Discussiones Mathematicae
Graph Theory 21 (2001) 223-228

ON THE STABILITY FOR PANCYCLICITY

INGO SCHIERMEYER

Fakultdt fiir Mathematik und Informatik
Technische Universitat Bergakademie Freiberg
D—-09596 Freiberg, Germany

e-mail: schierme@math.tu-freiberg.de

Abstract

A property P defined on all graphs of order n is said to be k-stable
if for any graph of order n that does not satisfy P, the fact that uv is
not an edge of G and that G +ww satisfies P implies dg(u)+dg(v) < k.
Every property is (2n— 3)-stable and every k-stable property is (k+1)-
stable. We denote by s(P) the smallest integer k such that P is k-stable
and call it the stability of P. This number usually depends on n and is
at most 2n — 3. A graph of order n is said to be pancyclic if it contains

cycles of all lengths from 3 to n. We show that the stability s(P) for
the graph property ”G is pancyclic” satisfies max([%2] — 5,n + ) <
s(P) < max([%2] — 2,n +t), where ¢t = 2[ 2] — (n + 1).
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1. Introduction

We use [3] for terminology and notation not defined here and consider simple
graphs only. For any integer k, denote by Cj a cycle of length k. A graph
of order n is said to be pancyclic if it contains cycles of all lengths from 3
to n.

In [2], Bondy and Chvatal introduced the closure of a graph and the
stability of a graph property. The k-closure Cy(G) of a graph G is obtained
by recursively joining pairs of nonadjacent vertices whose degree sum is at
least k, until no such pair remains.
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A property P defined on all graphs of order n is said to be k-stable if for
any graph of order n that does not satisfy P, the fact that uv is not an edge
of G and that G + uv satisfies P implies dg(u) + dg(v) < k. Vice versa, if
wv ¢ E(G),dg(u) +dg(v) > k and G+ uv has property P, then G itself has
property P. Every property is (2n — 3)-stable and every k-stable property
is (k + 1)-stable. We denote by s(P) the smallest integer k such that P is
k-stable and call it the stability of P. This number usually depends on n
and is at most 2n — 3.

Theorem 1 [2]. The property P: "G contains a cycle Cy” satisfies s(P) =
2n—k for4 <k <mand s(P)=2n—k—1 for4 <k <n if k is even.

Question 1. What is the stability for the property "G is pancyclic™?
In 1971 Bondy [1] has posed the interesting ”metaconjecture”.

Conjecture 1 (metaconjecture). Almost any non-trivial condition on a
graph which implies that the graph is hamiltonian also implies that the graph
is pancyclic (except for maybe a simple family of exceptional graphs).

By Theorem 1, s(P) = n for the property ”G is hamiltonian”. The complete
bipartite graphs Kn z for n even, n > 4, and Kn+1 n-i for n odd, n > 5,

show that the stablhty s(P) for the property ’ G 1s pancyclic” satisfies
s(P) > n—+t for all n > 4, where t = 2[ %] — (n 4 1). In [5] the following
Theorem was proved.

Theorem 2. Let G be a hamiltonian graph of order n > 32 and u and v two
nonadjacent vertices with d(u) + d(v) > n +t, where t = 2[%] — (n + 1).
Then G contains all cycles of length k where 3 < k < %13

Moreover, examples were presented showing one cannot expect G to con-
tain cycles of length considerably longer than % with the assumption of
Theorem 2.

For the property P: "G is pancyclic’ we will prove the following

Theorem.

Theorem 3. Let P be the property "G is pancyclic”. Then the stability
s(P) satisfies max([%2] — 5,0+ t) < s(P) < max([3] — 2,n +t), where
t=2["] — (n+1).
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2. Exact Values and the Lower Bound

For a graph G of order n denote by s(P,n) the stability of the property "G
is pancyclic”. Then it is not very difficult to check that s(P,n) = n + ¢ for
3<n <9, where t =2[%H] — (n+1).

Next we will give a proof for the lower bound given in Theorem 3.

Proof. As mentioned in the introduction the complete bipartite graphs
Knn for n even, n > 4, and Knt1 n1 for n odd, n > 5, show that s(P,n) >
2 7 2

n+t for all n > 4, where ¢t = 2[2H7] — (n + 1).

1. For k > 1 let G5 be the graph of order n = 5k with vertex set

V(G) = {v1,...,v,} and a Hamilton cycle C : v; ... v,v1. Define u = vy, v =
Vkt1, @ = Vg1, b = Vakg2, ¢ = Vapqo,d = vapq3. Let Q = {va,..., 00}, R =
{Vkt2, - vak2}, S = {vogys, - Va1 } and P = {vggy2, ..., vsk}. Define

Nu)=QUPUR—{a,b}, N(v) =QUPUR—{c,d}. Then d(u) +d(v) =
6k —6 =n+ n—TSO and the graph G + uv is pancyclic whereas G misses a
cycle of length 2k + 3.

2. For k > 1 let Gsi41 be the graph of order n = 5k + 1 with ver-
tex set V(G) = {v1,...,v,} and a Hamilton cycle C : v;...v,v1. De-
fine u = v1,v = Vgy2,6 = Vok41,b = Vopy2,C = Vgpto2,d = vVgpy3. Let
Q= {ve,...,vk41}, R = {vks3,...,v2642},S = {vok+3,. .., Vap+1} and P =
{vak+2, ..., Vsk+1}. Define N(u) =QUPUR—{a,b},N(v) =QUPUR—
{¢,d}. Then d(u) + d(v) = 6k —4 = n + ”_T% and the graph G + wv is
pancyclic whereas G misses a cycle of length 2k + 3.

3. For k > 1 let G542 be the graph of order n = 5k + 2 with vertex set

V(G) = {v1,...,v,} and a Hamilton cycle C': v; ... v,v;. Define v = v1,v =
Uk+1, @ = V21,0 = Vopt2, ¢ = Vg2, d = vapps. Let Q = {v,..., 00}, R =
{Okt2, .- Va2t S = {vats, .. Va1 } and P = {vagio, ..., Uski2}. De-

fine N(u) = QUPUR—{a,b}, N(v) = QUPUR—{c,d}. Then d(u)+d(v) =

6k —2=n+ "_522 and the graph G + uv is pancyclic whereas G misses a

cycle of length 2k + 3.

4. For k > 1 let Gsi13 be the graph of order n = 5k + 3 with ver-
tex set V(G) = {v1,...,v,} and a Hamilton cycle C' : v;...v,v;. De-
fine u = V1,V = V42,0 = ’U2k+2,b = V2k+43,C = U4k+4,d = UV4k+5- Let
Q = {Ug, ey Uk+1}, R = {Uk+3, ey U2k+3}, S = {ng+4, cee ,U4k+3} and P =
{v4k+4,...,Vsk+3}. Define N(u) =QUPUR—{a,b},N(v) =QUPUR —
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{c,d}. Then d(u) + d(v) = 6k —2 = n + 222 and the graph G + uv is
pancyclic whereas G' misses a cycle of length 2k + 4.

5. For k > 0 let Gsr14 be the graph of order n = 5k + 4 with ver-
tex set V(G) = {v1,...,v,} and a Hamilton cycle C' : v;...v,v;. De-
fine u = v1,v = Vgy2,a = Vopto,b = Vok13,C = Vgpiq,d = Vgpas. Let
Q = {’U2, ce ,U]H_l},R = {Uk+3, cee ,U2k+3}, S = {ng+4, v ,v4k+3} and P =
{U4k+47---7v5k+4}~ Define N(u) = QUPUR— {a,b},N(v) = QUPUR—
{c,d}. Then d(u) +d(v) = 6k = n+ 222! and the graph G 4 wv is pancyclic
whereas G misses a cycle of length 2k + 4.

Summarizing we obtain that s(P) > max([%2]—5, n+t), where t = 2[ 2] —
(n+1). |

3. The Upper Bound

In this section we will give a proof for the upper bound given in Theorem 3.
For this proof we will use the following results.

Corollary 1 [4]. Let G be a hamiltonian graph of order n. If there exist
two nonadjacent vertices u and v at distance d > 3 on a hamiltonian cycle
of G such that d(u) +d(v) > n+d —2, then G contains cycles of all lengths
between 3 and n —d + 1.

Lemma 1 [4]. Let G contain a hamiltonian path P = viva...v, such that
vivy, € E(G) and d(v1) + d(vn) > n+ d for some integer d, 0 < d <n — 4.
Then for any 1, 2 <1< d+ 3, there exists a (v1,vy)-path of length l.

Theorem 4 [4]. Let G be a graph of order n. If G has a hamiltonian (u,v)-
path for a pair of nonadjacent vertices u and v such that d(u) + d(v) > n,
then G s pancyclic.

Proof of Theorem 3. Suppose there is a graph G with nonadjacent
vertices u, v such that d(u)+d(v) > max([%"} —2,n+t), G+uv is pancyclic,
but G is not. Then n > 10. By Theorem 1, G is hamiltonian. Let C :
v1...v,v1 be a Hamilton cycle in G. Choose the labeling such that u =
V1,V = Upyo Withn = r+s+2and r < s. Let R = {vo,...,0,41},5 =
{vr43,...,vp} and d = de(u,v) = r+1. Set d(u)+d(v) = r+p+s+q, where
dr(u) +dr(v) =r+p and ds(u) + dg(v) = s + ¢. Recall that d(u) + d(v) >
[%"1 — 2. By Theorem 1, G contains cycles C}, for L%n] +2<k<n.
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We distinguish several cases.

Case 1. d < [%].
Since n > 10 we have d(u) + d(v) > n + 2. Thus dg(u) + dg(v) > s+ 2
for 2 < d < 3. By Theorem 4, G contains cycles Cs,...,Csi2. Hence G is
pancyclic for d = 2, a contradiction.

So we may assume that d > 3. By Corollary 1, G contains cycles
Cs,...,Ch_q+1. Hence G is pancyclic since n —d +1 > L%”j + 1, a contra-
diction.

Case2. d > [5]+ 1.

Subcase 2.1. dg(u) + dg(v) > s+ 2.
By Theorem 4, G contains cycles Cs, ..., Csi2. Note that s +2 > 5 + 1.

Subcase 2.1.1. p > | &| — 5.
By Lemma 1 we can take (u,v)-paths of length [ in R U {u,v} for 2 <
I < p+1 and a (v,u)-path of length s + 1 in S U {u,v}. This gives cy-
cles Csy3,...,Csqpto. Hence G is pancyclic since s +p + 2 > L%”J + 2,
a contradiction.

Subcase 2.1.2. p < |3n| —s— 1.
Then g > [2]—242—p> [2]— [2] +s+1>s+1—[2] >2forn > 11.
Take (v, u)-paths of length I for 2 <1 < s—[5]+2in SU{u,v}. This gives
cycles Cp—s—142,-- "CL%”JH‘ Hence G is pancyclic, a contradiction. It is
easy to check that for n = 10 and s = 4 G is also pancyclic and we get a
contradiction.

Subcase 2.2. dg(u) +dg(v) < s+ 1.

Then dg(u) + dr(v) > r +1+ [§] — 2. By Theorem 4, G contains cycles
C3,...,Cry9. Set r+2 = [2]41+d'. By Lemma 1 there are (u, v)-paths of
lengths [ for 2 < 1 < [%] in RU{u,v}. This gives cycles Csy142,. .., C’S+1+(%1.
So far cycles of lengths [2] +d +2,...,|%| — d 4 1 are missing.

Let S = 51 U S, USs with 57 = {U(g]—i-d’-l—%"'vvn—f%l}’ Sy =
{vn,(%Hl, . ,v2[%1+d/+1} and S3 = {Uz[gud/w, ..., Up}. Then |S1| =n —
2[5] —d —1=1S3] and |So| =d' +1+3[5]| —n.

Suppose uv; € E(G) for some i with [§] 42+ d’ <4 < n. Then there
is a path wv;v;_1...v of length i — ([§] + d + 1) + 1. Together with the
(u,v)-paths in RU{u, v} we obtain cycles of lengths i —[§]—d'+2,...,i—d".
Hence, for n — [5]+1 <i <n—[%]+2d’, we obtain all missing cycles and
G is pancyclic, a contradiction.
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A symmetric argument applies for edges vv; with [§] 424 d <i < n. In
this case, for n — [§] —d +2 <4 < 2[§] 4+ d' + 1, we obtain all missing
cycles and G is pancyclic, a contradiction.

Hence we may assume that Ng,(u) = Ng,(v) = 0. Suppose Ng(u) N
Ns(v) = 0. Then (dr(u) + dr(v)) + (ds(u) + ds(v)) < 2([5] +d' — 1)+
2(n—2[2]—d'—1) =2n—2[2] -4 < n+[2]—4 < [%] -2, a contradiction.
Hence Ng(u) N Ng(v) # 0. Thus there is a cycle of length [5] + d' 4 2.

Next consider two vertices € Si,y € S3 with do(z,y) = [5]. If
|E({z,y},{u,v})| > 3 then there is a (u,v)-path of length [%] + 2. To-
gether with the (u,v)-paths through R we obtain cycles of lengths [%] +
4,...,2[%2]+ 2 and G is pancyclic (recall that d’ > 1).

Hence we may further assume that |[E({z,y}, {u,v})| < 2 for all pairs of
vertices « € S1,y € S5 with do(z,y) = [%]. But then [42] — 2 < (dgr(u) +
dn(v)) + (ds(u) + ds(v) < 23]+ 1)+ 2(n - 2[3] —d' — 1) = 20 -
2[2] —4<n+[2] —4 < [%] -2, a final contradiction. u
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