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Abstract

A property P defined on all graphs of order n is said to be k-stable
if for any graph of order n that does not satisfy P , the fact that uv is
not an edge of G and that G+uv satisfies P implies dG(u)+dG(v) < k.
Every property is (2n−3)-stable and every k-stable property is (k+1)-
stable. We denote by s(P ) the smallest integer k such that P is k-stable
and call it the stability of P . This number usually depends on n and is
at most 2n−3. A graph of order n is said to be pancyclic if it contains
cycles of all lengths from 3 to n. We show that the stability s(P ) for
the graph property ”G is pancyclic” satisfies max(d 6n

5 e − 5, n + t) ≤
s(P ) ≤ max(d 4n

3 e − 2, n + t), where t = 2dn+1
2 e − (n + 1).
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1. Introduction

We use [3] for terminology and notation not defined here and consider simple
graphs only. For any integer k, denote by Ck a cycle of length k. A graph
of order n is said to be pancyclic if it contains cycles of all lengths from 3
to n.

In [2], Bondy and Chvátal introduced the closure of a graph and the
stability of a graph property. The k-closure Ck(G) of a graph G is obtained
by recursively joining pairs of nonadjacent vertices whose degree sum is at
least k, until no such pair remains.
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A property P defined on all graphs of order n is said to be k-stable if for
any graph of order n that does not satisfy P , the fact that uv is not an edge
of G and that G + uv satisfies P implies dG(u) + dG(v) < k. Vice versa, if
uv /∈ E(G), dG(u)+dG(v) ≥ k and G+uv has property P , then G itself has
property P . Every property is (2n − 3)-stable and every k-stable property
is (k + 1)-stable. We denote by s(P ) the smallest integer k such that P is
k-stable and call it the stability of P . This number usually depends on n
and is at most 2n− 3.

Theorem 1 [2]. The property P : ”G contains a cycle Ck” satisfies s(P ) =
2n− k for 4 ≤ k ≤ n and s(P ) = 2n− k − 1 for 4 ≤ k < n if k is even.

Question 1. What is the stability for the property ”G is pancyclic”?

In 1971 Bondy [1] has posed the interesting ”metaconjecture”.

Conjecture 1 (metaconjecture). Almost any non-trivial condition on a
graph which implies that the graph is hamiltonian also implies that the graph
is pancyclic (except for maybe a simple family of exceptional graphs).

By Theorem 1, s(P ) = n for the property ”G is hamiltonian”. The complete
bipartite graphs Kn

2
, n
2

for n even, n ≥ 4, and Kn+1
2

, n−1
2

for n odd, n ≥ 5,
show that the stability s(P ) for the property ”G is pancyclic” satisfies
s(P ) ≥ n + t for all n ≥ 4, where t = 2dn+1

2 e − (n + 1). In [5] the following
Theorem was proved.

Theorem 2. Let G be a hamiltonian graph of order n ≥ 32 and u and v two
nonadjacent vertices with d(u) + d(v) ≥ n + t, where t = 2dn+1

2 e − (n + 1).
Then G contains all cycles of length k where 3 ≤ k ≤ n+13

5 .

Moreover, examples were presented showing one cannot expect G to con-
tain cycles of length considerably longer than n

3 with the assumption of
Theorem 2.

For the property P : ”G is pancyclic” we will prove the following
Theorem.

Theorem 3. Let P be the property ”G is pancyclic”. Then the stability
s(P ) satisfies max(d6n

5 e − 5, n + t) ≤ s(P ) ≤ max(d4n
3 e − 2, n + t), where

t = 2dn+1
2 e − (n + 1).
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2. Exact Values and the Lower Bound

For a graph G of order n denote by s(P, n) the stability of the property ”G
is pancyclic”. Then it is not very difficult to check that s(P, n) = n + t for
3 ≤ n ≤ 9, where t = 2dn+1

2 e − (n + 1).
Next we will give a proof for the lower bound given in Theorem 3.

Proof. As mentioned in the introduction the complete bipartite graphs
Kn

2
, n
2

for n even, n ≥ 4, and Kn+1
2

, n−1
2

for n odd, n ≥ 5, show that s(P, n) ≥
n + t for all n ≥ 4, where t = 2dn+1

2 e − (n + 1).

1. For k ≥ 1 let G5k be the graph of order n = 5k with vertex set
V (G) = {v1, . . . , vn} and a Hamilton cycle C : v1 . . . vnv1. Define u = v1, v =
vk+1, a = v2k+1, b = v2k+2, c = v4k+2, d = v4k+3. Let Q = {v2, . . . , vk}, R =
{vk+2, . . . , v2k+2}, S = {v2k+3, . . . , v4k+1} and P = {v4k+2, . . . , v5k}. Define
N(u) = Q∪ P ∪R− {a, b}, N(v) = Q∪ P ∪R− {c, d}. Then d(u) + d(v) =
6k − 6 = n + n−30

5 and the graph G + uv is pancyclic whereas G misses a
cycle of length 2k + 3.

2. For k ≥ 1 let G5k+1 be the graph of order n = 5k + 1 with ver-
tex set V (G) = {v1, . . . , vn} and a Hamilton cycle C : v1 . . . vnv1. De-
fine u = v1, v = vk+2, a = v2k+1, b = v2k+2, c = v4k+2, d = v4k+3. Let
Q = {v2, . . . , vk+1}, R = {vk+3, . . . , v2k+2}, S = {v2k+3, . . . , v4k+1} and P =
{v4k+2, . . . , v5k+1}. Define N(u) = Q ∪ P ∪R− {a, b}, N(v) = Q ∪ P ∪R−
{c, d}. Then d(u) + d(v) = 6k − 4 = n + n−26

5 and the graph G + uv is
pancyclic whereas G misses a cycle of length 2k + 3.

3. For k ≥ 1 let G5k+2 be the graph of order n = 5k + 2 with vertex set
V (G) = {v1, . . . , vn} and a Hamilton cycle C : v1 . . . vnv1. Define u = v1, v =
vk+1, a = v2k+1, b = v2k+2, c = v4k+2, d = v4k+3. Let Q = {v2, . . . , vk}, R =
{vk+2, . . . , v2k+2}, S = {v2k+3, . . . , v4k+1} and P = {v4k+2, . . . , v5k+2}. De-
fine N(u) = Q∪P ∪R−{a, b}, N(v) = Q∪P ∪R−{c, d}. Then d(u)+d(v) =
6k − 2 = n + n−22

5 and the graph G + uv is pancyclic whereas G misses a
cycle of length 2k + 3.

4. For k ≥ 1 let G5k+3 be the graph of order n = 5k + 3 with ver-
tex set V (G) = {v1, . . . , vn} and a Hamilton cycle C : v1 . . . vnv1. De-
fine u = v1, v = vk+2, a = v2k+2, b = v2k+3, c = v4k+4, d = v4k+5. Let
Q = {v2, . . . , vk+1}, R = {vk+3, . . . , v2k+3}, S = {v2k+4, . . . , v4k+3} and P =
{v4k+4, . . . , v5k+3}. Define N(u) = Q ∪ P ∪R− {a, b}, N(v) = Q ∪ P ∪R−
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{c, d}. Then d(u) + d(v) = 6k − 2 = n + n−28
5 and the graph G + uv is

pancyclic whereas G misses a cycle of length 2k + 4.

5. For k ≥ 0 let G5k+4 be the graph of order n = 5k + 4 with ver-
tex set V (G) = {v1, . . . , vn} and a Hamilton cycle C : v1 . . . vnv1. De-
fine u = v1, v = vk+2, a = v2k+2, b = v2k+3, c = v4k+4, d = v4k+5. Let
Q = {v2, . . . , vk+1}, R = {vk+3, . . . , v2k+3}, S = {v2k+4, . . . , v4k+3} and P =
{v4k+4, . . . , v5k+4}. Define N(u) = Q ∪ P ∪R− {a, b}, N(v) = Q ∪ P ∪R−
{c, d}. Then d(u)+d(v) = 6k = n+ n−24

5 and the graph G+uv is pancyclic
whereas G misses a cycle of length 2k + 4.

Summarizing we obtain that s(P ) ≥ max(d6n
5 e−5, n+t), where t = 2dn+1

2 e−
(n + 1).

3. The Upper Bound

In this section we will give a proof for the upper bound given in Theorem 3.
For this proof we will use the following results.

Corollary 1 [4]. Let G be a hamiltonian graph of order n. If there exist
two nonadjacent vertices u and v at distance d ≥ 3 on a hamiltonian cycle
of G such that d(u) + d(v) ≥ n + d− 2, then G contains cycles of all lengths
between 3 and n− d + 1.

Lemma 1 [4]. Let G contain a hamiltonian path P = v1v2 . . . vn such that
v1vn /∈ E(G) and d(v1) + d(vn) ≥ n + d for some integer d, 0 ≤ d ≤ n− 4.
Then for any l, 2 ≤ l ≤ d + 3, there exists a (v1, vn)-path of length l.

Theorem 4 [4]. Let G be a graph of order n. If G has a hamiltonian (u, v)-
path for a pair of nonadjacent vertices u and v such that d(u) + d(v) ≥ n,
then G is pancyclic.

Proof of Theorem 3. Suppose there is a graph G with nonadjacent
vertices u, v such that d(u)+d(v) ≥ max(d4n

3 e−2, n+t), G+uv is pancyclic,
but G is not. Then n ≥ 10. By Theorem 1, G is hamiltonian. Let C :
v1 . . . vnv1 be a Hamilton cycle in G. Choose the labeling such that u =
v1, v = vr+2 with n = r + s + 2 and r ≤ s. Let R = {v2, . . . , vr+1}, S =
{vr+3, . . . , vn} and d = dC(u, v) = r+1. Set d(u)+d(v) = r+p+s+q, where
dR(u) + dR(v) = r + p and dS(u) + dS(v) = s + q. Recall that d(u) + d(v) ≥
d4n

3 e − 2. By Theorem 1, G contains cycles Ck for b2
3nc+ 2 ≤ k ≤ n.
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We distinguish several cases.

Case 1. d ≤ dn
3 e.

Since n ≥ 10 we have d(u) + d(v) ≥ n + 2. Thus dS(u) + dS(v) ≥ s + 2
for 2 ≤ d ≤ 3. By Theorem 4, G contains cycles C3, . . . , Cs+2. Hence G is
pancyclic for d = 2, a contradiction.

So we may assume that d ≥ 3. By Corollary 1, G contains cycles
C3, . . . , Cn−d+1. Hence G is pancyclic since n− d + 1 ≥ b2n

3 c+ 1, a contra-
diction.

Case 2. d ≥ dn
3 e+ 1.

Subcase 2.1. dS(u) + dS(v) ≥ s + 2.
By Theorem 4, G contains cycles C3, . . . , Cs+2. Note that s + 2 ≥ n

2 + 1.

Subcase 2.1.1. p ≥ b2n
3 c − s.

By Lemma 1 we can take (u, v)-paths of length l in R ∪ {u, v} for 2 ≤
l ≤ p + 1 and a (v, u)-path of length s + 1 in S ∪ {u, v}. This gives cy-
cles Cs+3, . . . , Cs+p+2. Hence G is pancyclic since s + p + 2 ≥ b2n

3 c + 2,
a contradiction.

Subcase 2.1.2. p ≤ b2
3nc − s− 1.

Then q ≥ dn
3 e− 2+2− p ≥ dn

3 e− b2n
3 c+ s+1 ≥ s+1−dn

3 e ≥ 2 for n ≥ 11.
Take (v, u)-paths of length l for 2 ≤ l ≤ s−dn

3 e+ 2 in S ∪{u, v}. This gives
cycles Cn−s−1+2, . . . , Cb 2n

3
c+1. Hence G is pancyclic, a contradiction. It is

easy to check that for n = 10 and s = 4 G is also pancyclic and we get a
contradiction.

Subcase 2.2. dS(u) + dS(v) ≤ s + 1.
Then dR(u) + dR(v) ≥ r + 1 + dn

3 e − 2. By Theorem 4, G contains cycles
C3, . . . , Cr+2. Set r +2 = dn

3 e+1+d′. By Lemma 1 there are (u, v)-paths of
lengths l for 2 ≤ l ≤ dn

3 e in R∪{u, v}. This gives cycles Cs+1+2, . . . , Cs+1+dn
3
e.

So far cycles of lengths dn
3 e+ d′ + 2, . . . , b2n

3 c − d′ + 1 are missing.
Let S = S1 ∪ S2 ∪ S3 with S1 = {vdn

3
e+d′+2, . . . , vn−dn

3
e}, S2 =

{vn−dn
3
e+1, . . . , v2dn

3
e+d′+1} and S3 = {v2dn

3
e+d′+2, . . . , vn}. Then |S1| = n−

2dn
3 e − d′ − 1 = |S3| and |S2| = d′ + 1 + 3dn

3 e − n.
Suppose uvi ∈ E(G) for some i with dn

3 e + 2 + d′ ≤ i ≤ n. Then there
is a path uvivi−1 . . . v of length i − (dn

3 e + d′ + 1) + 1. Together with the
(u, v)-paths in R∪{u, v} we obtain cycles of lengths i−dn

3 e−d′+2, . . . , i−d′.
Hence, for n−dn

3 e+ 1 ≤ i ≤ n−dn
3 e+ 2d′, we obtain all missing cycles and

G is pancyclic, a contradiction.
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A symmetric argument applies for edges vvi with dn
3 e + 2 + d′ ≤ i ≤ n. In

this case, for n − dn
3 e − d′ + 2 ≤ i ≤ 2dn

3 e + d′ + 1, we obtain all missing
cycles and G is pancyclic, a contradiction.

Hence we may assume that NS2(u) = NS2(v) = ∅. Suppose NS(u) ∩
NS(v) = ∅. Then (dR(u) + dR(v)) + (dS(u) + dS(v)) ≤ 2(dn

3 e + d′ − 1)+
2(n−2dn

3 e−d′−1) = 2n−2dn
3 e−4 ≤ n+dn

3 e−4 < d4n
3 e−2, a contradiction.

Hence NS(u) ∩NS(v) 6= ∅. Thus there is a cycle of length dn
3 e+ d′ + 2.

Next consider two vertices x ∈ S1, y ∈ S3 with dC(x, y) = dn
3 e. If

|E({x, y}, {u, v})| ≥ 3 then there is a (u, v)-path of length dn
3 e + 2. To-

gether with the (u, v)-paths through R we obtain cycles of lengths dn
3 e +

4, . . . , 2dn
3 e+ 2 and G is pancyclic (recall that d′ ≥ 1).

Hence we may further assume that |E({x, y}, {u, v})| ≤ 2 for all pairs of
vertices x ∈ S1, y ∈ S3 with dC(x, y) = dn

3 e. But then d4n
3 e − 2 ≤ (dR(u) +

dR(v)) + (dS(u) + dS(v)) ≤ 2(dn
3 e + d′ − 1) + 2(n − 2dn

3 e − d′ − 1) = 2n −
2dn

3 e − 4 ≤ n + dn
3 e − 4 < d4n

3 e − 2, a final contradiction.
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