ON THE STABILITY FOR PANCYCLICITY

Ingo Schiermeyer
Fakultät für Mathematik und Informatik
Technische Universität Bergakademie Freiberg
D-09596 Freiberg, Germany
e-mail: schierme@math.tu-freiberg.de

Abstract

A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that $u v$ is not an edge of G and that $G+u v$ satisfies P implies $d_{G}(u)+d_{G}(v)<k$. Every property is $(2 n-3)$-stable and every k-stable property is $(k+1)$ stable. We denote by $s(P)$ the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most $2 n-3$. A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n. We show that the stability $s(P)$ for the graph property " G is pancyclic" satisfies $\max \left(\left\lceil\frac{6 n}{5}\right\rceil-5, n+t\right) \leq$ $s(P) \leq \max \left(\left\lceil\frac{4 n}{3}\right\rceil-2, n+t\right)$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$.

Keywords: pancyclic graphs, stability.
2000 Mathematics Subject Classification: 05C35, 05C38, 05C45.

1. Introduction

We use [3] for terminology and notation not defined here and consider simple graphs only. For any integer k, denote by C_{k} a cycle of length k. A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n.

In [2], Bondy and Chvátal introduced the closure of a graph and the stability of a graph property. The k-closure $C_{k}(G)$ of a graph G is obtained by recursively joining pairs of nonadjacent vertices whose degree sum is at least k, until no such pair remains.

A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that $u v$ is not an edge of G and that $G+u v$ satisfies P implies $d_{G}(u)+d_{G}(v)<k$. Vice versa, if $u v \notin E(G), d_{G}(u)+d_{G}(v) \geq k$ and $G+u v$ has property P, then G itself has property P. Every property is $(2 n-3)$-stable and every k-stable property is $(k+1)$-stable. We denote by $s(P)$ the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most $2 n-3$.

Theorem 1 [2]. The property P : " G contains a cycle C_{k} " satisfies $s(P)=$ $2 n-k$ for $4 \leq k \leq n$ and $s(P)=2 n-k-1$ for $4 \leq k<n$ if k is even.

Question 1. What is the stability for the property " G is pancyclic"?
In 1971 Bondy [1] has posed the interesting "metaconjecture".
Conjecture 1 (metaconjecture). Almost any non-trivial condition on a graph which implies that the graph is hamiltonian also implies that the graph is pancyclic (except for maybe a simple family of exceptional graphs).

By Theorem 1, $s(P)=n$ for the property " G is hamiltonian". The complete bipartite graphs $K_{\frac{n}{2}, \frac{n}{2}}$ for n even, $n \geq 4$, and $K_{\frac{n+1}{2}, \frac{n-1}{2}}$ for n odd, $n \geq 5$, show that the stability $s(P)$ for the property ${ }^{2} G$ is pancyclic" satisfies $s(P) \geq n+t$ for all $n \geq 4$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$. In [5] the following Theorem was proved.

Theorem 2. Let G be a hamiltonian graph of order $n \geq 32$ and u and v two nonadjacent vertices with $d(u)+d(v) \geq n+t$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$. Then G contains all cycles of length k where $3 \leq k \leq \frac{n+13}{5}$.

Moreover, examples were presented showing one cannot expect G to contain cycles of length considerably longer than $\frac{n}{3}$ with the assumption of Theorem 2.

For the property $P: \quad " G$ is pancyclic" we will prove the following Theorem.

Theorem 3. Let P be the property " G is pancyclic". Then the stability $s(P)$ satisfies $\max \left(\left\lceil\frac{6 n}{5}\right\rceil-5, n+t\right) \leq s(P) \leq \max \left(\left\lceil\frac{4 n}{3}\right\rceil-2, n+t\right)$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$.

2. Exact Values and the Lower Bound

For a graph G of order n denote by $s(P, n)$ the stability of the property $" G$ is pancyclic". Then it is not very difficult to check that $s(P, n)=n+t$ for $3 \leq n \leq 9$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$.

Next we will give a proof for the lower bound given in Theorem 3.
Proof. As mentioned in the introduction the complete bipartite graphs $K_{\frac{n}{2}, \frac{n}{2}}$ for n even, $n \geq 4$, and $K_{\frac{n+1}{2}, \frac{n-1}{2}}$ for n odd, $n \geq 5$, show that $s(P, n) \geq$ $n+t$ for all $n \geq 4$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-(n+1)$.

1. For $k \geq 1$ let $G_{5 k}$ be the graph of order $n=5 k$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and a Hamilton cycle $C: v_{1} \ldots v_{n} v_{1}$. Define $u=v_{1}, v=$ $v_{k+1}, a=v_{2 k+1}, b=v_{2 k+2}, c=v_{4 k+2}, d=v_{4 k+3}$. Let $Q=\left\{v_{2}, \ldots, v_{k}\right\}, R=$ $\left\{v_{k+2}, \ldots, v_{2 k+2}\right\}, S=\left\{v_{2 k+3}, \ldots, v_{4 k+1}\right\}$ and $P=\left\{v_{4 k+2}, \ldots, v_{5 k}\right\}$. Define $N(u)=Q \cup P \cup R-\{a, b\}, N(v)=Q \cup P \cup R-\{c, d\}$. Then $d(u)+d(v)=$ $6 k-6=n+\frac{n-30}{5}$ and the graph $G+u v$ is pancyclic whereas G misses a cycle of length $2 k+3$.
2. For $k \geq 1$ let $G_{5 k+1}$ be the graph of order $n=5 k+1$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and a Hamilton cycle $C: v_{1} \ldots v_{n} v_{1}$. Define $u=v_{1}, v=v_{k+2}, a=v_{2 k+1}, b=v_{2 k+2}, c=v_{4 k+2}, d=v_{4 k+3}$. Let $Q=\left\{v_{2}, \ldots, v_{k+1}\right\}, R=\left\{v_{k+3}, \ldots, v_{2 k+2}\right\}, S=\left\{v_{2 k+3}, \ldots, v_{4 k+1}\right\}$ and $P=$ $\left\{v_{4 k+2}, \ldots, v_{5 k+1}\right\}$. Define $N(u)=Q \cup P \cup R-\{a, b\}, N(v)=Q \cup P \cup R-$ $\{c, d\}$. Then $d(u)+d(v)=6 k-4=n+\frac{n-26}{5}$ and the graph $G+u v$ is pancyclic whereas G misses a cycle of length $2 k+3$.
3. For $k \geq 1$ let $G_{5 k+2}$ be the graph of order $n=5 k+2$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and a Hamilton cycle $C: v_{1} \ldots v_{n} v_{1}$. Define $u=v_{1}, v=$ $v_{k+1}, a=v_{2 k+1}, b=v_{2 k+2}, c=v_{4 k+2}, d=v_{4 k+3}$. Let $Q=\left\{v_{2}, \ldots, v_{k}\right\}, R=$ $\left\{v_{k+2}, \ldots, v_{2 k+2}\right\}, S=\left\{v_{2 k+3}, \ldots, v_{4 k+1}\right\}$ and $P=\left\{v_{4 k+2}, \ldots, v_{5 k+2}\right\}$. Define $N(u)=Q \cup P \cup R-\{a, b\}, N(v)=Q \cup P \cup R-\{c, d\}$. Then $d(u)+d(v)=$ $6 k-2=n+\frac{n-22}{5}$ and the graph $G+u v$ is pancyclic whereas G misses a cycle of length $2 k+3$.
4. For $k \geq 1$ let $G_{5 k+3}$ be the graph of order $n=5 k+3$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and a Hamilton cycle $C: v_{1} \ldots v_{n} v_{1}$. Define $u=v_{1}, v=v_{k+2}, a=v_{2 k+2}, b=v_{2 k+3}, c=v_{4 k+4}, d=v_{4 k+5}$. Let $Q=\left\{v_{2}, \ldots, v_{k+1}\right\}, R=\left\{v_{k+3}, \ldots, v_{2 k+3}\right\}, S=\left\{v_{2 k+4}, \ldots, v_{4 k+3}\right\}$ and $P=$ $\left\{v_{4 k+4}, \ldots, v_{5 k+3}\right\}$. Define $N(u)=Q \cup P \cup R-\{a, b\}, N(v)=Q \cup P \cup R-$
$\{c, d\}$. Then $d(u)+d(v)=6 k-2=n+\frac{n-28}{5}$ and the graph $G+u v$ is pancyclic whereas G misses a cycle of length $2 k+4$.
5. For $k \geq 0$ let $G_{5 k+4}$ be the graph of order $n=5 k+4$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and a Hamilton cycle $C: v_{1} \ldots v_{n} v_{1}$. Define $u=v_{1}, v=v_{k+2}, a=v_{2 k+2}, b=v_{2 k+3}, c=v_{4 k+4}, d=v_{4 k+5}$. Let $Q=\left\{v_{2}, \ldots, v_{k+1}\right\}, R=\left\{v_{k+3}, \ldots, v_{2 k+3}\right\}, S=\left\{v_{2 k+4}, \ldots, v_{4 k+3}\right\}$ and $P=$ $\left\{v_{4 k+4}, \ldots, v_{5 k+4}\right\}$. Define $N(u)=Q \cup P \cup R-\{a, b\}, N(v)=Q \cup P \cup R-$ $\{c, d\}$. Then $d(u)+d(v)=6 k=n+\frac{n-24}{5}$ and the graph $G+u v$ is pancyclic whereas G misses a cycle of length $2 k+4$.

Summarizing we obtain that $s(P) \geq \max \left(\left\lceil\frac{6 n}{5}\right\rceil-5, n+t\right)$, where $t=2\left\lceil\frac{n+1}{2}\right\rceil-$ $(n+1)$.

3. The Upper Bound

In this section we will give a proof for the upper bound given in Theorem 3. For this proof we will use the following results.

Corollary 1 [4]. Let G be a hamiltonian graph of order n. If there exist two nonadjacent vertices u and v at distance $d \geq 3$ on a hamiltonian cycle of G such that $d(u)+d(v) \geq n+d-2$, then G contains cycles of all lengths between 3 and $n-d+1$.

Lemma 1 [4]. Let G contain a hamiltonian path $P=v_{1} v_{2} \ldots v_{n}$ such that $v_{1} v_{n} \notin E(G)$ and $d\left(v_{1}\right)+d\left(v_{n}\right) \geq n+d$ for some integer $d, 0 \leq d \leq n-4$. Then for any $l, 2 \leq l \leq d+3$, there exists $a\left(v_{1}, v_{n}\right)$-path of length l.

Theorem 4 [4]. Let G be a graph of order n. If G has a hamiltonian (u, v) path for a pair of nonadjacent vertices u and v such that $d(u)+d(v) \geq n$, then G is pancyclic.

Proof of Theorem 3. Suppose there is a graph G with nonadjacent vertices u, v such that $d(u)+d(v) \geq \max \left(\left\lceil\frac{4 n}{3}\right\rceil-2, n+t\right), G+u v$ is pancyclic, but G is not. Then $n \geq 10$. By Theorem $1, G$ is hamiltonian. Let C : $v_{1} \ldots v_{n} v_{1}$ be a Hamilton cycle in G. Choose the labeling such that $u=$ $v_{1}, v=v_{r+2}$ with $n=r+s+2$ and $r \leq s$. Let $R=\left\{v_{2}, \ldots, v_{r+1}\right\}, S=$ $\left\{v_{r+3}, \ldots, v_{n}\right\}$ and $d=d_{C}(u, v)=r+1$. Set $d(u)+d(v)=r+p+s+q$, where $d_{R}(u)+d_{R}(v)=r+p$ and $d_{S}(u)+d_{S}(v)=s+q$. Recall that $d(u)+d(v) \geq$ $\left\lceil\frac{4 n}{3}\right\rceil-2$. By Theorem 1, G contains cycles C_{k} for $\left\lfloor\frac{2}{3} n\right\rfloor+2 \leq k \leq n$.

We distinguish several cases.
Case 1. $d \leq\left\lceil\frac{n}{3}\right\rceil$.
Since $n \geq 10$ we have $d(u)+d(v) \geq n+2$. Thus $d_{S}(u)+d_{S}(v) \geq s+2$ for $2 \leq d \leq 3$. By Theorem 4, G contains cycles C_{3}, \ldots, C_{s+2}. Hence G is pancyclic for $d=2$, a contradiction.

So we may assume that $d \geq 3$. By Corollary $1, G$ contains cycles C_{3}, \ldots, C_{n-d+1}. Hence G is pancyclic since $n-d+1 \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$, a contradiction.

Case 2. $d \geq\left\lceil\frac{n}{3}\right\rceil+1$.
Subcase 2.1. $d_{S}(u)+d_{S}(v) \geq s+2$.
By Theorem 4, G contains cycles C_{3}, \ldots, C_{s+2}. Note that $s+2 \geq \frac{n}{2}+1$.
Subcase 2.1.1. $p \geq\left\lfloor\frac{2 n}{3}\right\rfloor-s$.
By Lemma 1 we can take (u, v)-paths of length l in $R \cup\{u, v\}$ for $2 \leq$ $l \leq p+1$ and a (v, u)-path of length $s+1$ in $S \cup\{u, v\}$. This gives cycles $C_{s+3}, \ldots, C_{s+p+2}$. Hence G is pancyclic since $s+p+2 \geq\left\lfloor\frac{2 n}{3}\right\rfloor+2$, a contradiction.

Subcase 2.1.2. $p \leq\left\lfloor\frac{2}{3} n\right\rfloor-s-1$.
Then $q \geq\left\lceil\frac{n}{3}\right\rceil-2+2-p \geq\left\lceil\frac{n}{3}\right\rceil-\left\lfloor\frac{2 n}{3}\right\rfloor+s+1 \geq s+1-\left\lceil\frac{n}{3}\right\rceil \geq 2$ for $n \geq 11$. Take (v, u)-paths of length l for $2 \leq l \leq s-\left\lceil\frac{n}{3}\right\rceil+2$ in $S \cup\{u, v\}$. This gives cycles $C_{n-s-1+2}, \ldots, C_{\left\lfloor\frac{2 n}{3}\right\rfloor+1}$. Hence G is pancyclic, a contradiction. It is easy to check that for $n=10$ and $s=4 G$ is also pancyclic and we get a contradiction.

Subcase 2.2. $d_{S}(u)+d_{S}(v) \leq s+1$.
Then $d_{R}(u)+d_{R}(v) \geq r+1+\left\lceil\frac{n}{3}\right\rceil-2$. By Theorem $4, G$ contains cycles C_{3}, \ldots, C_{r+2}. Set $r+2=\left\lceil\frac{n}{3}\right\rceil+1+d^{\prime}$. By Lemma 1 there are (u, v)-paths of lengths l for $2 \leq l \leq\left\lceil\frac{n}{3}\right\rceil$ in $R \cup\{u, v\}$. This gives cycles $C_{s+1+2}, \ldots, C_{s+1+\left\lceil\frac{n}{3}\right\rceil}$. So far cycles of lengths $\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+2, \ldots,\left\lfloor\frac{2 n}{3}\right\rfloor-d^{\prime}+1$ are missing.

Let $S=S_{1} \cup S_{2} \cup S_{3}$ with $S_{1}=\left\{v_{\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+2}, \ldots, v_{n-\left\lceil\frac{n}{3}\right\rceil}\right\}, S_{2}=$ $\left\{v_{n-\left\lceil\frac{n}{3}\right\rceil+1}, \ldots, v_{2\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+1}\right\}$ and $S_{3}=\left\{v_{2\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+2}, \ldots, v_{n}\right\}$. Then $\left|S_{1}\right|=n-$ $2\left\lceil\frac{n}{3}\right\rceil-d^{\prime}-1=\left|S_{3}\right|$ and $\left|S_{2}\right|=d^{\prime}+1+3\left\lceil\frac{n}{3}\right\rceil-n$.

Suppose $u v_{i} \in E(G)$ for some i with $\left\lceil\frac{n}{3}\right\rceil+2+d^{\prime} \leq i \leq n$. Then there is a path $u v_{i} v_{i-1} \ldots v$ of length $i-\left(\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+1\right)+1$. Together with the (u, v)-paths in $R \cup\{u, v\}$ we obtain cycles of lengths $i-\left\lceil\frac{n}{3}\right\rceil-d^{\prime}+2, \ldots, i-d^{\prime}$. Hence, for $n-\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq n-\left\lceil\frac{n}{3}\right\rceil+2 d^{\prime}$, we obtain all missing cycles and G is pancyclic, a contradiction.

A symmetric argument applies for edges $v v_{i}$ with $\left\lceil\frac{n}{3}\right\rceil+2+d^{\prime} \leq i \leq n$. In this case, for $n-\left\lceil\frac{n}{3}\right\rceil-d^{\prime}+2 \leq i \leq 2\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+1$, we obtain all missing cycles and G is pancyclic, a contradiction.

Hence we may assume that $N_{S_{2}}(u)=N_{S_{2}}(v)=\emptyset$. Suppose $N_{S}(u) \cap$ $N_{S}(v)=\emptyset$. Then $\left(d_{R}(u)+d_{R}(v)\right)+\left(d_{S}(u)+d_{S}(v)\right) \leq 2\left(\left\lceil\frac{n}{3}\right\rceil+d^{\prime}-1\right)+$ $2\left(n-2\left\lceil\frac{n}{3}\right\rceil-d^{\prime}-1\right)=2 n-2\left\lceil\frac{n}{3}\right\rceil-4 \leq n+\left\lceil\frac{n}{3}\right\rceil-4<\left\lceil\frac{4 n}{3}\right\rceil-2$, a contradiction. Hence $N_{S}(u) \cap N_{S}(v) \neq \emptyset$. Thus there is a cycle of length $\left\lceil\frac{n}{3}\right\rceil+d^{\prime}+2$.

Next consider two vertices $x \in S_{1}, y \in S_{3}$ with $d_{C}(x, y)=\left\lceil\frac{n}{3}\right\rceil$. If $|E(\{x, y\},\{u, v\})| \geq 3$ then there is a (u, v)-path of length $\left\lceil\frac{n}{3}\right\rceil+2$. Together with the (u, v)-paths through R we obtain cycles of lengths $\left\lceil\frac{n}{3}\right\rceil+$ $4, \ldots, 2\left\lceil\frac{n}{3}\right\rceil+2$ and G is pancyclic (recall that $d^{\prime} \geq 1$).

Hence we may further assume that $|E(\{x, y\},\{u, v\})| \leq 2$ for all pairs of vertices $x \in S_{1}, y \in S_{3}$ with $d_{C}(x, y)=\left\lceil\frac{n}{3}\right\rceil$. But then $\left\lceil\frac{4 n}{3}\right\rceil-2 \leq\left(d_{R}(u)+\right.$ $\left.d_{R}(v)\right)+\left(d_{S}(u)+d_{S}(v)\right) \leq 2\left(\left\lceil\frac{n}{3}\right\rceil+d^{\prime}-1\right)+2\left(n-2\left\lceil\frac{n}{3}\right\rceil-d^{\prime}-1\right)=2 n-$ $2\left\lceil\frac{n}{3}\right\rceil-4 \leq n+\left\lceil\frac{n}{3}\right\rceil-4<\left\lceil\frac{4 n}{3}\right\rceil-2$, a final contradiction.

Acknowledgement

I thank Akira Saito very much for a stimulating discussion on this topic and some valuable comments. I also thank the referee for his valuable suggestions.

References

[1] J.A. Bondy, Pancyclic graphs, in: R.C. Mullin, K.B. Reid, D.P. Roselle and R.S.D. Thomas, eds, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium III (1971) 167-172.
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[4] R. Faudree, O. Favaron, E. Flandrin and H. Li, Pancyclism and small cycles in graphs, Discuss. Math. Graph Theory 16 (1996) 27-40.
[5] U. Schelten and I. Schiermeyer, Small cycles in Hamiltonian graphs, Discrete Applied Math. 79 (1997) 201-211.

