≤ i ≤ t}
dominates G′

t.

(b) Two of the edges are in distinct rows (respectively, columns) and
one is from a column (respectively, row) of Gt. In this case, one can select an
endvertex from each of the subdivided edges in such a way to dominate three
columns (respectively, rows) with the exception of one vertex, say vi,j . Thus,
any vertex from row i in one of the t − 3 remaining columns can dominate
vi,j . At this point, we have four vertices dominating four columns, that
is, t − 4 vertices can be selected to dominate the remaining t − 4 columns.
Hence, G′

t can be dominated with t vertices.

Hence, in every case, γ(G′
t) = γ(Gt) = t, so sdγ(Gt) ≥ 4. All that remains

is to show that sdγ(Gt) ≤ 4. Form G′
t from Gt by subdividing four edges in

a 3 × 3 block of vertices as illustrated by Figure 2. Then any dominating
set of G′

t must contain four vertices from the 3× 3 block. Therefore, there
are only t − 4 vertices available to dominate t − 3 rows and t − 3 columns
which cannot be done. Thus, by a subdivision of four edges, the resulting
graph has a domination number greater than t, so sdγ(Gt) ≤ 4 for t ≥ 3.

e e e

e e e

e e e

Figure 2. Four edges whose subdivision increases the domination number.
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4. Constant Upper Bounds on the Domination
Subdivision Number for Specific Families of

Graphs

The next result can be used to establish constant upper bounds for sdγ(G)
for several classes of graphs.

Define a vertex u to be triangular if every vertex v adjacent to u is
contained in a triangle with u. Stated equivalently, a vertex is triangular
if the induced subgraph G[N(u)] contains no isolated vertices. Notice, by
definition, if a vertex u is triangular, then deg(u) ≥ 2. We say that a graph
G is triangular if it contains at least one triangular vertex, and is completely
triangular if every vertex in G is triangular.

Theorem 18. If a graph G contains a triangular vertex u, then sdγ(G) ≤
deg(u) + 1.

Proof. Let u ∈ V and assume that u is a triangular vertex, that is,
deg(u) ≥ 2 and G[N(u)] has no isolated vertices. Let Gu be the graph
which results from subdividing every edge incident with u in G, and one
additional edge between two vertices v, w in G[N(u)]. We know that such
an edge vw exists, since u is triangular. Let a be the subdivision vertex
between v and w in Gu.

Now either γ(Gu) > γ(G), in which case sdγ(G) ≤ deg(u) + 1, or
γ(Gu) = γ(G). Assume that γ(Gu) = γ(G), and let S be any γ(Gu)-set.

Case 1. u ∈ S. In this case at least one of {v, a, w} must also be in S to
dominate a. But if either v ∈ S or w ∈ S (or both), then S − {u} is also a
dominating set of G, contradicting the minimality of γ(G). If v, w /∈ S and
a ∈ S, it follows that S−{a, u}∪{v} is a dominating set of G of cardinality
γ(G)− 1, again a contradiction.

Case 2. u /∈ S, b ∈ S, where b is the subdivision vertex between u and
v. Again one of {v, a, w} must be in S. If v ∈ S or w ∈ S, then S −{b} is a
dominating set of G; and if a ∈ S, then S − {a, b} ∪ {v} is a dominating set
of G. In all cases, we contradict the minimality of γ(G).

Case 3. u /∈ S, b /∈ S, and c ∈ S, where c is a subdivision vertex on
an edge ux, where x 6= v, and x 6= w. We can assume, without loss of
generality, that S contains only one subdivision vertex adjacent to u, since
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if there are any other subdivision vertices in S which are adjacent to u, they
can be exchanged with the vertices adjacent to u in G to which they are
adjacent in Gu. This means that S contains exactly one subdivision vertex,
say c, adjacent to u.

This also means that every vertex, other than possibly x, which is ad-
jacent to u in G must be in S, in order to dominate all of the subdivision
vertices (other than c) adjacent to u in Gu. Notice that we can assume that
x /∈ S, since if x ∈ S, then S − {c} is a dominating set of G.

Since G[N(u)] has no isolated vertices, by assumption, x must be adja-
cent to at least one vertex, say y, where y is also adjacent to u in G. We have
already established that y ∈ S. It follows therefore that pn[c, S] = {c, u},
and therefore S − {c} is a dominating set of G, a contradiction.

Corollary 19. For every completely triangular graph G, sdγ(G) ≤ δ(G)+1.

A vertex v in a graph G is called simplicial if the induced subgraph G[N [v]]
is a complete graph. Clearly every simplicial vertex of degree at least two is
triangular.

Corollary 20. If a graph G contains a simplicial vertex u of degree at least
two, then sdγ(G) ≤ deg(u) + 1.

A k-tree is any graph which can be obtained from a complete graph on k+1
vertices, by repeatedly adding a new vertex and joining it to every vertex in
a complete subgraph of the existing graph of order k. It is easy to see that
every k-tree is completely triangular.

Corollary 21. For every k-tree G, k ≥ 2, sdγ(G) ≤ k + 1.

A graph G is called chordal if every cycle of G of length greater than three
has a chord, that is, an edge between two nonconsecutive vertices of the
cycle. Every k-tree is a chordal graph. In fact, it is easy to see that every
2-connected chordal graph is completely triangular.

Corollary 22. For every 2-connected chordal graph G, sdγ(G) ≤ δ(G) + 1.

A maximal outerplanar graph is a 2-tree which is obtained from a copy
of K3 by repeatedly adding a new vertex and joining it to two adjacent
vertices on the exterior face of the existing graph. It is easy to see that
every maximal outerplanar graph G contains at least two vertices of degree
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two, which is the minimum degree of any vertex in G, and that each such
vertex is a simplicial vertex. Notice that every maximal outerplanar graph
is completely triangular.

Corollary 23. For every maximal outerplanar graph G,

sdγ(G) ≤ δ(G) + 1 = 3.

The same upper bound for sdγ(G) in fact holds for any graph having a
vertex of degree two which is contained in a triangle since such a vertex is
necessarily triangular.

Corollary 24. For any graph G having a vertex of degree two which forms
a triangle with two other vertices,

1 ≤ sdγ(G) ≤ 3.

It is well known that every maximal planar graph contains at least one
vertex of degree at most five. One can also observe that every maximal
planar graph is completely triangular.

Corollary 25. For every maximal planar graph G, sdγ(G) ≤ δ(G) + 1 ≤ 6.

These observations suggest the following:

Conjecture 26. For every graph G with δ(G) ≥ 2, sdγ(G) ≤ δ(G) + 1.

Corollary 20 can be improved if we know more about the structure of the
simplicial vertices in a graph. A clique is any maximal complete subgraph
of a graph G.

Theorem 27. If G is a graph having a clique containing exactly two simpli-
cial vertices and at least two non-simplicial vertices, then 1 ≤ sdγ(G) ≤ 2.

Proof. It is straightforward to see that if you subdivide one edge between
the two adjacent simplicial vertices in such a clique, and then subdivide
any one edge between a simplicial vertex and a non-simplicial vertex in the
clique, then the resulting graph will have a domination number greater than
the domination number of the original graph.

Given three or more simplicial vertices in a clique, the domination subdivi-
sion number is even smaller.
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Theorem 28. If G is a graph having three or more pairwise-adjacent sim-
plicial vertices, then sdγ(G) = 1.

Proof. Let u, v, w be three pairwise adjacent simplicial vertices in a graph
G. We will assume that these vertices are all adjacent to at least one non-
simplicial vertex, else G is a complete graph, and sdγ(G) = sdγ(Kn) = 1.

Let C be the set of non-simplicial vertices adjacent to u, v, w, and let
D be the set of simplicial vertices in the clique containing u, v, w and the
vertices in C. Let Ga be the graph obtained from G by subdividing the edge
uv, and let vertex a be the subdivision vertex on this subdivided edge. We
will show that γ(Ga) > γ(G).

First, we will show that no γ(G)-set S is a dominating set of Ga.

Case 1. S ∩C 6= ∅. This implies that S ∩D = ∅, else S is not a minimal
dominating set of G. But this, in turn, implies that S does not dominate
the vertex a.

Case 2. S ∩ C = ∅. This implies that S ∩D 6= ∅, which in turn implies
that |S ∩D| = 1. If u ∈ S, then S does not dominate v. If v ∈ S, then S
does not dominate u. If neither u nor v is in S, then S does not dominate a.

Second, we will show that no set Sa containing a and of cardinality γ(G)
is a dominating set of Ga. Let Sa be a set of cardinality γ(G) containing a.

Case 1. Sa ∩ C 6= ∅: in this case Sa − {a} is a dominating set of G,
contradicting the minimality of γ(G).

Case 2. Sa ∩ C = ∅ but Sa ∩ D 6= ∅: again, in this case, Sa − {a}
dominates G, a contradiction.

Case 3. Sa ∩ C = ∅ and Sa ∩D = ∅; in this case Sa does not dominate
vertex w.

5. Open Problems

Although we have been able to establish constant upper bounds for the
domination subdivision numbers of several infinite families of graphs, we do
not know in general if these bounds are sharp. We conclude by presenting
a list of open problems suggested by this paper.

1. Is the following revised Arumugam conjecture true? For any graph G,
1 ≤ sdγ(G) ≤ 4.
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2. Is the bound in Corollary 4 sharp, that is, does there exist a grid graph
G for which sdγ(G) = 4?

3. Is the bound in Corollary 6 sharp, that is, does there exist a cubic graph
G for which sdγ(G) = 5?

4. Characterize the class of graphs for which sdγ(G) = γ(G) + 1.

5. Is the bound in Corollary 23 sharp, that is, does there exist a maximal
outerplanar graph G for which sdγ(G) = 3?

6. Is the bound in Corollary 25 sharp, that is, does there exist a maximal
planar graph G for which sdγ(G) = 6?

7. Is the following conjecture true? For every graph G with δ(G) ≥ 2,
sdγ(G) ≤ δ(G) + 1.

8. Characterize the class of graphs for which sdγ(G) = 1.
9. Is sdγ(Kt ×Kt ×Kt) = 5?
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